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ABSTRACT Deep learningmodels have demonstrated their effectiveness in capturing complex relationships
between input features and target outputs acrossmany different application domains. Thesemodels, however,
often come with considerable memory and computational demands, posing challenges for deployment on
resource-constrained edge devices. Knowledge distillation is a prominent technique for transferring the
expertise from an advanced yet heavy teacher model to a more efficient leaner student model. As ensemble
methods have exhibited notable enhancements in model generalization and have achieved state-of-the-
art performance in various machine learning tasks, we adopt ensemble techniques to perform knowledge
distillation from BERT using multiple lightweight student models. Our approach applies lean architectural
paradigms of spatial and sequential networks including LSTM, CNN and their fusion to perform data
processing from distinct perspectives. Instead of using contextual word representations which require more
space in natural language processing applications, we take advantage of a single static pre-trained and low-
dimensional word embedding space to be shared among student models. Empirical studies are conducted on
the sentiment classification problem and our model outperforms not only other existing techniques but also
the teacher model.

INDEX TERMS Knowledge distillation, ensemble methods, BERT, LSTM, CNN, contextual word repre-
sentations, pre-trained and low-dimensional word embedding space, sentiment classification problem.

I. INTRODUCTION
Over the past decade, significant advancements in artificial
intelligence have transformed the world and reshaped our
lives, largely attributed to the progress of neural networks
through deep learning. This revolution has greatly enhanced
the capacity of computers to perceive, listen, and comprehend
their environments, leading to remarkable advancement in
the integration of AI across various scientific disciplines and
other aspects of human achievement [1]. Especially in recent
years, large language models including the BERT [2] and
GPT series (GPT-1 [3], GPT-2 [4], GPT-3 [5] and ChatGPT)
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have achieved significant success in many natural language
processing tasks. Nevertheless, the computing costs, sub-
stantial space requirements and increased inference time
associated with large neural networks impose limitations on
their deployment on edge devices for different downstream
applications. With recognition of these drawbacks, in both
industry and academia, there has been a particular focus on
researching and developing models that can be efficiently
operated on resource-limited devices.

Various approaches have been suggested to resolve this
problem such as low-rank networks [6], [7], efficient con-
volutional neural networks [8], [9], and pruning based meth-
ods [10], [11]. Among those efforts to build more efficient
models by taking advantages of large networks, knowledge
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FIGURE 1. The classification of knowledge distillation: (a) one-teacher and one-student model;
(b) multiple-teacher and one-student model; (c) one-teacher and multiple-student model.

distillation is a popular approach where a complex teacher
model transfers its knowledge to a simpler student model
for helping the student model imitate the teacher’s behavior
and making it more computationally efficient [12]. In gen-
eral, knowledge distillation can be divided into three key
categories: feature-based, response-based and relation-based
distillation methods [13]. Feature-based knowledge distil-
lation concentrates on incorporating the internal represen-
tations and features learned by the teacher model into the
student model [14], [15], response-based knowledge focuses
on transferring output responses generated by the teacher
model to guide the student model’s predictions [16], [17], and
relation-based knowledge emphasizes on providing essential
structural correlation information existing within the teacher
model to the student model [18], [19].

Ensemble learning is a simple yet effective learning strat-
egy that involves combining multiple models to alleviate the
problem of overfitting and improve higher accuracy [20].
Many ensemble methods have consistently yielded top-tier
results in numerous machine learning competitions [21].
Moreover, they also work well for knowledge distillation
because of the capability of leveraging multiple and diverse
models to capture different aspects of the data, resulting in a
more robust and generalized student model [22].
Sentiment classification is a task of Natural Language

Processing (NLP) which focuses on categorizing text into
sentiment ratings. It has been applied in real-world scenarios
to assess opinions and attitudes [23]. However, the state-of-
the-art methods to solve this problem often adopt large lan-
guage models, which are resource and time-consuming, and
are difficult to implement within the constraints of real-world
settings [24]. In this paper, we investigate knowledge distilla-
tion based on ensemble learning to improve model efficiency
and sentiment classification performance. The traditional
knowledge distillation model employs the one-teacher and

one-student architecture, while the multiple-teacher and
one-student model introduces collaboration among several
teachers to enhance the learning process. Additionally, the
one-teacher and multiple-student model facilitates the simul-
taneous transfer of knowledge from a single teacher to
multiple students (Figure 1). Unlike prior research which
explores different types of word embeddings on top of
the same CNN student model structure [25], our approach
makes an effort to minimize model complexity via sharing
a single static pre-trained word embedding space among
distinct student model architectures. By enabling knowledge
transfer starting from the same compact semantic space,
our multi-view fusion scheme allows complementary spatial
(CNN) and sequential (LSTM) feature extractions without
inflating resource demands.

The innovation and primary contributions of our proposed
approach can be summarized as follows.

• Compared to large language models such as BERT
which contains over 100 million parameters, our
distilled ensemble model adopts lean architectural
paradigms of neural networks including LSTM, CNN,
and their fusion to significantly reduce parameter usage
owing to their simple topology. Moreover, we employ
a single static pre-trained word embedding space with
only 50-dimension features to be shared among student
models rather than using contextual word representa-
tions which require large parameter spaces to capture
word semantics.

• Empirical studies are conducted on YELP dataset for the
sentiment analysis problem. Results demonstrate that
our proposed network, with substantially reduced model
size, achieves the highest accuracy of 97.3% compared
to other models. Specifically, our model contains only
1.69M parameters, which is about 65 times smaller
than the teacher BERT model with 109 M parameters.
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Our approach ensures efficient resource utilizationwhile
maintaining competitive performance.

The rest of this paper is organized as follows. In section II,
we discuss the researchworks and corresponding applications
related to knowledge distillation. Section III describes our
proposed model in detail. Section IV presents the exper-
imental evaluation and the results. Finally, we summarize
our findings and suggest potential future research avenues in
Section V.

II. RELATED WORK
In this section, we review several research fields relevant
to our work including the knowledge distillation, ensemble
learning and sentiment classification.

A. KNOWLEDGE DISTILLATION
Response-based, feature-based, and relation-based knowl-
edge are three common types of knowledge distillation
techniques used inmachine learning. The fundamental idea of
response-basedmethods is to directly emulate the final output
of the teacher network. The soft target distribution, which
is the probabilistic and continuous output generated by the
teacher model, is proposed to guide the training of the student
model by minimizing the temperature cross entropy [26].
Due to the teacher model’s occasional incorrect predictions,
providing misguided guidance may result in suboptimal per-
formance for the student model. Conditional teacher-student
learning is then proposed to selectively learn from the teacher
model or ground truth labels, depending on the teacher’s
ability to predict the truth [27]. To reduce the performance
gap between the teacher and student models,WSLD proposes
the use of weighted soft labels for distillation from a bias-
variance trade-off perspective for the purpose of increasing
bias and decreasing variance [17].
Since response-based knowledge distillation overlooks

intermediate-level supervision for thorough guidance,
feature-based knowledge distillation concentrates on inves-
tigating intermediate feature maps and the corresponding
information to offer better supervised training for the student
models. FitNet, the first feature-based method, is introduced
to align intermediate representations layer by layer between
the teacher and student models, aiming to enhance the
student’s performance. While this approach is simple and
intuitive, it may face challenges related to convergence and
performance due to the lack of high-level knowledge and the
capacity gap between the two networks [28], [29]. A novel
Exclusivity-Consistency regularized Knowledge Distillation
(EC-KD) introduces a position-aware exclusivity strategy to
enhance diversity among filters within the same layer, alle-
viate the limitations of student models and combine weight
exclusivity and feature consistency in one unified frame-
work [30]. To avoid semantic misalignment between specific
teacher-student layer combinations, Semantic Calibration for
Cross-layer Knowledge Distillation (SemCKD) employs an

attention mechanism to automatically assign suitable target
layers from the teacher model to each student layer [31].

While response-based and feature-based knowledge dis-
tillation involve using the outputs of specific layers in the
teacher model, relation-based methods go one step further
to examine the cross-sample and cross-layer relationships as
valuable knowledge [32]. A Flow of Solution Process (FSP)
explores how features evolve across layers to encourage the
student model to emulate the flow of the teacher model
using the Gram matrix [33]. A novel Instance Relationship
Graph (IRG) approach is proposed to model the knowl-
edge of a single network layer by treating instance features
and instance relationships as vertices and edges, followed
by feature space transformation across multiple layers [34].
Probabilistic Knowledge Transfer (PKT) instructs the student
model by aligning the probability distributions of the teacher
model, and it leverages feature representations to capture
instance-level relationships as probabilistic distributions dur-
ing the training process [35].

B. ENSEMBLE LEARNING
Ensemble learning is a highly effective method for enhanc-
ing the performance of deep learning models by averaging
the outputs of a small set of independently trained neu-
ral networks with identical architectures to improve the
prediction accuracy compared to individual models [22].
Two most well-known ensemble approaches are bagging
and boosting [36]. Recently, ensemble learning has been
employed in knowledge distillation to augment model gen-
eralization and enhance the robustness of the student model.
MT-BERT is a multi-teacher knowledge distillation frame-
work by incorporating multiple pre-trained language mod-
els to learn a higher-quality student model [37]. On the
contrary, the one-teacher and multiple-student is used to
leverage the collective strength of several shallow student
models of the same architecture throughout the distillation
process [25].

C. SENTIMENT CLASSIFICATION
Sentiment classification, a way to identify the subjective
information for the given context, has a wide range of appli-
cations across various industries and domains such as social
media monitoring [38], customer feedback analysis [39], and
financial forecasting [40]. Traditional supervised machine
learning approaches have been widely investigated in this
research area. For example, K-Nearest Neighbor (KNN)
and Naive Bayes (NB) are used to detect the sentiments
expressed in Twitter messages and subsequently categorize
them into four categories (Happy-Active, Happy-Inactive,
Unhappy-Active and Unhappy-Inactive) [41]. A Fisher func-
tion method based on probabilistic latent semantic analysis
is introduced to enhance the kernel function of support
vector machine where the experiment is conducted on Twit-
ter sentiment corpus and the average accuracy is 87.20%
[42]. In the past years, the research focus has shifted
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FIGURE 2. The architecture of our proposed model.

towards neural network methods which include the tradi-
tional network architectures and transformer-based model.
In traditional networks such as CNN and LSTM models,
word embeddings (e.g., Word2Vec, GloVe) are used as text
representations where each word is characterized by a fixed
pre-trained word vector. Research on sentiment analysis
by the use of traditional network architectures with static
word embeddings, including CNN [43], LSTM [44], CNN-
LSTM [45], and attention mechanisms [46], [47], has been
extensively explored and has led to significant advancements.
As these static word embeddings do not consider the con-
text of the surrounding words for the given sentence, they
are not able to capture contextual information effectively.
Recently, large-scale pre-trained language models based on
Transformer architecture employ contextual embeddings that
are generated by considering the entire context of the sen-
tence. BERT [48] and its variants such as ALBERT [49],
RoBERTa [50] and DistilBERT [51] have proven to be highly
effective for sentiment classification tasks with the paradigm
of fine-tuning PLMs.

III. PROPOSED METHOD
Given the training data samples, there exists a teacher
model T with trainable parameters θ t. The distilled student
model S with parameters θ s is trained by the model T and
training data samples. The objective is to produce a sim-
pler S with less parameters and S is able to perform even
better than T on the testing data. Our proposed method
is a kind of one-teacher and multiple-student architecture
(shown in Figure 2). Our system architecture employs a sin-
gle lightweight pre-trained word embedding as input, shared
among our ensemble system consisting of an LSTM, a CNN,
and their fusion to extract both sequential and spatial features.
The distillation objective incorporates two loss functions to

facilitate knowledge transfer from the teacher model (BERT)
to our student models. The details will be discussed in the
following sections.

A. THE TEACHER MODEL
A good teacher model should achieve high accuracy in the
target task, enabling the student model to learn effectively.
For training the teacher model, we select BERT model to
perform the sentiment classification due to its great success
in NLP tasks. It consists of 12 layers, 768 embedding size,
12 multi-head attentions and about 110M parameters. With
the prevalence of the pretraining and fine-tuning paradigm,
BERT model plays the role of the pre-trained foundation
model and an additional linear layer with a softmax activa-
tion function is attached to make the final prediction. The
input text xi is first sent to the BERT model to generate the
embeddings hTi , followed by feeding to the softmax classifier
to predict the probability of label yi:

pT(yi|xi) = softmax(WThTi ) (1)

where superscript T denotes the teacher model and WT is the
matrix for sentiment classification parameters of the linear
layer. The loss function of the teacher model is defined as
the cross entropy loss and the optimization objective is to
minimize the loss:

LossT =

∑N

i=1
LCE(yi, ŷ

T
i ) (2)

where LCE means the cross entropy function, ŷTi is the pre-
diction of teacher model, and yi is the true label.

B. THE STUDENT MODEL
In knowledge distillation, the student model is a smaller
architecture that aims to learn from a knowledgeable teacher
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FIGURE 3. Three base student models (a) LSTM model; (b) CNN model; (c) LSTM-CNN model.

model to improve its performance on the sentiment clas-
sification task. In this research, we apply a heterogeneous
ensemble-based approach using lean architectural paradigms
of neural networks including LSTM, CNN and their com-
bination to reduce the parameter usage. The three models,
LSTM, CNN and LSTM-CNN, are used separately to learn
on the same input data and make the final prediction based on
the weighted predictions of each individual model. The input
xi is processed by a lookup layer, which is an embedding
weight matrix, to generate the embeddings of each token
and we concatenate all token embeddings to obtain the final
embedding representation hi ∈ Rn×d of xi where n is the
number of words and d is the embedding dimension. We use
Glove.6B.50d GLOVE as pre-trained word embeddings [52].
It is worth to notice that we use the same input hi in our three
base student models.

The LSTM network is a special type of Recurrent Neural
Network (RNN) designed to process sequential data [53].
One of its major components is memory cells that store and
update information over time, allowing it to capture long-term
dependencies in sequences. The main advantage of LSTM
is the ability to address the vanishing/exploding gradient
problem, making it particularly effective in tasks involving
natural language processing and time series analysis, where
preserving and learning from past contextual information
is important [54]. We use the LSTM model as the first
base model and the details of the architecture are shown in
Figure 3 (a). There are three LSTM layers with hidden size
32. The embedding representation hi is sent to all LSTM

layers to obtain the encoding EncLSTM for thewhole sentence.
Subsequently, the encoded data is forwarded to a dropout
layer and fully connected network to obtain logits logitLSTM.
The CNN is a special type of feed-forward artificial neu-

ral networks with the ability to process structured grid data
through convolutional and pooling layers. The convolutional
operator scans input with filters of varying sizes to capture
local patterns and hierarchies of features at different scales
while the pooling operator is employed to identify important
features and reduce the computation cost [55], [56]. We use
the CNN structure as our second student model and the
diagram of the architecture is shown in Figure 3 (b). Our
proposed CNN model is composed of three convolutional
blocks, each containing 100 filters.We apply filters of various
sizes including 3 × 3, 4 × 4, and 5 × 5, to extract features
across different spatial dimensions from the input. Within
each convolutional block, a ReLU activation function is used
to introduce non-linearity in the network, and a max-pooling
operation is then adopted to capture the important features of
the sentence denoted as EncCNN. Subsequently, a fully con-
nected network is added to the network to perform high-level
feature aggregation and produce the logits logitCNN.
In addition to the above two base models, we present

another two hybrid modules where the first one is a
LSTM-CNN model and the second one is the combination
of all aforementioned representations to form a new classi-
fier. The LSTM-CNN model involves a two-stage process,
with the first stage employing LSTM for sequential feature
extraction from the input, and the second stage utilizing CNN
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for spatial feature extraction from the output of the LSTM.
Subsequently, a fully connected network is incorporated for
high-level feature aggregation and the final prediction. Our
implementation of the LSTM-CNN shown in Figure 3 (c)
cascades the first LSTM student model with the second CNN
student model. After the process of CNNmodel, the represen-
tation is denoted as EncLSTM−CNN and is further supplied to a
fully connected layer for obtaining the logits logitLSTM−CNN.
The second hybrid model is a combinatorial structure that
concatenates the representations of the previous three student
models (EncLSTM, EncCNN and EncLSTM−CNN) to generate
the encoding EncComb, which is then passed to the fully
connected layer for producing the logits logitComb.
For each student model, one final softmax activation is

used to compute the probability distribution of labels.

pSLSTM(yi|xi) = softmax(logitLSTM) (3)

pSCNN(yi|xi) = softmax(logitCNN) (4)

pSLSTM−CNN(yi|xi) = softmax(logitLSTM−CNN) (5)

pSComb(yi|xi) = softmax(logitComb) (6)

C. TRAINING STRATEGY
In the training stage, the distillation loss consists of two
loss functions for transferring knowledge from the teacher
network to student networks. The first loss is called the pair
loss (Losspair) to measure KL divergence (DivKL) between
each student with the teacher model forcing the individual
student model to generate similar predicted distributions of
the teacher model.

Losspair = αLSTM × DivKL
(
pT, pSLSTM

)
+ αCNN

× DivKL
(
pT, pSCNN

)
+ αLSTM−CNN

× DivKL
(
pT, pSLSTM−CNN

)
+ αComb

× DivKL
(
pT, pSComb

)
(7)

The second one is the ensemble loss (Lossensemble) to better
leverage complementary information among student models.
We first calculate the class probability distribution pSensemble
by applying the softmax function to the weighted sum of the
logits from the four student models. Then, the KL divergence
is utilized to calculate the similarity between pTandpSensemble.

pSensemble = softmax(βLSTM×logitLSTM + βCNN

×logitCNN + βLSTM−CNN

×logitLSTM−CNN
+ βComb×logitComb) (8)

Lossensemble = DivKL
(
pT, pSensemble

)
(9)

The final loss is defined as the combination of the pair loss
and the ensemble loss.

Losstotal = δpair × Losspair + δensemble × Lossensemble (10)

We present the training pseudocode of our model in
Algorithm 1. The output distribution of the teacher model

Algorithm 1 Heterogeneous Student Knowledge Distillation
Model
Input: The training dataset D{X, Y}, a word embeddings
Glove.6B.50d GLOVE (Emb) and a pre-trained BERT teacher
model (T)
Output: θ s for all the trainable weights in our proposed model
1: Randomly initialize θ s

2: repeat:
3: for each mini-batch {x, y} in D:
4: Calculate the output distribution of the T in Eq. (1) for {x}
5: Input {x} to Emb to obtain {h}
6: Pass {h} to each student model Si to obtain the corresponding

output distribution in Eq. (3), (4), (5) and (6)
7: Compute the Losspair in Eq. (7) based on the distributions of

T and each Si
8: Calculate the ensemble distribution by combing the logits of

each Si based on the expression of Eq. (8)
9: Compute the Lossensemble in Eq. (9) using KL divergence

between the ensemble distribution and the distribution of T
10: Compute the total loss Losstotal in Eq. (10)
11: Update the weight θ s to minimize the Losstotal
12: end for
13: until convergence

BERT (T) is in line 4 and the output distribution of each
student model is in lines 5-6. The pair-wise loss (Losspair)
between the teacher model output and each student model
is in line 7. The ensemble loss (Lossensemble) between the
teacher model output and ensemble output of student models
is in lines 8-9. The final loss and the update are in lines 10-11.

IV. EXPERIMENTS AND RESULTS
In this section, we conduct comprehensive empirical stud-
ies to evaluate the effectiveness of the proposed approach
in knowledge distillation for the sentiment classification
task. The discussion within this section covers the follow-
ing essential parts: the sentiment dataset utilized in our
experiments, the formulation of evaluation criteria, perfor-
mance comparisons with existing methodologies along with
detailed analysis and ablation studies aimed at investigating
the impact of the primary components.

A. EXPERIMENTAL SETTINGS
Yelp is a famous and popular online platform where people
are allowed to search and review the businesses in different
industries. Those review data have been widely used for var-
ious NLP tasks such as sentiment analysis, recommendation
systems and text classification, etc. In our sentiment classifi-
cation task, we utilize the same dataset configuration as prior
works in order to make a fair comparison [25], [57]. The sizes
of the training, validation, and testing sets are 3000, 1000,
and 1000, respectively. Each sample corresponds to sentences
from a review and has been labelled as either positive or
negative sentiment. Figure 4 displays examples of the sample
data where 1 means positive review and 0 means negative
review.
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FIGURE 4. Data examples in yelp.

The teacher model is the BERT-base network pre-trained
with 12 hidden layers. To evaluate the effectiveness of our
approach, we choose the non-distillation based and dis-
tillation based methods to compare with our solution for
the sentiment classification. Non-distillation based methods
include BiLSTM, CNN, and Ensemble CNNs. Distillation
based methods consist of TinyBERT [58], MT-BERT [37]
and Distilled Ensemble CNNs [25]. TinyBERT is a two-stage
learning framework which encourages the linguistic knowl-
edge transferring from a large teacher BERT to a smaller
student BERT, and is a one-teacher and one-student archi-
tecture. MT-BERT is a multiple-teacher and one-student
distillation approach using a multi-teacher co-finetuning
framework that aligns the output hidden spaces of multiple
teacher networks to enhance collaborative student teaching
through shared pooling and prediction modules. Distilled
Ensemble CNNs is a one-teacher and multiple-student model
to distill knowledge from a large pre-trained teacher model
into multiple shallow CNN student models by ensemble
learning. We consider two evaluation metrics in this work
where the accuracy is used to assess the performance in clas-
sification and the number of parameters is used to measure
the model size.

To optimize training quality of our model, we adjust
hyper-parameters through empirical processes and the chosen
hyper-parameter values are shown in Table 1. The experimen-
tal comparison is executed in a Windows 10 environment and
is run on a desktop computer which is equipped with an Intel
Core i9 CPU, 128 GB of memory and an NVIDIA GeForce
RTX 3090 24 GB GPU with CUDA 11.1.

B. EVALUATION RESULTS
We compare the Yelp sentiment classification results of prior
methods with our distillation approach shown in Table 2. The
first row is the teacher model that we aim to distill, and it is
a BERT-base network with an accuracy of 95.8% and a large
parameter size of 109.48M.

Traditional non-distillation techniques devoid of resource-
intensive large languagemodels have fallen short of matching
teacher network capabilities, despite notably reduced model
complexity. Ensemble CNN model has attained an accu-
racy of 92.9% using 1.20M, exhibiting inferior performance
compared to the teacher BERT model under significant

TABLE 1. Hyper-parameter configuration.

TABLE 2. Experimental results. We implement Distilled Ensemble CNN
based on the released codes and other results are directly from [25]. In all
methods, we underline the best performance-performing result, while in
the distillation based approaches, we use bold font to highlight the top
performance.

architectural compression. Accordingly, by incorporating
knowledge distillation, accuracy has improved markedly
to surpass the teacher model. Distilled Ensemble CNN
exceeds the BERT model with a 1.3% accuracy boost. How-
ever, model complexity still demands substantial parameters
(4.15M).

Building upon the foundation of previous research, our
approach achieves outstanding evaluation performance of
97.3% with a modest parameter budget of 1.69M. In compar-
ison to previous state-of-the-art methods, our unified model
demonstrates superior representational capabilities while uti-
lizing only a fraction of the parameters, with an increase
in size of only 1.54M relative to the most economical
non-distillation alternative (CNN). Simultaneously improv-
ing accuracy and efficiency across all key benchmarks, our
compact ensemble design sets new standards in achiev-
ing a balance between predictive accuracy and architectural
simplicity, showcasing significant advancements in model
design.

In conclusion, our model attains the highest accuracy
among all methods. Regarding the reduction of the parameter
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TABLE 3. Ablation experimental results.

size, we rank third in overall performance but we perform best
among distillation based methods.

C. ABLATION STUDIES
To better understand the influence of each contributing com-
ponent of our method on effectiveness, we conduct ablation
studies including the student model, different loss functions
and the usage of pre-trained word embeddings. The ablation
results are shown in Table 3.

1) CHOICE OF THE STUDENT MODEL
We evaluate the performance of our distillation approach on
different combination of studentmodels. As shown in Table 3,
it can be concluded that our approach combining all student
models outperforms those methods using only two student
models.

2) EFFECT OF THE LOSS FUNCTION
To evaluate the contribution of each loss function, we remove
each term from the objective function defined in Eq. 10 and
make the following two observations. First, it can be seen
that the accuracy of Lossensemble is 0.2% higher than that of
Losspair. In other words, the one-teacher-versus-all-student
loss strategy is superior to the one-teacher-versus-one-student
loss strategy. Second, our approach performs better thanmod-
els using a single loss function. These findings indicate the
effectiveness of joint loss (Losstotal), as similarly illustrated
in the concurrent research [59].

3) IMPACT OF WORD EMBEDDINGS
In order to comprehend how well the pre-trained language
model performs, we conduct training for an embeddingmodel
starting from scratch. The embedding model is initialized
randomly with a uniform distribution (−1, 1), resulting in
an accuracy of 96.9%. The pre-trained embedding model
(Glove.6B.50d in this research) performs better than the one
trained from scratch.

Based on the above ablation studies conducted, we con-
clude that variations in the student model, diverse loss
functions, and the utilization of pre-trained word embeddings
all impact the effectiveness of our knowledge distillation
model. These findings highlight the importance of carefully
considering these factors when implementing our knowledge

distillation technique in academic research or practical
applications.

V. CONCLUSION
In this study, we apply multiple lightweight student models
and a low-dimensional pre-trained word embedding model to
address the knowledge distillation conducted in the sentiment
classification task. Our model achieves the state-of-the-art
accuracy results and also outperforms the teacher model.
Moreover, our model size is only 1.69M and has significantly
decreased the number of parameters compared to the existing
models.

In our future work, we plan to build upon this paper with a
particular focus on the following aspects. First, as our current
approach is based on weighted ensemble learning, we will
investigate to enhance the interaction between student models
to learn more informative representations for maximizing the
generalization performance. Second, we aim to apply our
model to more complex NLP classification tasks and learn
from more advanced teacher models. Being able to reduce
parameters in state-of-the-art models will bring significant
benefits to and have a great impact on enterprises.
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