
Received 3 February 2024, accepted 28 February 2024, date of publication 1 March 2024, date of current version 8 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3372618

Manipulating Data Lakes Intelligently
With Java Annotations
LAP MAN HOI 1, (Member, IEEE), WEI KE 1, (Member, IEEE),
AND SIO KEI IM 1,2, (Member, IEEE)
1Faculty of Applied Sciences, Macao Polytechnic University, Macau, SAR, China
2Engineering Research Centre of Applied Technology on Machine Translation and Artificial Intelligence, Ministry of Education, Macao Polytechnic University,
Macau, China

Corresponding author: Lap Man Hoi (lmhoi@mpu.edu.mo)

This work was supported by Macao Polytechnic University under Project RP/ESCA-03/2020.

ABSTRACT Data lakes are typically large data repositories where enterprises store data in a variety of data
formats. From the perspective of data storage, data can be categorized into structured, semi-structured, and
unstructured data. On the one hand, due to the complexity of data forms and transformation procedures, many
enterprises simply pour valuable data into data lakes without organizing and managing them effectively.
This can create data silos (or data islands) or even data swamps, with the result that some data will be
permanently invisible. Although data are integrated into a data lake, they are simply physically stored in
the same environment and cannot be correlated with other data to leverage their precious value. On the
other hand, processing data from a data lake into a desired format is always a difficult and tedious task
that requires experienced programming skills, such as conversion from structured to semi-structured. In this
article, a novel software framework called Java Annotation for Manipulating Data Lakes (JAMDL) that can
manage heterogeneous data is proposed. This approach uses Java annotations to express the properties of
data in metadata (data about data) so that the data can be converted into different formats and managed
efficiently in a data lake. Furthermore, this article suggests using artificial intelligence (AI) translation
models to generate Data Manipulation Language (DML) operations for data manipulation and uses AI
recommendation models to improve the visibility of data when data precipitation occurs.

INDEX TERMS Data lake, data precipitation, data stewards, enterprise-level applications, impedance
mismatch, java annotations, JAMDL, object-oriented, ORMapping, software framework.

I. INTRODUCTION
Data has always been regarded as one of the most valuable
assets in business and academia. Talent will retire, technology
will age and become obsolete, and only data can provide
the insights and evidence to remain in an irreplaceable
position. In retrospect, when the Internet began to boom
in the business world, data warehouses were developed to
store the rapidly growing volume of data coming from
Online Transaction Processing (OLTP) systems. With the
popularity and practicality of Big Data (BD), Internet of
Things (IoT), and AI technologies in recent years, data

The associate editor coordinating the review of this manuscript and

approving it for publication was Rahim Rahmani .

warehouses are no longer able to meet the requirements of
storing diverse forms of data. Therefore, the concept of a
data lake was introduced to create a large data repository
for storing structured data (spreadsheet, tabular, etc.), semi-
structured data (JSON, XML, YAML, etc.), and unstructured
data (audio, corpus, image, log, etc.).

Generally speaking, data in a data warehouse is more
tightly coupled, while data in a data lake is more loosely
coupled. Data warehouse projects use the Extract-Transform-
Load (ETL) approach to data processing where everything is
defined before writing, technically known as the ‘‘schema-
on-write’’. On the other hand, the Data Lake project
uses the Extract-Load-Transform (ELT) or ‘‘schema-on-
read’’ approach [2]. Consequently, data in different formats

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 34903

https://orcid.org/0000-0002-1074-9846
https://orcid.org/0000-0003-0952-0961
https://orcid.org/0000-0002-5599-4300
https://orcid.org/0000-0001-5924-5457


L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

can be saved and exported more flexibly. The data lake
concept is designed to support a variety of data operations,
such as persistent log files for BD and IoT projects, and
domain-specific output datasets for training AI projects.

However, manipulating large volumes and complex forms
of data has been a challenging problem for many years.
Despite the many innovative solutions that continue to be
offered, the demanding needs of data lakes are still not being
met. Some of the outstanding issues are how to deal with
differently structured data in a data lake with a single data
model, which includes representing different data structures
in an abstract model, transforming between them, retrieving
data from different data sources, and storing them in a data
lake. There are also questions about how to leverage modern
AI technology to govern data lakes. Nevertheless, as more
people become aware of these new requirements for data
lakes, it will have a positive impact on the development of
data lakes.

Therefore, this article focuses on managing diverse data
structures in data lakes. A novel software framework
Java Annotation for Manipulating Data Lakes (JAMDL) is
proposed to help people quickly develop web applications for
manipulating data in data lakes. As a result, people use Java
annotations to define data models to manage different data
structures in the data lake. In pursuance of creating JAMDL,
some interesting questions and fundamental requirements are
discussed below.

A. IMPEDANCE MISMATCH
In computer science, impedance mismatch is the study of
how to match two things with different properties together.
For instance, people often want to map database data with
programming objects. It is one of the core problems for
Object-Relational Mapping (ORMapping), i.e., the disparity
between the object-oriented application development model
and the object-relational database model [3]. Neward claimed
that ORMapping is the Vietnam of Computer Science. It rep-
resents a quagmire that starts well, gets more complicated
as time passes, and before long entraps its users in a
commitment that has no clear demarcation point, no clear
win conditions, and no clear exit strategy [4]. For example,
persisting and retrieving tree-structured data (e.g., JSON) into
the flat database table shown in Fig. 1 is not a straightforward
process. It not only involves programming techniques for
recursively reading schema-oblivious trees but also applies
data normalization concepts to persist data in database
tables.

Over the years, there have been a plethora of systems
catering to the new needs of businesses resulting in a
wide variety of data formats. Based on the exact nature of
the records, datasets can be classified as structured, semi-
structured, and unstructured datasets [1]. If an ORMapping
software framework is to be developed to solve the problem
of data transformation in a data lake, then how to represent
and transform data of different structures is the core problem
to be overcome.

FIGURE 1. Transaction data can be represented in JSON (semi-structured
data format) and multiple database tables (structured data format).

B. TEDIOUS CRUD TRANSACTIONS
In most cases, enterprise applications require at least
one database engine to store transactional data. How-
ever, developing fundamental Create, Read, Update, and
Delete (CRUD) transactions using SQL statements at the
database level is a tedious task. Therefore, it is common
practice to use ORMapping software frameworks for simpli-
fication. However, most ORMapping software frameworks
only deal with structured data. There is relatively little
research onORMapping for semi-structured and unstructured
data.

C. DATABASE NORMALIZATION PROBLEMS
Conforming to the database normalization design principles
of reducing data redundancy and improving data integrity,
the data in the transactions of the OLTP system needs to
be decomposed and stored in multiple database tables [5].
ORMapping typically uses a single object to represent
a relational database (RDB) table, which means that
multiple objects are needed to represent a single transaction.
Thus, if the transaction contains a substantial amount of
information, the matching, persistence, and retrieval process
can become very complex. As shown in Fig. 1, the student
information is broken down into three tables and stored in the
database.

A single transaction at the modern enterprise level
usually contains a large amount of information. People are
starting to debate whether it is certainly worth breaking up
transactions into multiple tables for data persistence and
then joining them for data retrieval. Some database engines
such as Not Only Structured Query Language (NoSQL) or
Not Relational (Non-SQL) recommend saving the entire
transaction as an object and operating on it without mod-
ifying the structure [6]. As a result, it reduces the data
granularity problems associated with database normalization
and simplifies the data transformation process. Nonetheless,
database normalization provides data integrity and powerful
querying capabilities. Both are genuinely necessary and using
ORMapping objects to represent informative datasets that
combine different data structures is a major challenge for
framework developers.

34904 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

FIGURE 2. The modular software architecture for manipulating the data lake.

Furthermore, most modern ORMapping software frame-
works only use inner join methods to join database tables
and do not provide other table join methods (left join,
right join, intersect join, full join, etc.) for data integration.
Consequently, developers either have to change the table
structure or write complex SQL statements themselves.
Likewise, data integrity, especially the merging of various
data structures, is one of the difficulties in manipulating data
lakes.

D. BIG PICTURE
In this article, the JAMDL framework is presented compre-
hensively, and it is based on ORMapping for manipulating
data in a data lake. The structure diagram is shown in Fig. 2.
The software architecture is componentized into different
modules (data modeling, data persisting, data retrieving, and
data governing), and each module is discussed separately
below.

The JAMDL framework is designed to address the
problems listed in the previous sections and to provide a
way for people to represent different data structures using an
object model. As a result, one can use this object model to
read, write, and convert data in a data lake to a desired format.

The rest of the article is organized as follows: Section I
briefly describes the purpose of this study; Section II reviews
state-of-the-art techniques and related research; Section III
shows how to build a software framework for manipulating
data lakes; Section IV evaluates and analyses the significance
of all the results; and Section V concludes all the research
study and discusses future work.

II. LITERATURE REVIEW
A. DATA LAKES
Enterprises collect digital footprints from a wide range of
activities, with data coming in a heterogeneous form. The
predefined table schema of the data warehouse architecture

cannot meet the needs of storing unstructured data such as
images, videos, and corpus files. Data lakes are one of the
solutions for persisting data in various formats. However, data
is often not well organized due to the complexity and diversity
of data in data lakes. As a result, it is difficult for data to be
fully utilized and analyzed to help decision-makers identify
interesting issues and govern.

In other words, a data lake is simply a repository of all
data (including raw data) for people to access at one point.
The terms used to describe this large data repository are
varied and include data puddles, data ponds, data pools, data
oceans, and more. They differ mainly in their size, maturity,
and purposes [7]. Nevertheless, it is more appropriate to use
the term ‘‘data lake’’ in this article, as it is more relevant to
enterprise-level applications.

Starting in 2010, different architectures have been sug-
gested for building data lakes. Recently, many service
providers have adopted data lakes in the cloud. Some well-
known companies, such as Amazon Web Services (AWS),
Azure Data Lake Store, Google Cloud Platform (GCP),
Alibaba Cloud, and the Data Cloud from Snowflake, even
offer powerful tools and user-friendly service interfaces
for enterprises to build their own data lakes. In academia,
scholars have never stopped to propose innovative solutions
for constructing data lakes. According to the structure
and function of a data lake, data lakes usually consist
of four layers (Ingestion, Maintenance, Exploration, and
Storage) [8], [9], [10].

Nonetheless, people are more concerned with the archi-
tecture than with manipulating the content of the data in
the data lake. The demand for comprehensive solutions for
manipulating data in data lakes continues to exist.

B. JAVA ANNOTATIONS
Java annotations, first released in 2004, are a form of
metadata that provide information about a program rather

VOLUME 12, 2024 34905



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

than being part of the program itself [11]. Java annotations
provide three different retention policies (source, class, and
runtime) for specifying how long to retain annotations.
Therefore, once a Java program is annotated, the annotation
information can be read at different stages of the program
(compile time, deployment time, and runtime). Moreover,
annotations can even be used to dynamically generate code
that outputs a Java program, which is very much in line with
the needs of framework developers.

Although annotations are not the core programming
language by themselves, people often use them to extend
the language’s support for custom features such as compiler
information, documentation, runtime logging, generating
additional files, and so on [12]. In addition, some recent
research studies have suggested the use of Java annotations
for validation [13], [14], [15], mining [16], [17], [18], and
maintenance [19].
People commonly use XML to define and configure

different software frameworks. However, XML is considered
heavyweight because it has too many tags and its tree struc-
ture is bulky when parsing content. Hence, Java annotations
can be used to store configuration information of software
systems instead of the verbose XML.

In the field of deep learning, data labeling is one of
the important processes in machine-supervised training, and
Java annotations can be the metadata describing various data
structures in the data lake. As a result, the applications of Java
annotations in different domains are yet to be explored by
researchers.

C. TYPES OF SQL STATEMENTS
There are various types of Structured Query Language (SQL)
statements used to process database records. The most
commonly used SQL statements are Data Control Lan-
guage (DCL), Data Definition Language (DDL), Data
Manipulation Language (DML), and Data Query Lan-
guage (DQL) [20]. They are sub-languages that perform all
the basic operations in the database engine.
• DCL operations grant access to all elements in the
database. Typical DCL statements are the GRANT and
REVOKE statements.

• DDL operations define elements such as schema for
storing data. Typical DDL statements are the CREATE
and DROP statements.

• DML operations manipulate the contents of data
records. Typical DML statements are INSERT,
DELETE, and UPDATE statements.

• DQL operations retrieve data records and combine them
into a subset of data. A typical DQL statement is a
SELECT statement.

These sub-languages have traditionally been used only for
manipulating structured data, i.e., database records. Hence,
researchers should improve these sub-languages so that
they can handle other types of data (semi-structured and
unstructured data) and assist the JAMDL framework in
managing the heterogeneous data in the data lakes.

D. ORMAPPING SOFTWARE FRAMEWORK
ORMapping is a mechanism for connecting classes in an
object-oriented (OO) programming language to tables in a
relational database [21]. ORMapping allows us to query and
manipulate data stored in an RDB using OO approaches
without the need to use DQL or DML [5]. As a result,
programmers can retrieve and save data in a variety of
database engines without having to write cumbersome SQL
statements. In other words, developers can simply use their
favorite programming language (Java, PHP, C#, etc.) without
having to develop at the database level.

However, the popular ORMapping software frameworks
on the market (Hibernate, MyBatis, TopLink, etc.) and
the Java Persistence API (JPA) industry standard share
many common issues that cannot fully satisfy the needs
of developers [5]. For example, most ORMapping software
frameworks are unable to address the impedance mismatch
between structured, semi-structured, and unstructured data.

Although ORMapping has been around for a while,
there are still some outstanding issues that cannot be fully
settled [22]. A typical example of this is manipulating
JavaScript Object Notation (JSON) data. JSON is one of the
most commonly used data exchange formats inmodern online
systems, but existing ORMapping software frameworks only
partially support the complex tree structure of JSON, which
does not meet the expectations of modern developers. Most
database engines that support JSON will keep the JSON
objects intact, which loses flexibility and performance for
searching and updating data.

To design a new ORMapping software framework to
manipulate data in a data lake, conversion between differ-
ent data formats is unequivocally a challenging problem.
In general, there are three problems (mapping, retrieving,
and persisting) that need to be overcome to design a new
ORMapping software framework [23]. In the proposed
solution, Java annotations are used as data objects to represent
different data structures to manipulate the data in the data
lake. Thus, the JAMDL framework based on ORMapping
must overcome the following problems.
• Map data in different formats to data objects.
• Store data objects to different datasets.
• Retrieve data from multiple datasets and convert it back
to a single data object.

E. DATA STEWARDS
Over the years, people have had different names for people
who work with data, such as data engineers, data analysts,
and data scientists. Roughly speaking, data engineers are
responsible for underlying data processing, data analysts for
business insight analysis, and data scientists for academic
research. People usually categorize employees into specific
roles based on their interests and job characteristics in
the company. More recently, enterprises can even appoint
data stewards for data governance, data quality control,
data pipeline management, business definition regulation,
glossary creation, and sensitive data operations.

34906 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

Data governance is a very broad term that can cover many
areas. It can be linked to plans, policies, and procedures for
managing and implementing data accountability [24], [25],
[26]. Data governance is now often used to represent the job
responsibilities of a data steward. As the role of the data
stewards becomes more important, enterprises require them
to have a more holistic view of the data lake conduce to
effectively manage its dynamic nature. It has also become
necessary to use modern AI tools to help them in their
governance efforts.

With the help of cutting-edge AI technologies, many
hidden issues and problems can be detected in advance
and data stewards can react quickly. Therefore, modern
software frameworks should also offer the ability to include
AI technologies to predict and recommend management
strategies to data stewards.

F. AI TECHNIQUES
Since the rise of neural networks and AI-related techniques,
they have immediately dominated the field of academic
research. They specialize in automation and prediction and
can be applied to many different domains.

AI techniques can be used in many different areas to
help the JAMDL framework provide powerful features for
secondary developers. Some common but not limited to
these neural networks can help are Convolutional Neural
Network (CNN) for building classification model [27],
[28], Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU) for
building models that require to understand the context of
the sentences [29], [30], end-to-end (E2E) network for
building translation models [32], and Emphasized Channel
Attention, Propagation and Aggregation in Time Delay
Neural Network (ECAPA-TDNN) for voice and speaker
recognition [31].
In this article, AI techniques are mainly used to generate

SQL statements and to help data stewards manage data lakes.
In a previous study [33], an E2E network was implemented
to generate DQL-type SQL statements to query a database
engine using natural language. E2E is very elegant and
has been popularized for deep learning [32]. The idea of
using a single model to specialize in predicting outputs
directly from inputs can handle extremely complex systems
and is arguably the most advanced deep learning technique.
By the same token, people can use AI to generate complex
DML-type SQL statements for processing enterprise-level
transactions.

Data stewards also need AI technologies to provide
alerts and recommendations to create insightful analyses
of business intelligence (BI) type reports and visualization
diagrams. Furthermore, people can build AI models that
rate data based on its accessibility, and validate the data
in the data lakes after the JAMDL object models are
built. Subsequently, many areas where AI can be used to
enhance the JAMDL framework are yet to be explored by
researchers.

III. METHODOLOGY
To propose a new type of ORMapping software to
comprehensively address the salient issues of data lakes,
it is necessary to address the fundamental issues of data
manipulation (mapping, retrieval, and persistence). All the
modules listed in Fig. 2 are discussed below. The JAMDL
framework is designed to handle different datasets, whichwill
be demonstrated below using the simple dataset mentioned in
Fig. 1.

A. DATA MODELING
The mapping process is the most critical part of the
proposed software framework. There are several conventional
methods for mapping relational data to program objects.
The common practice in today’s software frameworks is
to define an XML file for the object mapping process.
However, popular software frameworks (Spring Boot, iBaits,
etc.) require writing and managing many XML files for
configuration. As the project evolved, the content and syntax
became lengthy and complex. Instead, Java annotation is
recommended to be used as an object to describe different
types of data in a data lake.

1) OBJECT MODEL
The principle of OO is that everything can be object-based.
Data in various formats can also be conceptually represented
by corresponding objects. In a previous study [34], object
models are illustrated to process unstructured data (parallel
corpora). Therefore, the object model can help to represent
and manage complex data. Abstraction refers to the basic
characteristics of an object that distinguish it from all other
types of objects, thus providing a clearly defined conceptual
boundary relative to the perspective of the viewer [35]. This
concept helps in discovering the characteristics of various
data. Furthermore, it is also applicable in dealing with semi-
structured data, which requires some higher level of abstract
description.

The ease of use of Java annotations is unparalleled in
the history of Java metadata. Java annotations are flexible
enough to provide a retention policy that specifies how
marked annotations are stored, whether they are stored
only in code, compiled into classes, or available at runtime
through reflection [11]. With Java annotations, the JAMDL
framework is fully implemented based on ORMapping for
manipulating data in the data lakes, the source code of
which is available on Github [36]. Fig. 3 shows the essential
classes used to form the business logic of this software
framework.

2) MAPPING APPROACH
To the extent that Java objects represent various types of data,
the most fundamental metadata encompass field name, field
type, entity type, and entity path. The terms ‘‘field’’ (table
columns, log records, JSON attributes, etc.) and ‘‘entity’’
(database tables, log files, JSON files, etc.) here have more

VOLUME 12, 2024 34907



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

FIGURE 3. Class diagram: Business logic of the software framework.

abstract meanings and are used to support different data
structures.

Once this metadata is defined in a Java class, the software
framework generates JavaBeans for developers to manipulate
the data and DML and/or DQL operations for the software
framework to manipulate the data in the data lake. Note
that DML and DQL here have been enhanced to support the
processing of data other than database records using Plain
Old Java Objects (POJOs).
• field name: This attribute is the name of the field that
will be used to generate the JavaBeans and DML and/or
DQL operations.

• field type: This attribute is the data field (double,
integer, string, etc.) of the data type that will be
used to generate JavaBeans and DML and/or DQL
operations. The field type is the data type of structured
data table columns, semi-structured data attributes, and
unstructured data records.

• entity type: This attribute indicates the type of
entity (log file, JSON, RDB, etc.). Unlike traditional
ORMapping software frameworks that can only handle
structured data (i.e., database records), it can associate
semi-structured and unstructured data.

• entity path: This attribute indicates the location of the
entity (file path, RDB name, etc.) in the data lake.

3) CORE PROGRAMS
The implementation of developers begins with the con-
struction of the DLMapper program, an interface class for
developers to annotate metadata. DLManager is a superclass
for constructing CRUD transactions to manipulate data in a
data lake after the DLMapper class has been defined. Fig. 3

shows the architecture of theDLManager and its relationship
to the auxiliary Java classes. All the roles of these auxiliary
classes are summarized below.
• DLConverter: An interface class that contains APIs for
converting JavaBeans to JSON objects, tabular database
records to JavaBeans, and tabular database records to
JSON objects.

• DLCRUD: An interface class that provides developers
with a CRUD transaction API. It also provides advanced
APIs for manipulating multiple tables and records at the
same time.

• DLManager: An abstract class that implements CRUD
transactions by generating DML and DQL operations.
It also generates JavaBeans for developers.

• DLMapper: An interface class that stores annotation
information provided by the developer for the ORMap-
ping process.

• DLTree: A class that provides developers with an API
for dynamically building JSON objects.

• DLViewer: An interface class for storing information to
combine transactions frommultiple tables using specific
table join methods.

4) MAPPING PROCESS
The DLManager class triggers the generateSQL(),
generateBean(), and generateService() APIs
to take care of the tedious tasks for us. The following
pseudocode demonstrates the mapping process using Java
annotations in a subclass of DLManager. The database table
(student_info) has two columns (student_id, student_name)
that can be mapped to a JavaBean (StudentBean) whose
properties (studentId, studentName) are of type integer and

34908 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

string respectively.Moreover, the mapping()API specifies
the primary key of the table.

1 public class StudentManager extends DLManager {
2 @Override
3 @DLMapper(tableName = ‘‘student_info’’,
4 beanName = ‘‘dl.model.StudentBean’’,
5 columns = {"student_id", "student_name"},
6 properties = {"StudentId", "StudentName"},
7 types = {DLData.Integer, DLData.String},
8 path = ‘‘StudentDB’’, datasetType = 0)
9 public void mapping() { super.setPkNum(1); }
10
11 @Override
12 public void joining() {}
13 }

All the mapping process is done in this ordinary Java
subclass. The annotations occur in front of the mapping()
API. Since Java annotations are defined to be retained in
the software framework at compile time, JavaBeans and the
related DML and DQL operations will be generated after the
subclass is compiled.

B. DATA RETRIEVING
The object retrieval mechanism involves a READ transaction
of CRUD. The software framework uses the industry
standard Java Database Connectivity (JDBC) for database
connectivity, which is very mature and robust and supports
most database engines.

There are four different types of JDBC connections
(bridge, native API, middleware, and driver-only) to cater to
the diversity of enterprise environments [37]. Furthermore,
this software framework is designed to support the schema-
on-read approach that allows developers to self-define their
special schema when querying a data lake. Since JAMDL is
developed entirely in Java, the database connection methods
use type four (driver-only) which is considered the most
efficient. Consequently, unlike most of the well-known
ORMapping software frameworks on the market that use
other complex database connection types, the concise archi-
tecture of JAMDL should run faster than they do.

In most ORMapping software frameworks, the READ
transaction can retrieve only one record from the database
per query, which is insufficient for handling semi-structured
and unstructured data. Therefore, this software framework
provides a list() API to retrieve multiple records.
It also provides developers with custom JSON objects to
dynamically output data in the desired format.

1) RETRIEVING PROCESS
Once the mapping process is complete, CRUD transactions
become very simple. The READ transaction can be imple-
mented by simply calling StudentManager with a JavaBean.
The following pseudocode demonstrates a READ transaction
where StudentManager retrieves a record based on a primary
key.

1 public class ReadStudent {
2 public static void main(String[] args) {
3 // Data Source Connection
4 DSConn dsObject = new DSConn();
5 StudentBean bean = new StudentBean();
6 bean.setStudentId(123123);
7 bean = (StudentBean) StudentManager.noSQL()
8 .read(dsObject, bean);
9 System.out.println(bean.getStudentName());
10 }
11 }

The READ API provided by the software framework
is very concise, as the abstract class DLManager already
handles all the heavy lifting. First, it reads the annotation
information from the mapping() API of the subclass.
It then validates the number of attributes in the annotation and
generates a JavaBean and DQL operation. DQL operations
are performed by using two APIs (callGetter() and
callSetter()) to manipulate data in the data lake.
Algorithm 1 and Algorithm 2 show the implementation of
these two APIs inside the software framework.

Algorithm 1 Retrieving Data From a JavaBean
Input: bName, mName, bean
Output: value

1: function callGetter()
2: Class<?> c← Class.forName(bName)
3: Method m← c.getDeclaredMethod(mName)
4: Object value← m.invoke(bean)
5: return value

Algorithm 2 Storing Data to a JavaBean
Input: bName, mName, bean, value

1: function callSetter()
2: Class<?> c← Class.forName(bName)
3: Class<?>[] arg← new Class[1]
4: Method m← c.getDeclaredMethod(mName, arg)
5: m.invoke(bean, value)

2) OBJECT INTEGRATION
According to the database normalization concept, a sin-
gle transaction can be separated into multiple tables for
persistence [38]. Querying back a transaction requires con-
solidating them together. The query statements become very
complex if a transaction involves more than three tables, and
joining database tables is doubtless a challenge in building
novel software frameworks. As in the previous example in
Fig. 1, student information is normalized into three different
database tables. To retrieve complete information about a
student, these three tables need to be joined.

In this software framework, DLManager provides a
joining()API for developers to specify how to join tables
together. Developers simply create a JoinBean, fill in the
basic table join information (data fields, table name, and join

VOLUME 12, 2024 34909



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

key), and the software framework fetches the data from the
database table accordingly.
DLManager also provides developers with two result

formats through the interface class DLCRUD: JavaBean and
tabular data (list of strings).

+queryJoin(n: String): List<DLBean>
+queryView(n: String): List<List<String\gg

Instead of retrieving all records directly, DLManager can
choose to limit the records fetched. Developers can use the
setFilters()API of JoinBean to insert the where clause
of a DQL operation.

+setFilters(f: String[]): void

In addition, DLManager is capable of specifying different
join methods. Since not all database engines can support
various join methods, the JAMDL framework provides the
most commonly used method to support most database
engines, and the default method in this software framework
is an inner join. These join methods (inner join, left join,
right join, full outer join, intersect, union, minus, etc.) are
commonly found in most database engines for processing
queries [1]. Moreover, these join methods are slightly
modified to accommodate all database engines. Table 1
summarizes the syntax of the different joinmethods provided.

TABLE 1. Syntax for different join methods.

The following pseudocode shows how to query student
information by constructing a JoinBean. The table join
method is specified in the setKeys() API on line 7.

1 @Override
2 public void joining() {
3 JoinBean bean = new JoinBean();
4 bean.setJoinName(‘‘JoinStudent’’);
5 bean.setColumns({"ID", ‘‘NAME’’, "COURSE"});
6 bean.setTables({"STUD", ‘‘RELA’’, "COURSE"});
7 bean.setKeys({{"STUD.ID=", "RELA.ID"}\ldots });
8 bean.setFilters({"ID = 123456"});
9 super.setJoinTables(bean);
10 }

The most critical part of making this data retrieval
mechanism work flawlessly is the process of correctly
generating SQL statements (DQL). While query statements
can be dynamic and varied, SQL statements can be broken

down into different parts (data fields, tables, keys, and
filters) [33].
There are two main SQL patterns for table joins in this

software framework, and the syntax diagram is shown in
Fig. 4. As mentioned earlier, the DQL keywords (SELECT,
FROM, ON, HAVING, and WHERE) separate the SQL into
different parts. This software framework then reads the object
information from the annotations and uses these predefined
SQL templates to generate the requesting queries.

FIGURE 4. DQL type SQL patterns for different join methods.

By the same token, semi-structured and unstructured data
can be queried by implementing the joining() API.
Unstructured datasets are retrieved in the form of a data field.
The following DQL operations show enhanced versions that
support data other than database records. Therefore, POJOs
handle queries by processing data at the file system level. It is
important to note that the syntax of enhancedDQL is the same
as the normal DQL SQL statement.

SELECT row FROM abc.log WHERE lineNum = 6;
SELECT attribute FROM def.json WHERE

attribute = ’id’ and level = 3;

The first enhancedDQL retrieves a record from the log file.
This result set is a subset of unstructured data or just a part
of the log file. Therefore, developers can now manipulate the
log file through the JAMDL framework.

3) SEMI-STRUCTURED DATA TRANSFORMATION
Since JAMDL framework uses JavaBean as the default
data format for developers to manipulate data in the data
lake, it provides advanced APIs for converting bland,
two-dimensional data into the JSON tree format. This
software framework provides two APIs (beanToJson()
and toJsonTree()) from the DLConverter interface

34910 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

class (described in Fig. 3) to construct JSON objects.
The beanToJson() API converts JavaBean or table data
directly into flattened JSON objects. This is an overloaded
method that can output single or multiple records from the
database. In other words, the output JSON object has either
a one-level (JSONObject) or two-level (JSONArray) tree
structure.

In reality, JSONobjects can be very complex, withmultiple
layers, especially for enterprise systems. To address this
need, the JAMDL framework provides the toJSONTree()
API for dynamically constructing tree-structured objects.
Moreover, the ‘‘Bracket Schema’’ notation is introduced for
the software framework to understand the self-defined JSON
structure. Fig. 5 shows the syntax of bracket notation with
the upper part representing JSONObject, and the lower part
representing JSONArray objects.

FIGURE 5. The ‘‘Bracket Schema’’ notation for building the JSON objects.

As a result, developers can dynamically define the JSON
format and the software framework generates JSON on the
fly, for example, by converting data records from three
database tables into JSON objects, as shown in Fig. 1.
Developers can dynamically create different tree structures

by simply embedding these bracket symbols in a Java
program (pseudocode shown below). In addition, the JSON
structure can be changed by modifying lines 7 through 10.

1 @Override
2 public static void main(String[] args) {
3 DSConn dsObject = new DSConn();
4 list lBean = new ArrayList();
5 lBean = StudentManager.noSQL().list(dsObject, bean);
6 Bean2Tree b2t = new Bean2Tree();
7 b2t.setFields(new String[] {
8 "StudentID", "StudentName",
9 "CourseTaken[CourseCode", "CourseName", "Credit]"

10 });
11 b2t.buildTree();
12 b2t.setlRecord(lRow);
13 JSONObject json = b2t.toJSON();
14 }

Developers can change the bracket notation in plain
text to represent more complex JSON object structures
such as nested brackets. Two additional JSON objects are
demonstrated below, with the results shown in Fig. 6.

// JSON format 1
b2t.setFields(new String[] {

"StudentID", "StudentName",
"CourseTaken[CourseCode", "CourseName]",
"TotalCredit"

});
// JSON format 2
b2t.setFields(new String[] {

"CourseCode", "CourseName", "Credit",
"Students[StudentID", "StudentName]"

});

FIGURE 6. Different JSON objects.

Inside the JAMDL framework, the toJSONTree() API
is implemented in the DLTree class (as described in Fig. 3).
As shown in Algorithm 3, it reads the data fields and
determines the sequential number, tree level number, and
column name of the database table for each data field. It then
uses indirect recursive methods to add either JSONObject
or JSONArray objects to build the JSON tree. Algorithm 4
shows the business logic for transforming JSON objects from
database records.

Algorithm 3 Parsing the Bracket Schema
1: function readNodes()
2: levelId ← 1
3: initialize nodeList
4: while loop over each field do
5: if field has left bracket then
6: levelId ← levelId + 1
7: if field has right bracket then
8: levelId ← levelId − 1
9: nodeList .add(field)

10: return nodeList

C. DATA PERSISTING
This software framework provides two different approaches
to handle DML operations beneficial to persist data in a data
lake.

1) PERSISTING PROCESS
DML operations (INSERT, UPDATE, and DELETE) are
used to change the contents of database tables. After
the data mapping process is complete, the DLManager
reads the object information from the annotations and

VOLUME 12, 2024 34911



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

Algorithm 4 JSON Objects Transformation
1: function toTreeArr(levelId, array)
2: TreeBean bean← nodeList .get(levelId)
3: JSONObject obj← new JSONObject()
4: obj.put(bean.getName(), bean.getRecord())
5: if levelId + 1 = nodeList .size() then
6: array.add(obj)
7: return array
8: else
9: TreeBean next ← nodeList .get(levelId + 1)

10: if next .getLevel() > next .getLevel() then
11: obj.put(next .getName(),

toTreeArr(levelId + 1, new JSONArray()))
12: array.add(obj)
13: else
14: array.add(toTreeObj(levelId + 1, obj))
15: return array
16: function toTreeObj(levelId, obj)
17: TreeBean bean← nodeList .get(id)
18: obj.put(bean.getName(), bean.getValue())
19: if levelId + 1 = nodeList .size() then
20: return obj
21: else
22: TreeBean next ← nodeList .get(levelId + 1)
23: if next .getLevel() > next .getLevel() then
24: obj.put(next .getName(),

toTreeArr(levelId + 1, new JSONArray()))
25: return obj
26: else
27: return toTreeObj(levelId + 1, obj)

generates DML to process the corresponding transactions.
All SQL statements rely on the primary key defined in the
mapping()API (described in Section III-A4) as the default
generation method.

The business logic is similar to the READ transaction.
DML templates (shown in Fig. 7) can be created by breaking
down SQL statements using keywords (INSERT INTO,
VALUES, UPDATE, SET, DELETE FROM, and WHERE).
The basic DML can be further divided into different parts:
action (DELETE, INSERT, UPDATE), filters (WHERE), and
arguments (entity names, field names, and field values) for
automatic generation by the framework.

Developers can then use the create(), update(), and
delete() APIs provided by the DLCRUD interface class
to modify the content of entities.

Changing one record at a time cannot satisfy the require-
ments of an enterprise-level system. Therefore, this software
framework provides three additional APIs (bCreate(),
bUpdate(), and bDelete()) to modify multiple records
in batch mode or ‘‘transaction’’ mode. Most database engines
offer the advanced feature of transaction mode. A transaction
is a set of SQL queries that are treated ‘‘atomically’’ into a
unit of work [39].

FIGURE 7. The DML operation template.

These three APIs first turn off the auto-commit feature of
the database engine and then evaluate each SQL statement.
If all SQL statements are successfully executed, the modified
data will be permanently stored in the database. Finally,
they turned on auto-commit again. This transaction mode
process improves the overall performance significantly. The
implementation is almost identical to a normal CRUD
transaction, with the addition of auto-commit configuration
steps.

Semi-structured and unstructured data usually exist as files
in the data lake. The framework treats them as a normal data
field with their data path in the JavaBean. Persisting these
types of data requires direct modification of files rather than
database tables. Thus, the DML operation consists not only
of an SQL statement that modifies a database record but also
of a POJO that modifies a JSON or log file.

Although DML operations that modify semi-structured
and unstructured data are more like commands than SQL
statements, they follow SQL syntax structures. For example,
two DML operations to delete specific lines of a log file and
update an attribute of a JSON object with a specific value are
shown below. Then, the POJO translates these command-type
DML operations and modifies them at the file system level.

DELETE FROM abc.log WHERE lineNum = 6;
UPDATE def.json SET name = value WHERE
level = 3;

2) DML FOR JOINED TABLES
Section III-C1 demonstrates how JAMDL framework manip-
ulates simple DML operations. An enterprise-level transac-
tion indeed can involve several data sources and various
data formats. The updateJoin() API provided by the
DLCRUD interface class is used to persist online transactions
involving multiple database tables. The DLManager first
reads object information from the joining() API. It then
generates DML operations from the corresponding entities,
fields, and keys. To handle more complex DML operations,

34912 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

the software framework uses AI technologies to generate
these DML operations.

In previous research on building question answering (QA)
systems, LSTM and GRU neural networks are illustrated to
generate natural language questions and DQL answers with
high accuracy [33]. To exploit this, the JAMDL framework
also uses LSTM and GRU models to generate DML for
accessing multiple data sources, the performance of which
is discussed in detail in the next section.

D. DATA GOVERNING
Although the responsibilities of data stewards vary from
enterprise to enterprise, their role is becoming increasingly
important. They also need to react quickly to new rules,
policies, and instructions set by local governments in some
countries. Since DCL operations can only control user
access to structured data, DCL can be augmented with
POJOs to control other structured data (semi-structured and
unstructured data).

However, the role of data stewards is not only to safeguard
data but also to provide high-quality data to the enterprise.
Therefore, the following areas can utilize AI technology to
help them better govern the data in the data lake.

1) DATA PRECIPITATION
In the field of chemistry, precipitation is the separation of
solid substances from a liquid. This process occurs naturally
over a while without external intervention.

As data stays in the data lake for longer and longer periods,
polarization occurs due to the increase in the number of visits,
leading to data precipitation. Fig. 8 shows that data near the
surface is most frequently accessed, while data located at
the bottom is rarely accessed, or is referred to as ‘‘zombie
data’’. Nevertheless, data stewards are responsible for various
definitions of data, including zombie data, which is data that
has not been accessed within a specific time.

Subsequently, there are a lot of interesting things that can
be done when data precipitation appears. On the one hand,
people can rank the data based on how often it is accessed.
On the other hand, people can classify data that may end
up as zombie data. With the help of AI technology, people
can also build recommendation models that provide not only
high-quality data but also rarely accessed data that may be
useful to users. As a result, data that would otherwise form
data silos can increase their visibility.

2) FAULT DETECTION
Most data stewards are probably more concerned about
system failures and errors. However, many factors and
combinations can cause system failure. Therefore, big data
concepts can be used to build a linear regression model and
incorporate all relevant parameters that may lead to system
failures. Some common parameters include new system
deployments, system updates, age of hardware, new security
threats, peak times, holidays, historical high-risk days, and
dates of special events and activities.

FIGURE 8. Data Precipitation.

3) RESOURCE PLANNING
Modern system architectures rely on cloud computing to
create virtual machines for each server node. Hardware
configurations (CPU, memory, hard drives, etc.) can be
adjusted more flexibly as server usage changes. Conse-
quently, a predictive model can be built to estimate the
resources (hardware configuration, network bandwidth, etc.)
consumed by each server node through past usage statistics
and possible patterns.

IV. EXPERIMENTS AND DISCUSSIONS
A. GENERATING DML BY LSTM AND GRU NETWORKS
In most cases, building accurate AI models requires a
large amount of high-quality training data. To prepare the
training data, all possible DML operations from each entity
(database tables, JSON, and log files) are created. This can
be accomplished by writing a simple recursive program
that iterates through every file and column in the database
table. Then, form a transaction by randomly selecting some
fields from different entities (files or tables). Simultaneously,
the corresponding DMLs are generated from each entity.
As a result, each transaction containing different fields from
different entities is paired withmultiple DML operations. The
business logic of this program is shown in Algorithm 5.

Algorithm 5 Training Data Generation
Input: n ▷ Number of records
Output: train.txt, test.txt ▷ Output files

1: procedure gen_training_data(n)
2: while loop over each file and table do
3: list(field, entity)← {files or tables}
4: counter = 0
5: while counter < n do
6: randomly picks some records from the list
7: put all the field together as a transaction
8: iterate over all three DML types of operations
9: generate DML for each entity containing field
10: output the transaction and DMLs pairs to files
11: write 90% of the data to train.txt
12: write 10% of the data to test.txt

Consequently, the training and testing datasets are pre-
pared. Then, translationmodels are built to allow the software

VOLUME 12, 2024 34913



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

framework to generate DML statements automatically. Trans-
lation models require source and target texts as a pair or
parallel corpus to train the AI model. Below is an example
of the parallel corpus generated by Algorithm 5.

SOURCE TEXT (TRANSACTIONS):
UPDATE logA.lineNum=num,
tableA.fieldA=valueA, tableA.fieldB=valueB,
tableB.fieldA=valueA, tableB.fieldC=valueC

TARGET TEXT (DML OPERATIONS):
UPDATE logA.log SET lineNum=value;
UPDATE tableA SET fieldA=valueA,fieldB=valueB;
UPDATE tableB SET fieldA=valueA,fieldC=valueC;

B. EVALUATING LSTM AND GRU NETWORKS
The next step is to build some translation models for evalu-
ation. With the emergence of the Google Transformer model
in 2017 [28], it has rapidly dominated the deep learning field,
particularly natural language processing (NLP) research
projects. Hence, a sequence-to-sequence (S2S) transformer
model is used to encode the transactions and decode the
DML operations with the Keras APIs. The construction of
LSTM and GRU neural networks follows some textbooks
[40], [41].

The translation model was built by using a Keras
GRU-based encoder and decoder and SoftMax as a starter
function, with the embedding dimension set to 256. Since the
vocabulary of all field names in the data lake is not rich, the
maximum value of vocabulary is set to 18,000. Moreover,
the ‘‘forget gate’’ in GRU is activated which can help predict
words in a sequence accurately and efficiently [42].
During the experiments, six test cases were designed

to test the performance of different networks and datasets
(3, 6, and 9 hundred thousand). After running each
test case for 60 epochs, the results are summarized in
Table 2.

TABLE 2. Test case results.

Fig.9 shows the accuracy values for both networks. The
curves show that the overall performance of the GRU neural
network outperforms LSTM. After more than 50 epochs of
training, the score of themodel was roughly stable, so training
was stopped at 60 epochs. Furthermore, large datasets can
lead to higher accuracy. As a consequence, this software
framework uses GRU neural networks to generate DML
operations.

FIGURE 9. Evaluation of GRU and LSTM neural networks.

C. PERFORMANCE EVALUATION
Section III introduced the features and usage of the JAMDL
framework. This section provides a performance evaluation
of the JAMDL framework and compares it with well-known
ORMapping software frameworks in the market (Hibernate
and MyBatis).

Honestly, it is not easy to fairly compare different ORMap-
ping software frameworks. Performance may depend on
the environment (operating system, hardware configuration,
database engine, data complexity, etc.). Since neither the
Hibernate nor MyBatis software frameworks fully support
semi-structured and unstructured data, performance testing
can only be done on structured data.

Four test cases are designed for evaluation. Case 1 has a
table with less than a hundred data records. Case 2 has a
table with about one million data records. Case 3 has three
separate tables, each with fewer than a hundred data records.
Case 4 has three separate tables, each with about one million
data records. Then, the read and write speeds of the three
software frameworks are measured for each case. Four cases
are tested on the same environment and the results are
summarized in Table 3.

TABLE 3. Performance evaluation results.

The resulting data in Table 3 are then plotted into pie
charts for comparison, as shown in Fig. 10. Each pie chart
is either a read or a write operation to the database for
each of the four test cases. Moreover, the resultant data
(database operation time) in the pie charts was converted
into a percentage for comparison and visualization, where
the higher the percentage, the longer it took to complete the
database operation.

The first impression of these pie charts in Fig. 10 is that
the speed of the read operations on the left are similar, while

34914 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

FIGURE 10. Comparison of database running speeds of different software
frameworks.

JAMDL (in orange) takes less time in the write operations on
the right. There are several reasons why these pie charts are
distributed in this pattern, which are summarized below.

1) DIFFERENT PURPOSES
These three software frameworks were designed for different
purposes, and are more concerned with functionality than just
speed of operation. Hibernate is designed for larger appli-
cations can be used in most development environments and
supports most database engines. Therefore, it is considered
to be more heavyweight than the others because it has more
libraries consuming the memory. On the other hand, MyBatis
is designed for small and medium-sized applications and is
therefore easier to use. The JAMDL framework focuses on
processing different structured data in a data lake. Hence,
it is less compromised for database and operating system
environments.

2) BATCH OPERATIONS
Since the JAMDL framework implements batch processing,
it takes less time to write database records. Batch processing
allows developers to combine related SQL statements into

a single batch and commit it to the database with a single
call [37]. As a result, it reduces communication overhead and
logging, thereby improving performance. For example, if a
transaction needs to write to fifty data records in a table,
the database engine treats the batch processing as a single
operation, not fifty separate operations.

In another aspect, Hibernate has heavily adopted the
database optimizers and the caching and buffering features
of database engines allow previously executed queries to
perform significantly better and faster compared to the other
software frameworks. Therefore, the JAMDL framework
should also employ some database optimizers to improve
robustness.

3) TABLE JOIN
Since neither Hibernate nor MyBatis supports complex
queries connecting to multiple database tables, people
usually need to write their own SQL statements. Therefore,
performance becomes similar due to executing SQL directly
instead of going through the framework to generate the SQL
statements. However, JAMDL better supports the generation
of complex queries, saving developers time in developing
SQL. Consequently, using the JAMDL framework for
manipulating multiple tables is more efficient than the other
two software frameworks.

4) IMPACT ON COMPLEXITY
The SQL statements generated in the JAMDL framework are
high-level programming languages. Database engines can use
the built-in functions to optimize these statements, and the
optimization results are similar to those obtained bymanually
writing SQL. The purpose of the JAMDL framework is
mainly to handle different structured data in the data lake
through Java annotations and there should not be any impact
on complexity.

D. DYNAMIC DATASETS
The manipulation of different structures in data lakes is fully
demonstrated in Section III. One may realize that switching
from one data structure to another as time goes by requires a
huge amount of effort. Others may be aware of the feasibility
of managing multiple data structures simultaneously.

The JAMDL framework abstracts data structures into an
object model that can represent different data structures at
the same time. In addition, the lightweight nature of Java
annotations makes it easy to modify the object model to meet
inconsistent demand. Therefore, the JAMDL framework can
address the concerns when managing complex data.

V. CONCLUSION
In this article, a software framework JAMDL based on
ORMapping is comprehensively presented. JAMDL aims
to provide a solution for the manipulation of different
data structures in a data lake. JAMDL solves the problem
of managing diverse data and overcomes the difficulty of
transforming data between different structures in the data

VOLUME 12, 2024 34915



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

lake. Some important features of this software framework
are summarized below, and some of the main features are
compared in Table 4.
• Java annotations are used as objects that represent
diverse data structures (structured, semi-structured, and
unstructured data).

• Java objects are used to read and write different data
structures in a data lake.

• In addition to inner joins, a variety of table joining
methods are available.

• By adopting the schema-on-read approach, JSON
objects are dynamically generated using the ‘‘Bracket
Schema’’ notation.

• GRU neural networks are used to build E2E AI models
to generate DML operations.

• A recommendation AImodel is implemented to improve
the visibility of data when data precipitation occurs.

TABLE 4. ORMapping software framework comparison.

This article demonstrates how to prepare training and
testing data for building LSTM and GRU neural networks.
In addition, six test cases were used to evaluate the
effectiveness of the resulting DML operations. The results
show that GRU has the highest accuracy of 0.9589 using
900,000 training data. Moreover, the JAMDL framework can
write faster than the other software frameworks.

The job responsibilities of an enterprise data steward have
created many new and interesting areas of research. There is
ample space to explore further and help them manage and
deliver high-quality data.

Data lake is one of the important development projects in
enterprise recently. The JAMDL framework is designed to
rapidly develop web applications and data warehouse-type
software applications for manipulating different structures of
data in data lakes. Unlike the majority of data lake projects
that focus merely on architecture, JAMDL contributes
people to governing big data holistically and efficiently.
It also inspires people to manage data lakes from different
perspectives using AI techniques.

Data are facts and evidence that deserve to be preserved
forever. Even though computer science has evolved over
many eras, data always tells us new stories with new
technologies. Unlike other fields of study, data is not confined
to a specific domain but is cross-domain and ubiquitous.
As the appearance of data continues to change (structured,
semi-structured, unstructured, etc.), people will continue to
face new challenges to either play with data or be played by
data.

REFERENCES
[1] A. Badia, SQL for Data Science: Data Cleaning, Wrangling and Analytics

With Relational Databases. Cham, Switzerland: Springer, Nov. 2020.
[2] J. Reis and M. H. Housley, Fundamentals of Data Engineering: Plan

and Build Robust Data Systems. Sebastopol, CA, USA: O’Reilly Media,
Jul. 2022.

[3] D. Colley and C. Stanier, ‘‘Identifying new directions in database perfor-
mance tuning,’’ Proc. Comput. Sci., vol. 121, pp. 260–265, Jan. 2017.

[4] T. Neward, ‘‘The Vietnam of computer science,’’ in Political Science,
Jun. 2006.

[5] M. Keith, M. Schincariol, and M. Nardone, Pro JPA 2 in Java EE 8:
An in-Depth Guide to Java Persistence, 3rd ed. Apress, Feb. 2018.

[6] L. H. Z. Santana andR.D. S.Mello, ‘‘Persistence of RDF data intoNoSQL:
A survey and a reference architecture,’’ IEEE Trans. Knowl. Data Eng.,
vol. 34, no. 3, pp. 1370–1389, Mar. 2022.

[7] A. Gorelik, The Enterprise Big Data Lake: Delivering the Promise of Big
Data andData Science. Sebastopol, CA,USA:O’ReillyMedia,Mar. 2019.

[8] R. Hai, C. Koutras, C. Quix, and M. Jarke, ‘‘Data lakes: A survey of
functions and systems,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 12,
pp. 12571–12590, Dec. 2023.

[9] E. Zagan and M. Danubianu, ‘‘Data lake architecture for storing and
transforming web server access log files,’’ IEEE Access, vol. 11,
pp. 40916–40929, 2023.

[10] A. A. Munshi and Y. A. I. Mohamed, ‘‘Data lake lambda archi-
tecture for smart grids big data analytics,’’ IEEE Access, vol. 6,
pp. 40463–40471, 2018.

[11] C. Horstmann, Core Java: Advanced Features, vol. 2. Oracle Press,
Apr. 2022.

[12] H. Rocha and M. T. Valente, ‘‘How annotations are used in Java: An
empirical study,’’ in Proc. 23rd Int. Conf. Softw. Eng. Knowl. Eng.,
Jul. 2011, pp. 426–431.

[13] S. Roubtsov, A. Serebrenik, and M. van den Brand, ‘‘Detecting modularity
‘smells’’ in dependencies injected with java annotations,’’ in Proc. 14th
Eur. Conf. Softw. Maintenance Reeng., Mar. 2010, pp. 244–247.

[14] Y. Liu, Y. Yan, C. Sha, X. Peng, B. Chen, and C. Wang, ‘‘DeepAnna: Deep
learning based Java annotation recommendation and misuse detection,’’
in Proc. IEEE Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Mar. 2022,
pp. 685–696.

[15] F. Mancini, D. Hovland, and K. A. Mughal, ‘‘The SHIP validator:
An annotation-based content-validation framework for Java applications,’’
inProc. 5th Int. Conf. InternetWebAppl. Services,May 2010, pp. 122–128.

[16] C. He, Z. Li, and K. He, ‘‘Identification and extraction of design pattern
information in Java program,’’ in Proc. 9th ACIS Int. Conf. Softw. Eng.,
Artif. Intell., Netw., Parallel/Distrib. Comput., 2008, pp. 828–834.

[17] L. Jicheng, Y. Hui, and W. Yabo, ‘‘A novel implementation of observer
pattern by aspect based on Java annotation,’’ in Proc. 3rd Int. Conf.
Comput. Sci. Inf. Technol., vol. 1, Jul. 2010, pp. 284–288.

[18] B. Nuryyev, A. Kumar Jha, S. Nadi, Y.-K. Chang, E. Jiang, and
V. Sundaresan, ‘‘Mining annotation usage rules: A case study with
MicroProfile,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol.
(ICSME), Oct. 2022, pp. 553–562.

[19] Z. Yu, C. Bai, L. Seinturier, and M. Monperrus, ‘‘Characterizing the usage,
evolution and impact of Java annotations in practice,’’ IEEE Trans. Softw.
Eng., vol. 47, no. 5, pp. 969–986, May 2021.

[20] M. Chatham, Structured Query Language by Example—Volume I: Data
Query Language, 1st ed. Nov. 2012.

[21] M. Lorenz, G. Hesse, and J.-P. Rudolph, ‘‘Object-relational mapping
revised—A guideline review and consolidation,’’ in Proc. 11th Int. Joint
Conf. Softw. Technol., 2016, pp. 157–168.

[22] C. Richardson, Microservices Patterns With Examples in Java, 1st ed.
Manning, Oct. 2018.

[23] G. Liyanaarachchi, L. Kasun, M. Nimesha, K. Lahiru, and A. Karunasena,
‘‘MigDB–relational to NoSQL mapper,’’ in Proc. IEEE Int. Conf. Inf.
Autom. for Sustainability (ICIAfS), Dec. 2016, pp. 1–6.

[24] A. Gandomi and M. Haider, ‘‘Beyond the hype: Big data concepts,
methods, and analytics,’’ Int. J. Inf. Manage., vol. 35, no. 2, pp. 137–144,
Apr. 2015.

[25] P. Kaewkamol, ‘‘Data governance framework as initiative for higher edu-
cational organisation,’’ in Proc. Joint Int. Conf. Digit. Arts, Media Technol.
ECTI Northern Sect. Conf. Electr., Electron., Comput. Telecommun. Eng.,
Jan. 2022, pp. 175–178.

34916 VOLUME 12, 2024



L. M. Hoi et al.: Manipulating Data Lakes Intelligently With Java Annotations

[26] Y. Demchenko and L. Stoy, ‘‘Research data management and data
stewardship competences in university curriculum,’’ in Proc. IEEE Global
Eng. Educ. Conf. (EDUCON), Apr. 2021, pp. 1717–1726.

[27] I. H. Sarker, ‘‘Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,’’ Social Netw. Comput.
Sci., vol. 2, no. 6, pp. 1–20, Aug. 2021.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30. RedHook, NY,USA: CurranAssociates,
Dec. 2017, pp. 5999–6009.

[29] F. Mortezapour Shiri, T. Perumal, N. Mustapha, and R. Mohamed,
‘‘A comprehensive overview and comparative analysis on deep learning
models: CNN, RNN, LSTM, GRU,’’ 2023, arXiv:2305.17473.

[30] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio,
‘‘On the properties of neural machine translation: Encoder–decoder
approaches,’’ in Proc. SSST EMNLP, Sep. 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:11336213

[31] B. Desplanques, J. Thienpondt, and K. Demuynck, ‘‘ECAPA-TDNN:
Emphasized channel attention, propagation and aggregation in
TDNN based speaker verification,’’ in Proc. Interspeech, Oct. 2020,
pp. 3830–3834.

[32] T. Glasmachers, ‘‘Limits of end-to-end learning,’’ in Proc. 9th Asian Conf.
Mach. Learn. (ACML), pp. 17–32, Apr. 2017.

[33] L. M. Hoi, W. Ke, and S. K. Im, ‘‘Data augmentation for building QA
systems based on object models with star schema,’’ in Proc. IEEE 3rd Int.
Conf. Power, Electron. Comput. Appl. (ICPECA), Jan. 2023, pp. 244–249.

[34] L. M. Hoi, W. Ke, and S. K. Im, ‘‘Corpus database management design for
chinese-portuguese bidirectional parallel corpora,’’ in Proc. IEEE 3rd Int.
Conf. Comput. Commun. Artif. Intell. (CCAI), May 2023, pp. 103–108.

[35] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Conallen, and
K. A. Houston, Object-Oriented Analysis and Design With Applications,
3rd ed. Reading, MA, USA: Addison-Wesley Professional, Apr. 2008.

[36] L. M. Hoi. (Mar. 2023). An Open-Source Software Framework
for Manipulating Data Lakes. [Online]. Available: https://github.
com/LapmanHoi/Annotation

[37] Y. Bai, JDBC API and JDBC Drivers, 1st ed. Hoboken, NJ, USA: Wiley,
May 2012.

[38] C. Beeri, P. A. Bernstein, and N. Goodman, ‘‘A sophisticate’s introduction
to database normalization theory,’’ in Proc. 4th Int. Conf. Very Large Data
Bases, Sep. 1978, pp. 113–124.

[39] S. Botros, High Performance MySQL: Proven Strategies for Operating at
Scale, 4th ed. O’Reilly Media, Dec. 2021.

[40] A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
2nd ed. O’Reilly Media, Oct. 2019.

[41] F. Chollet, Deep Learning With Python, 2nd ed. Manning, Dec. 2021.
[42] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, ‘‘End-to-end memory

networks,’’ in Proc. Conf. Neural Inf. Process. Syst. (NIPS), 2015,
pp. 2440–2448.

LAP MAN HOI (Member, IEEE) received the
bachelor’s degree in computer science from York
University, Canada, and the master’s degree in
internet computing from the Queen Mary Univer-
sity of London. He is currently pursuing the Ph.D.
degree in computer applied technology with the
Faculty of Applied Sciences, Macao Polytechnic
University (MPU). He was a Researcher of gaming
and entertainment. He is also a Researcher of
machine translation with the Faculty of Applied

Sciences, MPU. His research interests include internet computing, data
warehouse, data science, gaming, deep learning, machine translation, and
voice recognition.

WEI KE (Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Engineering, Beihang University. He is currently
a Professor with the Faculty of Applied Sci-
ences, Macao Polytechnic University. His research
interests include programming languages, image
processing, computer graphics, tool support for
object-oriented and component-based engineering
and systems, the design and implementation
of open platforms for applications of computer

graphics, and pattern recognition, including programming tools, environ-
ments, and frameworks.

SIO KEI IM (Member, IEEE) received the degree
in computer science and the master’s degree in
enterprise information systems from the King’s
College London, University of London, U.K., in
1998 and 1999, respectively, and the Ph.D. degree
in electronic engineering from the Queen Mary
University of London (QMUL), U.K., in 2007.
He gained the position of a Lecturer with the
Computing Program, Macao Polytechnic Institute
(MPI), in 2001. In 2005, he became the Operations

Manager of the MPI-QMUL Information Systems Research Center jointly
operated by MPI and QMUL, where he carried out signal processing work.
Hewas promoted to a Professor withMPI, in 2015. Hewas a Visiting Scholar
with the School of Engineering, University of California, Los Angeles
(UCLA), and an Honorary Professor with The Open University of Hong
Kong.

VOLUME 12, 2024 34917


