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ABSTRACT Parkinson’s disease affects bodily functions and there is a growing need for advanced solutions
to offer therapeutic advice to patients. A framework using artificial intelligence and machine learning
techniques has been proposed to address this. The proposed system employs a combination of RGB, inertial,
and depth sensors data. The inertial signals have been filtered using a notch filter to obtain the optimal
wearable sensor data by examining the upper and lower cutoff frequencies. Multiple features have been
calculated, including mel frequency cepstral coefficients (MFCC), statistical features and Gaussian mixture
model (GMM) features. On the other hand, silhouettes have been extracted from RGB and depth images,
and four crucial parameters have been employed to gauge the level of accuracy with which patients with
neurological disorders performed their activities, including the angle formation between the hands and
lower/upper half of the body and center of the body, and the angle between the hands of the silhouette.
The resulting features have been fused and classified using principle component analysis and a reweighted
genetic algorithm. Evaluation using cross-validation on mRI (multi-modal 3d human pose estimation dataset
using mmwave, RGB-D, and inertial sensors) andMHEALTH (mobile health) datasets showed a recognition
accuracy rate of 97.29% and a 97.94%. The study highlights the need for more datasets to address challenges
in rehabilitation using human activity recognition with multi-modal sensors.

INDEX TERMS Depth, human activity recognition, inertial sensors, multi-modal sensors, neurological
disorder, RGB.

I. INTRODUCTION
Human Neurological disorders impact the central or periph-
eral nervous system, affecting various parts of the human
body like muscles, brain, cranial nerves, spinal cord, periph-
eral nerves, and neuro muscular junction [1]. These disorders
lead to Alzheimer’s disease, epilepsy, dementia and so on [2].
These disorders are also the main cause of cerebrovascular
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diseases, such as stroke, headaches (migraines, Parkinson’s
disease, sclerosis, so on), malnutrition related neurological
disorders, and infections of the nervous system, traumatic
nervous system injuries, and brain tumors [3], [4], [5], [6], [7].
These imbalances, interfere with the voluntary movements of
humans [8]. While voluntary movement may appear simple,
it is a complex process involving several nerve structures
making reflexive and intentional decisions [9]. This mech-
anism controls movement through nerve impulses aimed at
the musculoskeletal system. Neurological disorders is the
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primary contributor to disability and ranks as the second most
prevalent cause of mortality on a global scale [10], [11], [12].
Artificial Intelligence (AI) has played significant progress

in neurological rehabilitation, with a particular focus on sup-
porting patients grappling with neurological disorders [13].
Personalized rehabilitation programs that cater to each
patient’s distinctive requirements are one of the pivotal areas
where these technologies are being utilized [14], [15], [16].
These technologies are scrutinizing the patient’s movement
patterns, evaluating their motor capabilities, and monitoring
their advancement over time but with limited capabilities
till now [17]. Subsequently, based on this analysis, cus-
tomized exercise routines can be generated to target specific
regions of the body or brain. To illustrate, in the instance
of patients who have suffered a stroke, AI and machine
learning algorithms can examine their movement patterns and
identify which areas of the brain have been impacted [18].
This enables the algorithms to devise exercises focusing on
those specific areas, facilitating recovery. Additionally, these
algorithms can supervise the patient’s progress and adjust
the exercise routines as necessary to ensure they are both
secure and effective [19]. By implementing AI and machine
learning algorithms in this manner, patients can receive more
individualized and productive rehabilitation programs, ulti-
mately culminating in improved outcomes and a speedier
recovery [20].

Physical rehabilitation exercise aims to improve health-
related physical fitness and prevent illness [21]. Three key
areas are considered: body composition, musculoskeletal fit-
ness, and cardiorespiratory capacity. Body composition looks
at the distribution of body tissues, while musculoskeletal
fitness relates to muscle strength and flexibility. Cardiores-
piratory capacity refers to the ability of the body’s systems to
supply oxygen during prolonged activity [22]. Different exer-
cises can achieve specific fitness goals, e.g., resistance for
muscles, aerobics for cardiorespiratory health, and intensity
for anaerobic capabilities. A personalized exercise plan pre-
scribed by a specialized healthcare professional is crucial in
implementing physical exercise in rehabilitation, considering
potential complications and individual factors, and intensity
is the most important factor in physical prescribing exercise.
Low/moderate intensity exercises were used, now American
Heart Association recommends high-intensity exercises for
increasing V O2MAX, but the prescription is complex [23].
AI-based exercise regulation methods are needed to ensure
safe rehabilitation and prevent excessive fatigue.

The present study has outlined a novel machine
learning-based methodology for physical rehabilitation of
patients with neurological disorder, incorporating diverse fea-
tures for inertial, RGB, and depth images. In this regard, the
mRI dataset has been employed for remote health monitoring
and rehabilitation training. The outcomes of this research
highlight the efficacy of employing a combination of multi-
modal approaches, highlighting its potential to optimize
physical rehabilitation outcomes through machine learning.

The primary significance of this research can be condensed
into the following key points:

• Based on our estimation, there is no precedent available
research on the recognition of activities in patients with
neurological disorders using multi-modal sensors phys-
ical rehabilitation

• The principal component analysis (PCA) algorithm has
been employed to enhance

• the data for complex human activity patterns, providing
both contextual information and behavior classification.

• Furthermore, the long short-term memory-recurrent
neural networks (LSTM-RNN)

• classifier has been utilized to categorize the mRI and
MHEALTH benchmark datasets, achieving notably
superior results compared to other cutting-edge
methods.

The subsequent sections of the paper are structured as fol-
lows: Section II presents a comprehensive overview of the
most recent intelligent frameworks utilized in human activ-
ity recognition (HAR). Section III introduces the fusion
architecture proposed in this study and concisely explains
the evaluation protocols employed. Section IV presents the
experimental findings, provides details about the dataset
used, and compares the results with the current cutting-edge
approaches. Lastly, Section V formulate the research and
outlines prospective directions for a future investigation.

II. RELATED WORKS
With the progress made in machine learning and deep learn-
ing methodologies, researchers have introduced a multitude
of efficient and accurate frameworks to enhance healthcare
services for patients. These frameworks leverage human
activity recognition (HAR) as a means to accomplish their
objectives. This study emphasizes the latest and most promis-
ing machine learning and deep learning-based frameworks in
this field.

Betancourt et al. [24] developed a platform for human
activity recognition, which incorporated self-attention net-
works and utilized smartphone-collected data. Their method-
ology involved extracting essential features from time-series
data by intelligently allocating attention to significant input
attributes. The platform’s performance was evaluated using
two publicly available datasets, attaining an average accu-
racy of 97.1% on the UCIHAR dataset. Nevertheless, it is
important to acknowledge that the proposed architecture
has limitations, as it is restricted to wearable device data
and does not adequately account for the learning period.
Nazari et al. [25] carried out comparative analysis, assess-
ing various machine learning (ML) methodologies for HAR
utilizing the data of knee angle. The study examined raw data
andmanually derived features in training theMLmodels. The
experimental findings demonstrated that the Gradient Boost-
ing algorithm exhibited remarkable performance of 94%
by employing 11-fold cross-validation on trained. On the
other hand, the manually extracted features resulted in a
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decline in recognition accuracy. Tan et al. [26] employed
fusion architecture of convolutional neural network and long
short-term memory (CNN-LSTM) to acquire features from
RGB images. The twelve discrete actions on HAR activities
have been recognized on the resultant extracted patterns.
The developed system achieved an impressive accuracy of
97.02%. Singh et al. [27] introduced was a deep learning
architecture designed for human activity recognition (HAR),
which integrated self-attention mechanisms to identify cru-
cial information within time-series data. By including a
self-attention layer, the model acquired weights that cap-
tured the inherent connections among input time points of
raw sensory data, facilitating accurate activity decoding.
The experiments encompassed six distinct public datasets,
with the MHEALTH dataset attaining the highest accuracy
of 94.86%.

Moreover, Wan et al. [28] utilized five distinct machine
learning algortihms including: CNN, SVM, LSTM, MLP,
and BiLSTM for the recognition of miscellaneous activi-
ties using inertial sensors data. In this paper, the proposed
framework has intially utilized CNN for the extraction of
high-level patterns and for performing feature classification
of the input data. The extracted features have been then later
classified using SVM, LSTM, MLP, and BiLSTM classifier.
On UCI-HAR dataset, the paper has revealed exceptional
precision of 93.21%. Dua et al. [29] incorporated gated recur-
rent unit (GRU) and CNN together to autonomously extract
features for the recognition of human activities. CNN has
been employed to isolate distinctive features from the input
data, while, GRU finally classify the data. The model has
been validated on three individual datasets and gain a phe-
nomenal accuracy of around 97%. An et al. [30] introduced
mRI, an innovative dataset for estimating the poses of 3D
human movements across multiple modalities. This dataset
encompassed over 160,000 synchronized frames and was
constructed by capturing 20 subjects engaged in rehabilita-
tion exercises. Unlike prior datasets that mainly emphasized
home based health monitoring and single modality, mRI
integrated mmWave, RGB-D, and inertial sensor modalities.
The researchers conducted comprehensive evaluations on the
mRI dataset, analyzing the unique strengths offered by each
modality. By making this dataset publicly available, their
intention was to stimulate research in pose estimation, action
comprehension, and multi-modal learning, and foster the
application of home-based health monitoring.

III. PROPOSED MODEL
Multi-modal methodology for neurological disorder rehabili-
tation using RGB, depth, and inertial sensors for home-based
health monitoring has been developed. To implement this
methodology, we have developed an application in Python
on intel i5-8250 CPU, 64-bit operating system, 1.8GHz pro-
cessor, and 16GB RAM. For benchmark purposes, we chose
the mRI (multi-modal 3d human pose estimation dataset with
mmwave, RGB-D, and inertial sensors) dataset, as it is the
only multi-modal dataset available for physical rehabilitation

FIGURE 1. Graphical illustration of the suggested model using
multi-modal sensors.

of patients for home-based health monitoring. Our approach
for data acquisition and processing only requires data of
RGB-D and inertial sensors, which are available in mRI
datasets. The system’s structure encompasses several stages,
including preprocessing, feature extraction, fusion, and clas-
sification, utilizing PCA and a reweighted genetic algorithm.
We tested and trained the mRI dataset using LOSO method.
Our proposed framework is illustrated in Figure 1.

A. DATA PROCESSING
Each sensor underwent independent data preprocessing.
In order to extract the silhouette from RGBD images, sev-
eral operations such as replacement, scaling, median/canny
edge filtering, and depth mapping on image to RGB images
were carried out during the preprocessing step. Additionally,
Kalman filtering was utilized to pre-process inertial sensor
data [31], [32], [33]. Further elaboration of each preprocess-
ing technique is provided in the subsequent descriptions.

1) RGB-D IMAGE’S SILHOUETTE EXTRACTION USING DEPTH
SILHOUETTES
Background subtraction (BGS) serves as the primary and
crucial stage for human detection in image, and it is uti-
lized further for feature extraction purposes. Several BGS
techniques have been suggested previously, such as self-
organizing maps, statistical methods, temporal, and feature
based methods [34]. However, BGS methods usually rely
on color spaces, such as RGB, YUV, and HSV that include
limitations of color camouflage and lighting changes. The
preprocessing step involves the use of both substitution
& scaling operations. The depth sensing kinect camera
encounters limitations in acquiring comprehensive informa-
tion about depth pixels due the presence of light scattering
barriers [22]. To address this, substitution operation has been
used to interpolate the missing depth pixel by searching for its
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FIGURE 2. Block diagram of the proposed system based on RGB-D data
for action recognition.

left and right neighboring pixels and replacing the larger pixel
with neighboring depth pixels. Meanwhile, scaling involves
linearly scaling the depth image within the range of 0 to 255.

V∼
=

V − Vmin

Vmax − Vmin
ωt

+ ν min (1)

The original values are represented by V, while V∼ repre-
sents the rescaled values. The maximum, minimum values of
the pixels before scaling are denoted as Vmax, and Vmin,
respectively [35]. Aminimum value of 0 has been established
as the lower bound for the depth image, while The disparity
between the upper and lower bounds has been determined by
ωt, set to 25. Finally, an affine transformation has been used
to map the depth silhouette to RGB images Silhouettes were
derived from RGB frames through a pre-processing step, and
the outcomes of this process are displayed in Fig 2.

2) INERTIAL SENSOR’S PREPROCESSING USING KALMAN
FILTER
This step involves preprocessing of inertial sensors data using
a Kalman filter, as depicted in Figure 3, to eliminate inconsis-
tencies in the data. The Kalman filter functions as an optimal
estimator that extracts relevant parameters from inaccurate
observations [36], [37], [38]. This filter process the signal
until the maximum likelihood of the signal has been obtained
and thus reduces the mean square error up to its maximum
best possible level. Its determine as follows:

Ks = Ts (Is − 1) +MVc + Pn (2)

where, Ts transition-based model intended for use with the
preceding signal Is 1. Moreover, M specify the control input
model, which is subsequently applied to the control vector
determine by Vc and process noise depicted as Pn of the
signal. From covariance and zero mean, the filtered noise
is determined, and represented by Pn in the subsequent
equation.

B. FEATURE EXTRACTION
1) RGB-D SENSORS BASED FEATURES EXTRACTION
The symmetric based feature extraction methodology under-
went two phases [39], [40]. Firstly, a skeleton model was
developed to identify the key points of the human skeleton.
Secondly, oriented-based features were extracted to deter-
mine the angles against upper body, lower body, and middle

FIGURE 3. The inertial sensors data undergoes Kalman filtration. The red
signal represents the filtered data, while the blue represents
unfiltered/raw data.

FIGURE 4. Visual representation of nineteen key points identified on a
silhouette image.

body points with respect to hands. Further details are pro-
vided below.

Symmetric/ Oriented Based Features:
Before advancing to oriented-based feature extraction, it is

necessary to perform skeleton modeling as an initial stage for
identifying crucial points of the human body.

Skeleton Modelling:
Algorithm 1 depicts the comprehensive explanation of

human key point detection model and is also illustrated 4.
The model identified thirteen crucial points on the human
body, which have been grouped into the upper/lower/middle
skeleton points fragmentation. The detection process has
been intiated by detecting links among the ankle, feet, hips,
knees, elbows, hand points, wrists, shoulders, neck, and head.
Every body part play a significant role during the completion
of the task. The torso, central point of human body has been
identified by calculating the outer shape of the human silhou-
ette. Moreover, the positioning of the ankle is established by
identifying the midpoint that lies one-fourth within the region
spanning from the foot to the knee 4 In order to approximate
the location of the wrist point, The distance encompassing the
hands and elbow points has been divided into equal quarters
as 4 to estimate the wrist point.

2) ORIENTED-BASED FEATURES:
An angle is always formed between the hands and the body
during movement, with a specific measurement taken into
account for the upper, middle, and lower body points to main-
tain symmetry. The upper body points comprises of shoulders
Sh1, Sh2, neck Nk, and head Hd. While, the center Mp and
lower points of the body is depicted by Hp1, Hp2. Lower
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Algorithm 1 Recognition of Essential Keypoints on Human
Silhouette
Input: HumanSilhouette(Hsil)
Output:Nineteensalientpointsastorso, hips, shoulders, ankle, elbows, knees,
wrists, feet, head, hands, neck
while ((Silhouettedetection)&&(leftandrightSiderecognition)! = NULL) do

for i = 1 to M
Ph = Head T racking(Hsil)
Pn = Upper body localization(Hsil)
Pt = T orso localization(height, width)
Pl = Lower body segmentation(Hsil)
Pkn = Midsection positioning(Pt, Pl)
Php = Midsection positioning(Ph, Pn)
Pep = Midsection positioning(Php, Ph)
Pwp = Midsection positioning(Php, Pep)
Phip = Pt
Panp = Midesction positioning(Pkn, Pl)/4

End

End While

FIGURE 5. Angles demonstration between the hands and three regions of
the body, including the upper, lower, and middle sections on body
silhouette.

body points consist of knees Kn1, Kn2, and feet Ft1, Ft2.
These angles have been evaluated every 0.5 seconds over a
sequence of ten consecutive frames, to assess if they satisfy
the specific factors used to determine the appropriateness
of a particular action at a given moment. The variation in
angle configuration between the hands and upper half of the
body contributes to the diversity and uniqueness of these
six activities: stretching of right/left/both upper limb, squat,
right front lunge, and left front lunge. Moreover, the variation
the angle formation between hands and center part of the
body contribute to the formation of right side lunge, left
limb extension, left side lunge, and right limb extension. The
critical factor for determining three activities: stretching in
free forms, relaxing, and walking; within the chosen mRI
benchmark datasets is the configuration of angles formed by
the hands in relation to the lower body points. The angle
detection process is depicted in Figure 5, where the formation
of angle A between the coordinates of hands hd1 and hd2 in
relation to the upper, lower, and middle body points Mp1 and
Mp2 at time t is represented as follows:

A (t) = tan
hd1 −Mp1

hd2 −Mp2
(3)

3) IMAGE LABELLING USING MARKOV RANDOM FIELD
Markov Random Field (MRFs) is a type of graphical model
that assume a set of random variables has the Markov

FIGURE 6. Results of image labeling using Markov random field on right
upper limb extension, left front lunge, and left limb extension.

property. The main objective of using MRFs is to capture
an image’s spatia coherence and context by modeling the
relationships between neighboring pixels [41]. The first step
in this process is to represent the image as a graph, where the
set of indexes are represented by D = 1, . . . , d, the set of
pixels are represented as Px = px1, . . . , pxd, the set of labels
is represented as L = l1, . . . , ld, and the set of neighbors is
represented as Ng = ng1, . . . , ngd. The graph is constructed
by connecting neighboring pixels or nodes in Px using the set
of neighbors Ng [54], [55]. The edges in the graph represent
the relationships between the neighboring pixels. Therefore,
by grouping together nodes that are connected by local rela-
tionships, a graph can be represented a:

Ngi = i.j ∈ D
[
f
(
pxi, pxj

)]2
≤ r, i ̸= j (4)

In this context, the Euclidean distance between i and j is
denoted by f. The neighbors of i are defined as the collection
of locations within a radius of r2, where r represents the order
of the neighboring system.

MRF use an energy function to measure the compatibil-
ity between neighboring pixels’ label assignments, which
models the probability distribution over all label assignments
in the image. A pairwise potential function is commonly
used to penalize label assignments inconsistent with the local
neighborhood structure. The optimization problem of finding
the best label assignments is solved by minimizing the energy
function using Gibbs sampling a

pr (f ) = j − 1)Xe∧ − (1/c)E(f ) (5)

where, equation uses the clique potential to calculate the joint
probability, with J as the normalizing constant or partition
function, and C as a constant equal to 1. The resulting label
assignments are obtained by minimizing the energy function,
and the inference process is completed once the results are
interpreted. Figure 6 depicted the results of image labelling
via MRF.

4) INERTIAL SENSORS BASED FEATURES EXTRACTION
Mel Frequency Cepstral Coefficient

MFCCs are frequently employed in speech processing to
analyze low frequency speech resolution. To accomplish this,
the speech spectra are computed and matched to a Mel scale,
which determines the energy in frequency bands [42]. The
energy distribution in lower frequencies is similar in both
speech and inertial signals, makingMFCCs useful for feature
extraction in recognizing everyday life activities. To compute
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FIGURE 7. Mel frequency cepstral coefficients (MFCC) results of IMU
sensors data over mRI dataset’s activities.

MFCCs, the signal undergoes a process that includes per-
forming a Fourier transform to acquire the power spectrum,
followed by mapping it onto the Mel scale using overlap-
ping windows. Then, after determining the power at Mel
frequencies, the logarithm of the power is obtained and sub-
sequently processed through the discrete cosine transform.
The obtained MFCCs depict the amplitude of the spectrum,
as illustrated in Figure 7.

MFs =

n∑
i=0

ficos[
Pi

n(i+ 0.5)l
] (6)

Sj =

{
sj l = Ii
0 otherwise

(7)

The coefficient of a signal has been obtained by computing
each critical band of the MFCCs signals individually using l,
where s consists of n samples in the current frame. i denotes
the current sample of the signal, while fi refers to the total
number of sample signals within each frame [43]. The dis-
crete cosine transform contributes to the reduced correlation
observed among the MFCCs features. When the observed
signal corresponds to the desired signal, the covariancematrix
values [44] serve as the MFCCs coefficients for the signal.
In contrast, if the observed signal does not match the desired
signal, the signal values have been set to zero. Here, li denotes
the index associated with the observed signal.

5) GAUSSIAN MIXTURE MODEL
Gaussian Mixture Model (GMM) is employed to model the
clusters N in the dataset to estimate the covariance, mean, and
weight vectors [45]. The vector is obtained by determining
the maximum likelihood of a particular signal. To identify
the weight vector with the highest probability, an iterative
maximization method has been utilized. Later on, to quantify
the variation between two samples within the current signals,
the GMM covariance is computed. The aforementioned cal-
culations yield the following parameters:

G (meanx) = (x1 ∗ x2 ∗ . . . ∗ xn)
1
n (8)

Gwv (x) =

(
w1∗ (x1 − µ)2 + .. + wn∗ (xn− µ)2

)
(w1 + w2 + . . .wn)

(9)

FIGURE 8. Mel frequency cepstral coefficients (MFCC) results of IMU
sensors data over mRI dataset’s activities.

In the equation shown in Figure 8, a fram’s current and pre-
vious samples are represented by xi and xi − 1, respectively,
where i is the index number. The means of the accelerometer
and gyroscope signals are denoted byµy andµz, respectively.
The total number of samples is represented by n. The GMM
coefficients, including the mean Gmean(x), weight vector
Gwv(x), and covariance Gcov(x), are calculated on the signal
using these variables.

C. FEATURES FUSION
Fusion of sensors data as shown in Figure 9, is required to
combine RGB, depth, and inertial sensor’s data which is of
different format into a standard representational format [46].
Principal component analysis (PCA) is an evolving technique
that systematically combines data of multiple sensors to make
inferences about a particular problem. PCA analyzes the rela-
tionship between samples within a given frame by utilizing
orthogonal information frommulti-modal signals. It achieves
this by combining the fram’s samples in a manner that pre-
serves variables with the least average square distance while
eliminating others [47]. To start the process, the data’s center
is computed by subtracting the mean M from each attribute
ai, placing the origin at the data’s center, as demonstrated in
the following equation.

Pca = (a1, a2, a3, ..ai) −M (10)

The transpose of the covariance matrix is computed, which
includes information on the variance and covariance of the
data. The eigenvalues 3 and eigenvectors A→ indicate the
magnitude (variance) and direction (covariance) of the data,
respectively. After selecting the most suitable eigenvalue
and its corresponding lambda, the formula shows that the
resulting eigenvector have given the best fit results over
multi-modal signals data.

6A→
= 3A→ (11)

D. CLASSIFICATION
In this paper, the long short-term memory-recurrent neural
networks (LSTM-RNN) has been implemented to classify
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FIGURE 9. Principal component analysis (PCA) results of IMU sensors
data, RGB, and depth over mRI dataset’s activities.

FIGURE 10. Classification results of IMU sensors data, RGB, and depth
over mRI dataset’s activities.

multi-modal sensors data [33]. Traditional neural networks,
due to their absence of memory components, face limitations
in linking prior knowledge to the present task and making
meaningful inferences about past events. On the other hand,
the distinctive characteristic of recurrent neural networks
(RNNs) is their ability to process sequential data effectively
by allowing information to propagate through recurrent con-
nections in the network topology [48]. The ability to learn
long-term dependencies, primarily attributed to the adoption
of LSTM (Long Short-TermMemory), is a key factor. Hence,
in our research, LSTM-RNNs has been employed to predict
probable behaviors by analyzing sequential sensor data.

For our research, a simple LSTM model consisting of
single input layer, output layer, and hidden layer have been
employed with having 10, 9, and 42 neurons, respectively.
During the training phase, the learning rate has been config-
ured as 0.005, while the batch size has been set to 1600. The
outcomes of the LSTM-RNN classifiers has been depicted in
Figure 10.

FIGURE 11. The twelve rehabilitation exercises covered in mRI dataset
include right upper limb extension, left upper limb extension, both upper
limb extension, right front lunge, left front lunge, squat, right side lunge,
left side lunge, right limb extension, left limb extension, walking in
straight line, and stretching/ relaxing.

IV. EXPERIMENTAL SETUP AND RESULTS
This section details the dataset, experimental results, recog-
nition accuracy, and a comparison of our method with
current state-of-the-art human activity recognition systems
for patients with neurological disorders.

A. DATASET DESCRIPTION
1) THE mRI DATASET
A multi-modal 3D human pose estimation dataset with
mmWave, RGB-D, and inertial Sensors (mRI) dataset [30]
is a distinctive commercial dataset that integrates data from
Inertial sensors, mmWave radar, and RGB-D to assist patients
with neurological disorders during their rehabilitation. The
dataset encompasses over 160k synchronized frames from
three sensing modalities, enabling comprehensive 3D human
pose estimation. The data was gathered from 20 human
subjects who performed twelve clinically recommended reha-
bilitation movements including right/left/both upper limb
extensions, right/left front lunge, squat, right/left side lunge,
right/left limb extension, stretching/ relaxing, and straight
line walkin; that involve the essential upper and lower body
muscles for human mobility as shown in Figure 11. The
data collection process involved utilizing a commercially
available low-power and cost-effective mmWave radar, along
with six inertial measurement units (IMUs) and two depth
cameras. These exercises play a vital role in the rehabilitation
of patients who are recovering from central nervous system
disorders such as Parkinso’s disease (PD) and cerebrovascu-
lar diseases like stroke.

2) THE MHEALTH DATASET
The dataset [49] comprises accelerometer, magnetometer,
gyroscope and ECG sensors. The ten volunteers performed
12 different physical activities including: Jumping forth and
back, running, jogging, cycling, knees bending, frontal ele-
vation of arms, waist bend forward, climbing stairs, walking,
lying down, sitting/ relaxing, and standing still. The sensors
were placed on the subjec’s chest, right wrist and left ankle
and5] attached using elastic straps. A sampling rate of 50 Hz
is employed to record all sensingmodalities, which is deemed
suitable for capturing human activity. A video camera was
employed to record each session. The dataset encompasses
a wide range of activities of daily living, incorporating the
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TABLE 1. The evaluation of classification performance of the mRI dataset via confusion matrix.

FIGURE 12. The 27 sample activities performed in HWU-USP dataset.

involvement of various body parts (e.g., arms and knees),
diverse levels of exertion (e.g., cycling and relaxation), and
variations in movement speed or dynamism (e.g., running
and stationary positions). Hence, it exhibits generalizability
to typical daily activities. The activities were gathered in
a non-laboratory setting, allowing participants the freedom
to execute them without specific constraints, except for the
expectation that they would exert their best effort during the
execution.

3) THE UTD-MHAD DATASET
The UTD-MHAD dataset has been implemented by
Chen et al. [56] at University of Texas Dallas. The 8 par-
ticipants including 4 males and 4 females have performed
27 different actions in an indoor environment. Each action
is performed four times by each participant with 861 total
sequences. The wearable and kinect sensors have been used
to record RGB, skeleton, inertial, and depth data respec-
tively. The list of activities include swipe left and right
using right arm, draw clock-wise and counter clock-wise
circle using right hand, sitting, standing, waving using right
hand, clapping, bowling, boxing, pushing, catching, throw-
ing using right arm, jogging, squating, walking, throw or
pickup using right hand, forward lunge, knock door, curl
arms, swing or serve tennis, swing baseball, shoot basketball,
draw triangle, cross arms, and draw X using right hand.
The sample images of these activities have been included
in Figure 12.

FIGURE 13. The 9 sample activities performed in HWU-USP dataset.

4) THE HWU-USP DATASET
The HWU-USP dataset has been implemented by
Ranieri et al. [57] at university of Sao Paulo. The 16 par-
ticipants have performed 9 activities in a smart home
environment. The RGBD data has been collected using
TIAGO robot and inertial data have been collected by placing
the sensors on wrist and waist. The list of activities include
reading newspaper, setting table, cleaning kitchen, using
phone/laptop, making cereals/ sandwich/ tea, and dishwash-
ing. The sample images have been depicted in Figure 13.

The system under consideration was tested using the leave
one subject out (LOSO) cross validation approach, with sep-
arate training and testing datasets. In order to differentiate
between different postures and movements, the classification
of human activity has been conducted on both the mRI and
MHEALTH datasets. The evaluation of the system has been
conducted using recall, precision, and F-measure as:

Precision =
True Positive

True Positive+ False Positive
(12)

Recall =
True Positive

True Positive+ True Negative
(13)

F1score =
2 (Precision× Recall)
(Precision+ Recall)

(14)

The confusion matrix of twelve different activities in the mRI
and MHEALTH datasets are in Table 1 and 2. According to
Table 3, 4, 5, and 6 the system achieved an average accuracy
of 97% on F-measure over 4 benchmark datasets, which
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TABLE 2. The evaluation of classification performance of the MHEALTH dataset via confusion matrix.

TABLE 3. The determination of classification performance of the mRI dataset via precision, recall, and F1 score.

TABLE 4. The determination of classification performance of the MHEALTH dataset via precision, recall, and F1 score.

TABLE 5. The determination of classification performance of the UTD-MHAD dataset via precision, recall, and F1 score.

combines recall and precision. Table 7 compares the pro-
posed approach with existing framework techniques on both
mRI and MHEALTH datasets respectively. Finally, Table 8

evaluated the proposed approach in relation to other cutting-
edge domains, revealing that our proposed strategy outper-
forms the state-of-the-art methods.
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TABLE 6. The determination of classification performance of the HWU-USP dataset via precision, recall, and F1 score.

TABLE 7. The comparison of proposed methodology against mRI and
MHEALTH datasets againsts state-of-the-art methods.

V. DISCUSSION
The paper presents a successful framework for human activity
recognition (HAR) that can aid individuals with neurological
conditions during their rehabilitation. The performance of
the model highly depends on the quality of the input data
and the sufficient amount of data for training the model.
The model with existing benchmark datasets has demon-
strated an average accuracy of 97% across four designated
benchmark datasets. Notably, the lowest accuracy of 94% is
observed in the case of left limb extension within the MRI
dataset. Recall, precision, and F1-score are computed using
equations (11)-(13). Misleading outcomes are attributed to
imbalances and the insufficient amount of data in the exist-
ing datasets caused suboptimal performance in analogous
activities. However, the model could adapt the unseen data
over time which ensures its long-term adaptability. Addi-
tionally, the proposed model is contrasted with established
machine learning and deep learning techniques, as detailed
in Tables 5 and 6.

The inertial data has been divided into 6-second windows
and 10-second frames for both RGB and Depth images.
The Kalman filter has produced an output of 600 sam-
ples. Simultaneously, the silhouette extraction process for
vision sensors data has yielded 240 binary images. During
the feature extraction process, 600 sample data points, each
comprising 12 coefficients per frame, resulted in a total of
4,560 data samples, with an additional 1365 data samples
extracted. In the subsequent feature fusion process, the PCA
output generated 1784 sample data. Finally, the LSTM-RNN
classifier provided classification results for 1605 sample data
points as shown in Figure 14.

The computational complexity of LSTM models per
weight and time step with the RNN model is O(1)
and the computational complexity per time step is O(N).

FIGURE 14. Overview of model decision making process.

FIGURE 15. Cost-benefit analysis of conventional and AI model in
medical data.

Additionally, average learning time is dominated by number
of memory cell nc and number of outputs n0 as ncx(4xnc+n0)
factors. However, the model quite becomes computationally
expensive when the number of output units becomes too large
to store temporal contextual information. Given its effective
performance on benchmark datasets, the model demonstrates
a notable capability in recognizing complex tasks when com-
pared to traditional models.

The cost analysis of medical data for assessing the eco-
nomic viability of the system in real-world deployment
primarily focuses on the past 10 years, as explored by
researchers. During this examination, data from 20 patients
across 20 hospitals were initially considered, leading to a pro-
gression to 65 patients per day across a total of 38 hospitals
over 10 years. The accompanying Figure 15 illustrates the
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TABLE 8. The evaluation of the proposed approach in relation to other cutting-edge domains.

cost savings achieved by the conventional method in compar-
ison to machine learning and deep learning models. Notably,
the cost savings demonstrate an upward trend corresponding
to the advancements in AI development. Building upon the
insights gained from the preceding analysis, it can be inferred
that our proposed model is poised to generate cost savings in
medical data, emphasizing its economic feasibility.

VI. CONCLUSION AND FUTURE DIRECTION
The framework employs multi-modal sensors and incorpo-
rates oriented-based features for RGB-D sensor, and MFCC,
GMM for inertial sensor-based features. These features are
used to select the most relevant data for analysis. The RGB,
depth, and inertial sensors have been fused using Principal
Component Analysis (PCA), and the classification of differ-
ent movements is achieved using LSTM-RNN. Our proposed
system has demonstrated average accuracy of 97% over the
benchmark datasets, indicating its potential for real-world
application in recognizing patients with neurological disor-
ders during their rehabilitation.

This study has the potential to reduce the time, costs,
and errors linked to diagnosing patient health, enabling
more effective interventions compared to traditional methods.
Additionally, ongoing patient monitoring could detect early
warning signs, providing healthcare providers with alerts
before the situation becomes critical. In future, this research
will investigate the smooth integration of machine learning
models into Electronic Health Record (EHR) systems, aiming
to provide real-time decision support for clinicians. This
integration would expect to improve the model’s applicability
and its influence on patient care.
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