
Received 26 December 2023, accepted 20 February 2024, date of publication 1 March 2024, date of current version 7 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3371993

DRL-Based Distributed Task Offloading
Framework in Edge-Cloud Environment
HEBA NASHAAT , (Member, IEEE), WALAA HASHEM, RAWYA RIZK , (Senior Member, IEEE),
AND RADWA ATTIA
Electrical Engineering Department, Port Said University, Port Said 42526, Egypt

Corresponding author: Heba Nashaat (hebanashaat@eng.psu.edu.eg)

ABSTRACT The Internet of Things (IoT) and real-time media streaming have increased due to the rapid
development of wireless communication technologies and the enormous growth of computation and data
transmission tasks. Edge-Cloud Computing (ECC) combines the benefits of Mobile Cloud Computing
(MCC) and Mobile Edge Computing (MEC) to meet energy consumption and delay requirements, and
achieve more stable and affordable task execution. The most significant challenge in ECC is making real-
time task offloading decisions. In order to generate offloading decisions in ECC environments in an efficient
and near optimal manner, a Deep Reinforcement Learning (DRL)-based Distributed task Offloading (DRL-
DO) framework is proposed. The KerasML library is used to implement and evaluate the proposed DRL-DO
and other offloading algorithms in Python experiments. Experimental results demonstrate the accuracy of
the DRL-DO framework; it achieves a high Gain Ratio (GR) of about 22.3% and greatly reduces the energy
consumption, response time, and system utility by about 7.6%, 43%, and 26.2%, respectively, while attaining
moderate time cost compared with other offloading algorithms.

INDEX TERMS IoT, MEC, MCC, ECC, DRL, task offloading.

I. INTRODUCTION
With the rapid development of new computing and wireless
communication technologies, tremendous growth of compu-
tation, storage, and data transmission tasks have emerged,
leading to the spread of the Internet of Things (IoT), Inter-
net of Vehicles (IoV), virtual / argument reality, real-time
media streaming, etc. Centralized Mobile Cloud Computing
(MCC) [1] is used to provide the execution of computation-
intensive IoT applications however, it cannot efficiently sat-
isfy the service demand of sensitive IoT applications. As a
novel decentralized computing paradigm, Fog Computing
(FC) or Mobile Edge Computing (MEC) [2], [3] harnesses
computing, storage and data resources in the proximity of
physical devices in order to bridge users and Edge Servers
(ES). MEC can extremely improve the Quality of Service
(QoS) and reduce tasks’ execution delay, energy consump-
tion, network congestion, and latency problems but still face
many challenges such as the proper tasks’ server resources

The associate editor coordinating the review of this manuscript and

approving it for publication was Kai Yang .

assignment and low computing power of ES andCloud Server
(CS). As shown in Fig. 1, Edge-Cloud Computing (ECC) can
be used to better serve IoT users’ diverse requirements; it
combines the advantages of bothMCC andMEC to overcome
the resource lack of smart devices, meet delay and energy
consumption requirements, and achieve cheaper and more
stable task execution. Real-time task offloading decision is
the most important challenge in ECC [4], [5]. Generally,
the offloading calculation process may be executed; locally
for low computing power requirements’ tasks, fully in ES,
or partially by splitting the calculation process locally and to
the ES.

The decision of task offloading in ECC from user devices
either to edge or cloud doesn’t come without difficulties
due to the heterogeneity between edge and cloud regard-
ing resources, network complexity and edge/cloud task
assignment. Energy consumption, latency, QoS, response
time, Quality of Experience (QoE), and cost metrics should
be considered as a multi-objective challenge in offload-
ing. The imposed workload should be distributed evenly
among MEC servers to avoid congestion and in turn,

33580

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-0112-0648
https://orcid.org/0000-0003-3448-0498
https://orcid.org/0000-0003-1343-6180
https://orcid.org/0000-0003-1059-0705

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 1. Edge cloud computing (ECC) architecture.

significant various offloaded tasks’ response time and
delay.

In practical scenarios, the rapid changes of the whole sys-
tem parameters lead to a great demand for fast offloading
decision-making and resource allocation. In addition, with
the increasing number of users and tasks, conventual and
heuristic task offloading techniques must be applied to exe-
cute the offloading decision and solve complex and large
amount of computation problems. Traditional approaches [6],
[7], [8], [9] can obtain stable management and scheduling
decisions, however, large-scale ECC network always take
too much time, which is not practical for real life applica-
tions. Deep Reinforcement Learning (DRL) is a subfield of
Machine Learning (ML) [10] methodology that combines
the Reinforcement Learning (RL) and Deep Neural Net-
work (DNN) to facilitate and obtain the optimal offloading
decision-making in volumes of communication and compu-
tation. DRL agents help solve complex problems in dynamic
and stochastic environments and large state space, as they
can accurately learn the optimal policy and long-term rewards
without prior knowledge of the system thus, it is more prac-
tical, intelligent and inevitable to apply DRL instead of tradi-
tional methods.

Although the DRL has been demonstrated to be the most
effective technique in several papers [11], [12], [13], there are
still several challenges for practical implementation of DRL
in an ECC environment such as, the increasing of agents’
exploration cost for getting enough trajectories of experience
to capture the environment properties, and the significant pro-
cess delay because of the DRL agents’ training. Obviously,
Centralized DRL agents are not suited to highly stochastic
ECC environments due to their poor scalability and large

overhead. Therefore, one critical challenge is adjusting dis-
tributed DRL techniques to work effectively in ECC.

In this paper, a DRL-based Distributed task Offloading
(DRL-DO) framework is proposed to efficiently and effec-
tively produce offloading decisions in ECC environments.
DRL is used as a decision-maker for offloading the incoming
dynamic workloads into the ESs or central CS. It makes
offloading decision in a distributed manner to maintain avail-
ability, preserve generalizability and quickly adapt to new
environments. Multiple Offload Generators (OG) andMobile
Devices (MD) are used, each OG knows the workload infor-
mation of the MD and specific server directly connected to it
by the last locally and offloaded executed tasks on that MD
and server, respectively. The main contributions of this paper
are summarized as follows:

1) The system utility of the ECC network is modeled as
the weighted sum of task completion time and energy
consumption for all MDs. The ECC task placement
challenge is formalized as amulti-purpose optimization
challenge. An efficient and effective offloading frame-
work with innovative decision-making capabilities is
proposed for non-divisible and delay aware tasks to
jointly reduce the energy consumption ratio and long-
term delay of offloaded tasks for each MD.

2) A DRL-DO algorithm is proposed to transfer the
dynamic workloads of mobile applications by:

• Generating a multi-class offload action for execut-
ing independent tasks locally, offloading them to
the central CS, or one of the ESs.

• The offloading decision is generated in a dis-
tributed manner by having multiple OGs knowing
the system state information by their last offloaded
tasks. Also, each OG can serve more than oneMD.

• Making decision of the task offloading and load
balancing at one step.

• Utilizing a three-dimensional input Convolutional
Neural Network (CNN)while consideringmultiple
tasks with multiple features from different users,
and the previous workload in the MDs, ESs, and
central CS as input to CNN to generate offload
decision.

• Achieving efficient task computation in terms of
energy and delay.

• Evaluating the convergence of proposed algo-
rithms and the impacts of system parameters on the
weight sum cost. Under various parameter condi-
tions, DRL-DO achieves near-optimal offloading
decisions in a fraction of a second.

3) Simulation experiments are performed in distinct situ-
ations to evaluate the effectiveness of DRL-DO. The
proposed framework can effectively utilize the pro-
cessing ability of ECC by achieving superior perfor-
mance in terms of Gain Ratio (GR), energy consump-
tion, response time, and system utility while achieving
moderate time cost compared with several offloading
algorithms.

VOLUME 12, 2024 33581

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

The remainder of this paper is organized as follows:
Section II presents the related works of DRL-based offload-
ing approaches, Section III explains the system model and
problem formulation for the proposed DRL-DO framework.
An explanation of the framework of each OG is presented in
Section IV. Evaluation methodology and Simulation results
are shown in Section V. Finally, the conclusion is drawn out
in Section VI.

II. RELATED WORK
MCC, MEC and ECC have become the most important solu-
tions used to better serve IoT users’ diverse requirements,
the best task offloading decision to improve QoS while effi-
ciently enhancing the terminal devices’ computing power
have drawn interest from the research community, leading to
the recent several studies in the literature.

In recent years, traditional offloading approaches [6], [7],
[8], [9] have failed to adapt policies to changing environ-
ments and cannot achieve long-term performance due to
the highly dynamic and time-critical behavior of smart sys-
tems. Therefore, it is more advantageous to apply ML meth-
ods [14], [15] rather than classical methods. DRL holds great
promise for resolving complex real-world problems, intelli-
gent task offloading decisions for MEC, MCC and/or ECC,
is becoming more and more dependent on deep learning-
driven offloading systems. The decision-making offloading
process can be made locally, considering the mobile users’
perceptions condition, or globally, considering the state of the
total system [2].
ADRL-based offloading algorithms forMEC networks are

proposed in [16], [17], [18], [19], and [20]. In [16], [17],
and [18], offloading decisions are generated through multiple
parallel DNNs, while [19] employs a single CNN along with
a quantization procedure for making the offloading decisions.
Newly generated offloading decisions are stored in a shared
replay memory, which is adjusted to further train and enhance
all DNNs/CNN. However, these algorithms ignore the overall
system state. It is proposed in [20] to combine the benefits of
DRL and Lyapunov optimization to design an online com-
putation offloading algorithm that maximizes network data
processing capacity while considering average power and
long-term data queue stability. Nevertheless, this algorithm
only considers the workload of the MD and ignores the state
of ESs and CS.

Several centralized offloading algorithms are proposed in
[21], [22], and [23] to solve the above problems while consid-
ering the total system state. An online predictive offloading
algorithm based on DRL and Long Short-Term Memory
(LSTM) networks is proposed in [21], it predicts the load
of the ES in real time during the model’s training phase and
allocates the computational resources for the task in advance
to substantially increase the convergence speed and accuracy
of the DRL algorithm during the offloading process. In [22],
a DRL-based Task Offloading with cloud edge jointly Load
Balance Optimization (TOLBO) algorithm is proposed to
select the best ES or CS for offloading in order to minimize

long-term task latency and energy consumption by jointly
considering the requirements of latency and energy-sensitive
tasks and the overall load dynamics in the cloud, edge, and
end layers. An advanced DRL-based offloading algorithm is
proposed in [23], considering the previous processing time
for MDs, ESs, and CS, it can generate and store multi-
class offloading decisions with the system state together in
a database and then training and updating multiple parallel
CNNs with a batch of labeled data for executing independent
tasks. Despite the rapid convergence and global optimum
benefits of centralized techniques, they are not scalable and
unable to effectively address application placement issues
due to their excessive computation, communication overhead,
limited generalizability, and slow flexibility.

An increasing number of researches on distributed offload-
ing techniques has been conducted to address these diffi-
culties. In [24], [25], [26], [27], and [28], hybrid computa-
tion offloading architectures that adopt centralized training
and distributed execution are proposed. A distributed DNN
offloading algorithm (DDOA) is proposed in [24], multi-
ple distributed DNNs working in parallel are used to create
offloading decisions, these DNNs are enhanced further by
using the newly generated decisions as a public training set
and the back-propagation method with cross-entropy as the
loss function. A Multi-Agent DRL algorithm is proposed
in [25] to maximize energy consumption while simultane-
ously optimizing power control, resource allocation, and user
equipment association, considering the cost of offloading and
MEC server pricing. A multi-agent DRL algorithm is intro-
duced in [26], it treats each user as a separate agent capable of
deciding which tasks to offload instead of relying on a single
centralized agent, each agent receives an instant reward for
cooperating with other agents. In [27], a distributed applica-
tion placement technique based on actor-critic is proposed,
the process of developing experience trajectories is distinct
from the comprehension of policy constraints. The distributed
actors interact with their individual fog computing environ-
ments, each broker regularly gives the learner access to its
local experience trajectories and in turn, the learner adjusts
the target policy parameter and brokers update their local
policy with the new information after every modification.
A hybrid computation offloading architecture is proposed
in [28], where all distributed actors are able to carry out
tasks independently depending on their local observations
and a centralized platform is introduced to collect global
information. MultipleMDs can collaborate to make decisions
following their independent local observations. A decentral-
ized DRL-based scheduling algorithm is proposed in [29],
it picks up knowledge about the environment during offload-
ing, allowing it to adjust to changing conditions without
knowing everything about it. Nevertheless, this algorithm
requires user devices tomonitor system status data to improve
performance and achieve global optimization.

The key components of related work are identified and
compared in Table 1 regarding their architectural characteris-
tics and decision objectives. The identification and resolution

33582 VOLUME 12, 2024

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

TABLE 1. Comparison of different DRL-based offloading decision algorithms.

of significant task offloading challenges in heterogeneous
ECC environments, where MEC and MCC collaborate to
meet the demands of city IoT applications, has not received
much attention in recent studies. Also, they optimize all
system parameters simultaneously, which ultimately leads
to the identification of impractical solutions as the optimal
offloading choice. A DRL-DO framework is proposed in this
paper to effeciently and effectively generate offloading deci-
sions in ECC environments. DRL is used as a decision-maker
to determine the optimal way to offload incoming dynamic
workloads into central CS or ESs. Offloading decisions are
made in a distributedmanner tomaintain theMDs’QoSwhile
minimizing the weighted sum of task completion, delay, and
energy consumption.

III. SYSTEM MODEL AND PROBLEM FORMULATION
The primary goal of the proposed DRL-DO framework is to
generate a multi-class offload action. This action aims to effi-
ciently manage the execution of independent tasks, allowing
them to be processed locally on the MD or offloaded to one
of the ESs or the central CS. This decision-making process
considers the existing workload conditions of the MD, MEC
servers, and the MCC infrastructure. The overarching objec-
tive is to maintain a harmonious balance in the mobile sys-
tem, ensuring optimal task allocation and resource utilization
across the various computing entities within the network. The
framework employs DRL to dynamically adapt and optimize
offloading decisions based on real-time workload conditions,
contributing to the overall efficiency and performance of the
mobile computing environment.

A. SYSTEM MODEL
Each MD sends the offload requests of some tasks to the OG
directly connected to it. Then the OGmakes offload decisions
for more than one user and multiple tasks for each user at
the same time. The OG can generate multiple outputs, where
each output represents an offload decision for each task either
locally, at one of the ESs or at central CS for further execution,
the proposed DRL-DO system model is illustrated in Fig. 2.
With the availability of more than one OG in the system, each
OG serves multiple MDs and in turn makes offload decisions
in a distributed manner, which preserves generalizability and
quick adaptability to new environments.

The main challenge of DRL-DO is choosing the best
offloading action, which minimize the total users’ tasks delay
and the corresponding energy consumption, and this can
occur by minimizing the system utility of executing all the
channel tasks at time t . The proposed DRL-DO utilizes DRL
automata as a decision-maker to generate decisions about
offloading the incoming dynamic workloads. Various nota-
tions of the proposed DRL-DO framework are shown in
Table 2.
The proposed DRL-DO system model consists of a cen-

tral CS, multiple ESs denoted by a set k = {1, 2, .., K},
multiple OGs denoted by a set i = {1, 2, .., I}, each OG
is responsible for making offload action for multiple MDs
denoted by a set n = {1, 2, .., N}, each MD requests offload
of independent computational tasks denoted by m = {1, 2, ..,
M}, and each MD requests offload at multiple time periods
denoted by a set t = {1, 2, . . . , T}. The offload decision
denoted by a numerical variable anm(t) ∈ {0, 1, .., K, K+1},

VOLUME 12, 2024 33583

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 2. System model of the proposed DRL-DO algorithm.

which represents offloading decision for the mth task of nth

MD in different cases, when the anm (t) value equals 0, the
decision is to execute the task locally, however the value of
anm (t) ∈ {1, ,K } means that the offloading decision is
to offload the task to ES(k), finally when anm (t) equals K+1,
the offloading decision is to offload the task to the central CS.

B. PROBLEM FORMULATION
The main goal of the proposed DRL-DO framework is to
effectively produce offloading decisions over the ECC envi-
ronments. The DRL is used as a decision maker to distribute
offloading for the incoming dynamic workloads into MCC or
ECC. Each OG is effectively aware of the workload informa-
tion of theMDs and a particular server directly connected to it
based on the most recent local and offloaded tasks completed
on that MD and server.

IV. THE FRAMEWORK OF EACH OG
The Framework of each OG comprises four main phases,
as shown in Fig. 3.

First, the data preparation phase involves reconstructing
a 3D array from a 2D array that defines the properties of
each channel task. It establishes the response time for each
task, outlining the energy consumption across various offload
scenarios for the distributed offloading of dynamic workloads
to MCC or ECC. In the second phase, offloading actors are
used to generate J candidate offloading actions, with one
action per actor when the system state is provided. During
the third phase, the optimal offloading action and the system
state are selected from replaymemory samples to train CNNs.
Finally, in the last phase, the system workloads are updated
depending on the best offloading action.

A. PHASE I: DATA PREPARATION
In this phase, numerous tasks with various features, as well
as the system’s current workload, are considered as input
to CNN in order to produce offload decisions. Initially,
OG makes an offload request of the system input channel
ch(t) which consists of m tasks of varied sizes from n MDs
input requests, then a 3D array called Din(t) is created from
ch(t) at each time step t , as shown in Fig. 4. It defines the
response time and energy consumption of each channel task
at all offload possibilities for each corresponding server Sk ,
taking into account the previous processing time of MDs,
ESs, and the central CS.

The response time of executing/offloading the mth task of
nth MD on/to the corresponding assigned server (Sk) at time
t (RT Sknm (t)) is calculated by (1), it depends on the total CPU
cycles (Qnm (t)), the processing rate of Sk

(
PRSkn

)
, the total

offloading delay to Sk
(
DSknm (t)

)
, and the processing time of

Sk at a previous time
(
PT Sk (t − 1)

)
.

RT Sknm (t)=
Qnm (t)

PRSkn
+ DSknm (t)+ PT Skn (t − 1) (1)

where, Sk∈ {S0, S1,, SK , SK+1}, S0 denotes local MD, SK
denotes ES number, and SK+1 denotes the central CS. The
(Qnm(t)) required to execute the mth task of the nth MD at
time t is defined by (2), it depends on the workload (wnm (t))
and the positive coefficient of proportionality (δnm (t)) [17].

Qnm (t) = wnm (t)×δnm (t) (2)

The total delay of offloading the mth tasks of the nth MD
to the Sk (DSknm (t)) is calculated by (3), it depends on the

33584 VOLUME 12, 2024

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 3. Procedure of the proposed DRL-DO framework.

offloading propagation delay of user n to Sk
(
PdSkn

)
, the

transmission delay (Tdnm (t)), and the transmission delay
of all offloaded tasks of the nth MD at previous time t
(Tdn (t − 1)) .

DSknm (t)= PdSkn + Tdnm (t)+ Tdn (t − 1) (3)

where, the offloading transmission delay at time t is obtained
by (4).

Tdnm (t) =
wnm (t)
BN n

(4)

whereBN n is the bandwidth of the nth user. BothPT
Sk
n (t − 1)

and Tdn (t − 1) are calculated in the previous cycle.
The energy consumption parameter is now invested based

on the task, MD, time, and execution/offloading decision.
ECSx

nm (t) represents the energy consumption by execut-
ing/offloading the mth task of the nth MD on/to the corre-
sponding assigned server at time t, it is calculated by (5).

ECSk
nm (t) = θT × wnm (t)+ θSk × Qnm (t) (5)

where θT represents the energy consumption per unit of
uploading workload by eachMD, its value is equal to 0, when
Sk is equal to S0. θSk represents the corresponding assigned
server’s energy consumption per unit of workloads.

B. PHASE II: OFFLOADING ACTION GENERATION
At every time step t, the DRL-DO agent interacts with the
environment, it perceives the current state of the environment

Din (t) and selects an action A(t) based on its policy, mapping
state to action A (t) = {a11(t),a12(t),,anm(t)},
which represents the offloading action for all channel tasks
at time t . The offloading decision for the mth task of the nth

MD is represented by the numerical variable anm (t)∈ {0,
.., K, K+1}. The task is executed locally when the value of
anm (t) = 0. On the other hand, if the value of anm (t)∈{1,
.., K}, the task is offloaded to ES(k). Lastly, if the value of
anm (t) = K+1, the task is offloaded to the central CS.
As shown at phase II in Fig. 3, for each system state

Din (t), J offloading actors are used to generate j candidate
offloading actions with one action per actor, j∈ {1, 2,,J}.
Inside each offloading actor, a three-dimensional input CNN
which has multiple tasks with multiple features is used as
input for generating multi-class offloading action represented
by Aj (t) , which takes advantage of the translation in the
variance of the CNN to capture the local feature of input data
and accelerate the convergence of the offloading process, and
it can be represented by a parametrized function fθ (j), as in (6).

fθ(j) : Din (t)− −− → Aj(t) (6)

where θ (j) denotes the parameters of the jth offloading actor,
all those actors have the same structure but with differ-
ent parameter values. As seen in (7), the offloading action
A∗(t) with the least system utility

(
9∗(Din (t) ,Aj(t)

)
is

selected among all J candidates to achieve the main DRL-
DO goal by selecting the offloading action that achieves high

VOLUME 12, 2024 33585

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

TABLE 2. Notations used in the DRL-DO algorithm.

performance regarding the total delay and the corresponding
energy consumptions.

A∗ (t) = arg min9
(
Din (t) ,Aj(t)

)
(7)

FIGURE 4. Construction of DRL-DO input from system input channel.

The 9 (Din (t) ,A(t)) is obtained by (8), it depends on the
total response time (RT (Din (t) ,A (t))) and the energy con-
sumption (EC (Din (t) ,A (t))) required to execute all channel

tasks at time step t .

9 (Din (t) ,A(t)) = ((βt) ∗ RT (Din (t) ,A (t)))

+ ((βe) ∗ EC (Din(t),A(t))) (8)

As shown in (9) and (10), β t and βe are adaptive con-
trol parameters representing the weighted response time and
energy consumption of all channel tasks, respectively.

β t =
β ∗ RT (Din (t) ,A (t))

(β ∗ RT (Din (t) ,A (t)))+((1−β) ∗ EC (Din (t)A (t))
(9)

βe=
(1 − β) ∗ EC (Din(t),A(t))

(β ∗ RT (Din (t) ,A (t)))+((1−β) ∗ EC (Din (t) ,A (t))
(10)

where β is a constant weight between energy consumption
and response time in the weighted execution cost of all the
channel tasks.

The total response time and energy consumption are cal-
culated by (11) and (13), they depend on the response time
(RT Skn (t)) and energy consumption ECSk

n (t)) of the nth MD
to finish executing/offloading its task on/to Sk at time t ,
respectively.

RT (Din (t) ,A (t))

=

N∑
n=1

max
(
RtS0n (t) ,RT S1n (t) , ..,RT

SK
n (t) ,RT

SK+1
n (t)

)
(11)

where,

RT Skn (t) =

M∑
m=1

RT Sknm (t), anm (t) = k

0 anm (t) ̸= k

(12)

EC (Din (t) ,A (t)) =

N∑
n=1

K+1∑
k=0

ET Skn (t), (13)

where,

ECSk
n (t) =

M∑
m=1

ECSk
nm (t), anm (t) = k

0 anm (t) ̸= k

(14)

The value of anm (t) demonstrates whether the current
task is assigned to Sk or not, and m denotes the number of
independent computational tasks of the nth MD.

C. PHASE III: TRAINING
All offloading actors are trained using the acquired labeled
data at each training session. Once the highest performance
offloading decision A∗(t) is obtained, it is saved as a new
entry of labeled data (Din (t) ,A∗(t)) in a finite-size memory
structure, where the oldest data entry is discarded when the
memory is full. The database improves efficiency since it

33586 VOLUME 12, 2024

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

is updated frequently, resulting in newly created data that is
more accurate than previously created data. However, it will
take too much time to train each CNN using all of the labeled
data from the database. Consequently, all CNNs have access
to the same database, which they can use to randomly extract
batches of data for neural network training.

In order to train the model in CNN using labeled data
(Din (t) ,A∗(t)), where A∗(t) =

{
a∗

11(t),a
∗

12(t), ..,a
∗
nm(t)

}
, the

Adam optimizer [30] is performed to minimize the loss func-
tion [31] for each output in each offloading actor.

D. PHASE IV: UPDATE SYSTEM WORKLOAD
At every time step t, the optimal offloading decision A∗(t) is
obtained and the workload of the system is updated by recal-
culating both, the processing time of Sk

(
PT Skn (t)

)
and the

transmission delay of all offloaded tasks (Tdn (t)) concerning
the nth MD, as shown in (15) and (17), respectively.

PT Skn (t) = PT Skn (t − 1)+
TLSkn (t)

PRSkn
(15)

where,
(
PT Sk (t − 1)

)
is the previous processing time,(

TLSkn (t)
)
is the total length of all tasks being processed,

obtained by (16), and
(
PRSkn

)
is the processing rate of Sk .

TLSkn (t) =

M∑
m=1

Qnm (t) anm (t) = k, k = 0

N∑
n=1

M∑
m=1

Qnm (t) anm (t) = k, k ̸= 0

0 anm (t) ̸= k

(16)

Tdn (t) = Tdn (t − 1)+
TSn(t)
BN n

(17)

where, (Tdn (t − 1)) is the transmission delay of all offloaded
tasks of the nth MD at the previous cycle,

(
TSSkn (t)

)
is the

total data size of all offloaded tasks, calculated by (18), and
BN n is the Bandwidth of the nth MD.

TSSkn (t) =

M∑
m=1

wnm (t) anm (t) ̸= 0

0 anm (t) = 0

(18)

V. SIMULATION IMPLEMENTATION AND RESULTS
In the proposed DRL-DO algorithm, the database structure is
continually updated and offloading decisions are generated
as logits. The convergence here is the process of moving
closer to the optimal. More precisely, GR, obtained by (19),
refers to gain from the optimal weighted execution cost of
executing all the channel tasks at time t (ψ2 (Din (t) ,A(t)))
to the minimum weighted execution cost of executing all
the channel tasks at time t (ψ1 (Din (t) ,A(t))) found by the

Algorithm 1 DRL-DO for One OG Over ECC Environment
Input: System input channel ch(t) at time t
Output: Optimal offloading decision A∗ (t) at time t

1. Initialization:
2. Initialize J offloading actors with random parameters
3. Empty memory structure
4. for t = 1, 2, . . . , T do
5. for each n user in a channel at time t do
6. for each m task do
7. Compute RTnm(t) and ECnm(t)
8. end for
9. end for
10. Compute system state (Din (t))
11. Replicate (Din (t)) to all offloading actors
12. Generate J offloading actions A(t) from J actors
13. Select the best offloading decision A∗(t)
14. Compute gain ratio (convergence of DRL-DO)
15. if database is not full then
16. Store

(
Din (t) ,A∗(t)

)
into memory structure

17. else
18. Discard the oldest data and save new one
19. end if
20. if t % training interval = = 0 then
21. for j = 1, 2, .., J do
22. Randomly sample batches from memory
23. Train CNNs and update θj
24. end for
25. end if
26. end for

FIGURE 5. Configuration of an offloading actor.

DRL-DO algorithm.

GR =
ψ2 (Din (t) ,A(t))
ψ1 (Din (t) ,A(t))

(19)

where, 0< GR≤ 1 indicates how close the solution found by
the DRL-DO algorithm is to the greedy algorithm [21] which
achieves the true optimal solution, nevertheless, it consumes a
great deal of time, particularly when there are manyMDs and
tasks, as indicated in [17]. ψ2 (Din (t) ,A(t)) is determined
by using a time-consuming greedy algorithm, in which all
offloading decision combinations are enumerated, and then
adopt the optimal one. Algorithm 1 shows the entire DRL-
DO algorithm’s progression for the ECC offloading model.
The suggested DRL-DO framework automatically modi-
fies the parameters to produce offloading decisions that are
almost optimal by learning from previous offloading experi-
ences. Because the generated offloading decisions are highly
diverse, good convergence performance can be attained.

VOLUME 12, 2024 33587

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

TABLE 3. Simulation parameters.

TABLE 4. Hyperparameters setting of Conv2D.

TABLE 5. Hyperparameters setting of DRL-DO.

FIGURE 6. Relative optimality GR under varied batch sizes.

A. PARAMETER AND ENVIRONMENT SETTING
In this work, a heterogeneous ECC environment is con-
structed and the Keras ML library [32], [33], a high-level
Application Programming Interface (API) for TensorFlow,

is used to implement and evaluate the proposed DRL-DO
algorithm and other offloading decision algorithms in Python
experiments.

The number of time cycles is set to 15000 (T=15000), the
number of ESs is assigned to 2 (k=2), the number of OGs is
assigned to 2, or 3 (I∈ {2, 3}). The number of MDs directly
connected to each OG is assigned to 3 (N=3), where each
OG takes offloading action for 3 MDs, and each MD has two
different tasks (M = 2). In addition, the processing rates for
the nth MD, ES, central CS are, PRmd (n) = 500MHz, PRE =

2 GHz and PRC = 10 GHz, respectively, where PRmd (n) <
PRE < PRC . The request workload of all tasks is randomly
distributed between 1MB and 3MB. The offloading decision
anm(t) ∈ {0, 1, 2, 3} where, anm(t) = 3, anm(t) = {1,2}, and
anm(t) = 0 represents that the nth MD is offloaded its mth

task to the CS, ES1/2, or locally, respectively. The summary
of the DRL-DO evaluation parameters values is presented in
Table 3.
The DRL-DO offloading actor model makes use of an

input Convolution (Conv) layer, three hidden Conv layers,
and one multi-label fully connected layer, as illustrated in
Fig. 5. The Conv2D [34] layer is the most common layer
used to perform convolution operation on the DRL-DO input
(Din(t)) to extract features, which are used by dense layer to
produce output (A (t)). Except of the output layer, each layer
is followed by the Rectified Linear Unit (ReLU) activation
function [35] and the Batch Normalization (BN) layer [36].
The Softmax activation function classifies the output into
multiple classes [37]. The final Conv2D layer’s output fea-
ture maps are usually flattened, or converted into a one-
dimensional array of numbers. Then, they are linked to a
multi-label fully connected layer, also known as a dense layer,
where each input is connected to every output through a
learnable weight. Once the features extracted by the Conv2D
layers are generated, a fully connected layer maps them to the
ultimate outputs of the network.

The first parameter Conv2D needs to know is how many
learning filters it needs. The layers in the early network
architecture closest to the real data input need to learn fewer
Conv2D filters than the more profound layers closer to the
output predictions. The second is the kernel size, an odd
2-tuple integer that defines the Conv2D window’s width and
height. Table 4 displays the hyperparameter settings used to
tune the DRL-DO algorithm on one OG. J -offloading actors
are first initialized with random values for the parameters θj.
The algorithm converges to the best offloading actions by
selecting J ≥ 2.

B. CONVERGENCE PERFORMANCE
The convergence of the DRL-DO algorithm is demonstrated
in distinct scenarios, where it converges to the optimal
solution under a broad range of parameter settings. Based
on the batch size, memory size, and number of CNNs,
the convergence performance of the DRL-DO algorithm is
analyzed.

33588 VOLUME 12, 2024

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 7. Performance analysis under different batch sizes.

FIGURE 8. Relative optimality GR under varied memory sizes.

This proposal considers both a long-term optimization
problem and a dynamic, concurrently executing environ-
ment [38]. Every task is executed simultaneously on the
server, and the environment’s network, location, and exe-
cution speed are all randomly changed. The adaptive learn-
ing rate optimization algorithm known as the Adam Opti-
mizer [30] is used to dynamically modify the learning rate
value in response to training progress and in turn, enable
the model to learn more efficiently. The settings used for
hyperparameters are shown in table 5.

1) IMPACT OF BATCH SIZE
The number of experience samples trained each time is
determined by batch. To enhance the CNN, a batch of
data samples is randomly sampled from the memory for
each training procedure. Fig. 6 demonstrates the impact of
batch size on the convergence GR of the proposed DRL-DO
algorithm.

Fig. 7 shows the obtained results of DRL-DO algorithm
in terms of the average Energy consumption, Response time,
GR, and Time cost, respectively for each OG under different
numbers of samples for training, 6000 iterations and 100 sam-
ples are used for the test.

Small batch size does not use all of the training data stored
in memory, as illustrated in Fig. 6. Conversely, a large batch
size frequently uses the old training data, slowing down con-
vergence and lengthening the training period, as illustrated
in Fig. 7. As the batch size increases, energy consumption
and response time decrease, increasing the GR and caus-
ing the model to converge to a satisfactory solution; how-
ever, the average time cost increases by a small amount,
which represents the computation time required by the DRL-
DO algorithm to perform the offloading action. Therefore,
in the following simulations, the training batch size is set
to 192 as a trade-off between convergence speed and time
cost.

VOLUME 12, 2024 33589

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 9. Performance analysis under different memory sizes.

FIGURE 10. Relative optimality GR under varied CNNs.

2) IMPACT OF MEMORY SIZE
Another important factor affecting DRL-DO performance is
memory size, it directly affects how many training samples
are kept in replay memory. Fig. 8 shows how different mem-
ory sizes affect the GR under various learning steps. The
energy consumption, response time, GR, and time cost are
chosen, as indicated in Fig. 9, to assess how various memory
sizes affect each OG in the DRL-DO algorithm, 3000 itera-
tions and 100 samples are used for test.

As illustrated in Fig. 8, faster convergence is achieved
with smaller memory sizes, but they fall on the risk of local

optimum. The data is updated at a low rate when the database
size is too large. Thus, the value of GR is at a minimum when
the memory size is 2560.

As shown in Fig. 9, the case with a small memory size per-
forms better than a large memory size regarding energy con-
sumption, response time, and in turn, the DRL-DO algorithm
utilizes these adaptive weights to minimize the weighted
execution cost of executing all channel tasks and improves
GR.

However, the increase of the memory size leads to the
increase of the time cost. From the experimental observation,
the 1024 memory size obtains the best results and therefore,
an experience replay memory with size 1024 is selected in the
ECC network.

3) IMPACT OF CNN’S NUMBER
This section examines DRL-DO’s convergence performance
with varying numbers of offloading actors (CNNs). As the
number of CNNs increases, the GR converges to one,
as shown in Fig. 10. However, if only one CNN is used,
the DRL-DO cannot converge and cannot learn anything
from the data it generates. As a result, DRL-DO converges
faster with more CNNs used and needs a minimum of two
CNNs.

Fig. 11 shows the DRL-DO algorithm’s results regarding
the average energy consumption, response time, GR, and the

33590 VOLUME 12, 2024

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 11. Performance analysis under different CNNs.

FIGURE 12. Relative optimality GR under varied learning steps.

time cost of each OG under various offloading actors at a
3000-time step number with 100 tested samples. As illus-
trated in Fig. 11, as the number of CNNs increases, the
average energy consumption and response time decrease,
leading to an increase in the GR, indicating that the model
converges to a good solution. However, the number of CNNs
also increases the average time cost by a significant amount;
for this reason, the number of CNNs is set at five to balance
convergence and time cost in the ECC network under consid-
eration.

C. COMPARISON ANALYSIS
In comparisonwith DRL-DO that uses twoOGs, each serving
three MDs, the following offloading decision techniques are
used in order to evaluate the efficacy and performance of
the proposed DRL-DO algorithm in terms of total energy
consumption, response time, GR, time cost, and system utility
in various policy update iterations:

• TOLBO [22]: A centralized offloading algorithm, which
uses a single center OG responsible for making offload-
ing decisions simultaneously for 6 MDs.

VOLUME 12, 2024 33591

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

FIGURE 13. The comparisons of the three algorithms regarding the learning steps.

• DDOA [24]: A distributed DNN offloading algorithm,
uses two OGs, each one simultaneously making an
offloading decision for 3 MDs.

The offloading actor for different algorithms is implemented
using the Conv2D class, batch size, memory size, learning
rate, and CNN’s numbers are set to 192, 1024, 0.01 learning
rate, and 5, respectively.

Fig. 12 illustrates that when offload decisions are generated
using DRL-DO, the GR reaches its maximum comparing
to other algorithms. Also, as shown in Fig. 13, the DRL-
DO model converges to the best result in terms of energy

consumption, response time, GR and system utility, while
achieving moderate time cost. This is because the proposed
DRL-DOmakes offloading decisions in a distributed manner,
gathering data about the current load of the entire system
by the last task executed locally or offloaded. As shown
in Fig. 13, the average time cost of TOLBO is maximum
because it requires global state observation before calculating
optimal offloading decisions, and it has a single center OG
that generates offload decisions, requiring a time delay from
each MD to this center OG and results in excessive compu-
tational and communication overhead. DDOA achieves the

33592 VOLUME 12, 2024

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

minimum time cost. However, all other performance metrics
are degraded because it ignores the entire system’s state.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a DRL Distributed task Offloading
(DRL-DO) framework based on DRL to generate offloading
decisions in ECC environments efficiently and effectively.
The primary goal of the proposed DRL-DO framework is to
create a multi-class offload action that can be used to execute
independent tasks locally and offload them to the central CS,
or ESs, while taking into account the workload that the MD,
MEC, and MCC are currently handling to maintain availabil-
ity, preserve generalizability, and enable quick adaptation to
new environments.

According to experimental results, the DRL-DO algorithm
is accurate; in comparison to DDOA and TOLBO offloading
algorithms, it achieves high performance, significantly lowers
energy consumption by about 7.6%, and 3.8%, by about 43%,
and 34% for response time, by about 26.2%, and 18.2% for
system utility, and increases the GR by about 28.4 %, and
16.2% in contrast of DDOA and TOLBO, respectively, while
achieving acceptable time cost. Thus, the proposed DRL-DO
framework is well-positioned to contribute valuable insights
to the field of real-time task offloading decisions in ECC
environments and its applications in IoT.

More variables such as the bandwidth allocated to each
task, learning on a smaller-shaped dataset, and constraints on
energy consumption at the local MD level will be considered
in future work to enhance the DRL-DO algorithm’s ability
and handle more realistic mobile offloading scenarios.

REFERENCES

[1] D. Hortelano, I. de Miguel, R. J. D. Barroso, J. C. Aguado, N. Merayo,
L. Ruiz, A. Asensio, X. Masip-Bruin, P. Fernández, R. M. Lorenzo, and
E. J. Abril, ‘‘A comprehensive survey on reinforcement-learning-based
computation offloading techniques in edge computing systems,’’ J. Netw.
Comput. Appl., vol. 216, Jul. 2023, Art. no. 103669.

[2] B. Wang, C. Wang, W. Huang, Y. Song, and X. Qin, ‘‘A survey and
taxonomy on task offloading for edge-cloud computing,’’ IEEE Access,
vol. 8, pp. 186080–186101, 2020.

[3] M. Y. Akhlaqi and Z. B. Mohd Hanapi, ‘‘Task offloading paradigm in
mobile edge computing-current issues, adopted approaches, and future
directions,’’ J. Netw. Comput. Appl., vol. 212, Mar. 2023, Art. no. 103568.

[4] R. F. Abdel-Kader, N. E. El-Sayad, and R. Y. Rizk, ‘‘Efficient energy and
completion time for dependent task computation offloading algorithm in
industry 4.0,’’ PLoS ONE, vol. 16, no. 6, Jun. 2021, Art. no. e0252756.

[5] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, pp. 111253–111264, 2020.

[6] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, ‘‘An application
placement technique for concurrent IoT applications in edge and fog
computing environments,’’ IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[7] M. Goudarzi, M. Palaniswami, and R. Buyya, ‘‘A distributed applica-
tion placement and migration management techniques for edge and fog
computing environments,’’ in Proc. 16th Conf. Comput. Sci. Intell. Syst.,
Sep. 2021, pp. 37–56.

[8] Q. Deng, M. Goudarzi, and R. Buyya, ‘‘FogBus2: A lightweight and
distributed container-based framework for integration of IoT-enabled sys-
tems with edge and cloud computing,’’ in Proc. Int. Workshop Big Data
Emergent Distrib. Environments, Jun. 2021, pp. 1–8.

[9] M. Aazam, S. U. Islam, S. T. Lone, and A. Abbas, ‘‘Cloud of Things (CoT):
Cloud-fog-IoT task offloading for sustainable Internet of Things,’’ IEEE
Trans. Sustain. Comput., vol. 7, no. 1, pp. 87–98, Jan. 2022.

[10] I. H. Sarker, ‘‘Machine learning: Algorithms, real-world applications and
research directions,’’ Social Netw. Comput. Sci., vol. 2, no. 3, pp. 1–21,
May 2021.

[11] B. Kar, W. Yahya, Y.-D. Lin, and A. Ali, ‘‘A survey on offloading in fed-
erated cloud-edge-fog systems with traditional optimization and machine
learning,’’ 2022, arXiv:2202.10628.

[12] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, ‘‘Explainability in
deep reinforcement learning,’’ Knowl.-Based Syst., vol. 214, Feb. 2021,
Art. no. 106685.

[13] C. Fang, Z. Hu, X. Meng, S. Tu, Z. Wang, D. Zeng, W. Ni, S. Guo,
and Z. Han, ‘‘DRL-driven joint task offloading and resource allocation
for energy-efficient content delivery in cloud-edge cooperation networks,’’
IEEE Trans. Veh. Technol., vol. 72, no. 12, pp. 16195–16207, Dec. 2023.

[14] X. Chen, S. Hu, C. Yu, Z. Chen, and G. Min, ‘‘Real-time offloading
for dependent and parallel tasks in cloud-edge environments using deep
reinforcement learning,’’ IEEE Trans. Parallel Distrib. Syst., vol. 35, no. 3,
pp. 391–404, Mar. 2024.

[15] T. H. Binh, D. B. Son, H. Vo, B. M. Nguyen, and H. T. T. Binh,
‘‘Reinforcement learning for optimizing delay-sensitive task offloading in
vehicular edge-cloud computing,’’ IEEE Internet Things J., vol. 11, no. 2,
pp. 2058–2069, Jul. 2023.

[16] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, ‘‘Distributed deep
learning-based offloading for mobile edge computing networks,’’ Mobile
Netw. Appl., vol. 27, no. 3, pp. 1123–1130, Nov. 2018.

[17] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, ‘‘Collaborate edge and
cloud computing with distributed deep learning for smart city Internet of
Things,’’ IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110, Sep. 2020.

[18] L. Huang, X. Feng, L. Zhang, L. Qian, and Y.Wu, ‘‘Multi-server multi-user
multi-task computation offloading for mobile edge computing networks,’’
Sensors, vol. 19, no. 6, p. 1446, Mar. 2019.

[19] Y. Wang, M. Li, R. Ji, M.Wang, Y. Zhang, and L. Zheng, ‘‘A convolutional
operation-based online computation offloading approach in wireless pow-
ered multi-access edge computing networks,’’Comput. Electron. Agricult.,
vol. 197, Jun. 2022, Art. no. 106967.

[20] S. Bi, L. Huang, H. Wang, and Y. A. Zhang, ‘‘Lyapunov-guided deep
reinforcement learning for stable online computation offloading in mobile-
edge computing networks,’’ IEEE Trans. Wireless Commun., vol. 20,
no. 11, pp. 7519–7537, Nov. 2021.

[21] Y. Tu, H. Chen, L. Yan, and X. Zhou, ‘‘Task offloading based on LSTM
prediction and deep reinforcement learning for efficient edge computing
in IoT,’’ Future Internet, vol. 14, no. 2, p. 30, Jan. 2022.

[22] L. Yan, H. Chen, Y. Tu, and X. Zhou, ‘‘A task offloading algorithm with
cloud edge jointly load balance optimization based on deep reinforce-
ment learning for unmanned surface vehicles,’’ IEEE Access, vol. 10,
pp. 16566–16576, 2022.

[23] W. Hashem, R. Attia, H. Nashaat, and R. Rizk, ‘‘Advanced deep rein-
forcement learning protocol to improve task offloading for edge and cloud
computing,’’ in Proc. Int. Conf. Adv. Mach. Learn. Techn. Appl. Springer,
2022, pp. 615–628.

[24] Z. Yang and W. Bai, ‘‘Distributed computation offloading in mobile fog
computing: A deep neural network approach,’’ IEEE Commun. Lett.,
vol. 26, no. 3, pp. 696–700, Mar. 2022.

[25] J. Xue, Q. Wu, and H. Zhang, ‘‘Cost optimization of UAV-MEC network
calculation offloading: A multi-agent reinforcement learning method,’’ Ad
Hoc Netw., vol. 136, Nov. 2022, Art. no. 102981.

[26] Z. Zhang, C. Li, S. Peng, and X. Pei, ‘‘A new task offloading computing in
edge computing,’’ EURASIP J. Wireless Commun. Netw., vol. 2021, no. 1,
pp. 1–21, Jan. 2021.

[27] M. Goudarzi, M. Palaniswami, and R. Buyya, ‘‘A distributed deep rein-
forcement learning technique for application placement in edge and fog
computing environments,’’ IEEE Trans. Mobile Comput., vol. 22, no. 5,
pp. 2491–2505, May 2023.

[28] Z. Qin, H. Yao, T. Mai, D. Wu, N. Zhang, and S. Guo, ‘‘Multi-agent
reinforcement learning aided computation offloading in aerial computing
for the Internet-of-Things,’’ IEEE Trans. Services Comput., vol. 16, no. 3,
pp. 1976–1986, Jul. 2022.

[29] Y. Fan, J. Ge, S. Zhang, J. Wu, and B. Luo, ‘‘Decentralized schedul-
ing for concurrent tasks in mobile edge computing via deep reinforce-
ment learning,’’ IEEE Trans. Mobile Comput., pp. 1–15, Apr. 2023, doi:
10.1109/TMC.2023.3266226.

VOLUME 12, 2024 33593

http://dx.doi.org/10.1109/TMC.2023.3266226

H. Nashaat et al.: DRL-DO Framework in Edge-Cloud Environment

[30] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[31] Y. Ho and S. Wookey, ‘‘The real-world-weight cross-entropy loss
function: Modeling the costs of mislabeling,’’ IEEE Access, vol. 8,
pp. 4806–4813, 2020.

[32] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2016, arXiv:1603.04467.

[33] T. Carneiro, R. V. M. D. Nobrega, T. Nepomuceno, G.-B. Bian,
V. H. C. De Albuquerque, and P. P. R. Filho, ‘‘Performance analysis of
Google colaboratory as a tool for accelerating deep learning applications,’’
IEEE Access, vol. 6, pp. 61677–61685, 2018.

[34] C. Shi, R. Xia, and L. Wang, ‘‘A novel multi-branch channel expan-
sion network for garbage image classification,’’ IEEE Access, vol. 8,
pp. 154436–154452, 2020.

[35] B. Ding, H. Qian, and J. Zhou, ‘‘Activation functions and their characteris-
tics in deep neural networks,’’ inProc. Chin. Control Decis. Conf. (CCDC),
2018, pp. 1836–1841.

[36] T. Sledevic, ‘‘Adaptation of convolution and batch normalization layer for
CNN implementation on FPGA,’’ in Proc. Open Conf. Electr., Electron.
Inf. Sci., Apr. 2019, pp. 1–4.

[37] M. A. Anjum, J. Amin, M. Sharif, H. U. Khan, M. S. A. Malik, and
S. Kadry, ‘‘Deep semantic segmentation and multi-class skin lesion clas-
sification based on convolutional neural network,’’ IEEE Access, vol. 8,
pp. 129668–129678, 2020.

[38] R. Rizk and H. Nashaat, ‘‘Smart prediction for seamless mobility in
F-HMIPV6 based on location based services,’’ China Commun., vol. 15,
no. 4, pp. 192–209, Apr. 2018.

HEBA NASHAAT (Member, IEEE) received the
B.Sc. and M.Sc. degrees in computer and con-
trol engineering from Suez Canal University, in
2001 and 2006, respectively, and the Ph.D. degree
in computer and control engineering from Port
Said University, Egypt, in 2011. She is currently an
Assistant Professor of computer and control with
the Electrical Engineering Department, Port Said
University. She is also the former Executive Direc-
tor of the Network Infrastructure Center, Port Said

University. Recently, she has been the Executive Director of the Software
Engineering Unit (SWEU), Faculty of Engineering, Port Said University, and
the Manager of the Electronic Learning Center (ELC), Port Said University.
Her research interests include computer networking, including mobile net-
works, cloud computing, and the Internet of Things.

WALAA HASHEM received the B.Sc. degree
in computer and control engineering from Suez
Canal University, in 2006, and the M.Sc. degree
in computer and control engineering from Port
Said University, in 2018. Her research interests
include computer networking, cloud computing,
and machine learning.

RAWYA RIZK (Senior Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in computers
and control engineering from Suez Canal Univer-
sity, in 1991, 1996, and 2001, respectively. She
has been the Chief Information Officer (CIO) with
Port Said University (PSU), Egypt, since 2014.
She has been the Vice President for Graduate
Studies and Research with PSU, since 2021. She
is currently a Professor of computers and control
with the Electrical Engineering Department, PSU.

Her research interests include computer networking, including mobile net-
working, wireless, ATM, sensor networks, ad hoc networks, QoS, traffic and
congestion control, handoffs, and cloud computing. She is a Reviewer of
many international communication and computer journals, such as IEEE
INTELLIGENT TRANSPORTATION SYSTEMS TRANSACTIONS, IEEE ACCESS, and IET
Communications.

RADWA ATTIA received the B.Sc. and M.Sc.
degrees in computer and control engineering from
Suez Canal University, in 2004 and 2009, respec-
tively, and the Ph.D. degree in computer and con-
trol engineering from Port Said University, Egypt,
in 2015. She is currently an Assistant Professor
of computer and control with the Electrical Engi-
neering Department, Port Said University. Her cur-
rent research interests include computer network-
ing, including mobile networking, wireless, sensor

networks, and ad hoc networks. She is a Reviewer of many international
communication and computer journals, such asKSII Transactions on Internet
and Information Systems, Wireless Personal Communications, and ANTE
Annals of Telecommunications.

33594 VOLUME 12, 2024

