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ABSTRACT The rise of Internet of Things (IoT) has led to increased security risks, particularly from
botnet attacks that exploit IoT device vulnerabilities. This situation necessitates effective Intrusion Detection
Systems (IDS), that are accurate, lightweight, and fast (having less inference time), designed particularly
to detect botnet attacks in resource constrained IoT devices. This paper proposes SkipGateNet, a novel
deep learning model designed for detecting Mirai and Bashlite botnet attacks in resource constrained IoT
and fog computing environments. SkipGateNet is a lightweight, fast model combining 1D-Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM) layers. The novelty of this model lies
in the integration of ‘Learnable Skip Connections’. These connections feature gating mechanisms that
enhance detection by focusing on relevant features and ignoring irrelevant ones. They add adaptability to the
architecture, performing feature selection and propagating only essential features to deeper layers. Tested
on the N-BaloT dataset, SkipGateNet efficiently detects ten types of botnet attacks, with a remarkable
test accuracy of 99.91%. It is also compact (2596.87 KB) and demonstrates a quick inference time of
8.0 milliseconds, suitable for real-time implementation in resource-limited settings. While evaluating its
performance, parameters like precision, recall, accuracy, and F1 score were considered, along with statistical
reliability measures like Cohen’s Kappa Coefficient and Matthews Correlation Coefficient. These highlight
its reliability and effectiveness in IoT security challenges. The paper also compares SkipGateNet to existing
models and four other deep learning architectures, including two sequential CNN architectures, a simple
CNN+LSTM architecture, and a CNN+4LSTM with standard skip connections. SkipGateNet surpasses all
in accuracy and inference time, demonstrating its superiority in addressing IoT security issues.

INDEX TERMS Botnets, botnet attacks, bashlite, intrusion detection, Mirai.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging technology that
allows automated data sensing, collection, and transmission.
It uses interconnected devices ranging from computers, sen-
sors, vehicles, phones, and home appliances and supports
various applications, such as intelligent transportation, smart
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grids, smart homes, smart cities, and smart agriculture [1],
[2]. This widespread adoption of IoT devices has increased
susceptibility to various security threats, particularly botnet
attacks that exploit IoT device vulnerabilities [3]. Recent
reports have revealed that 41% of attacks exploit IoT device
vulnerabilities due to 98% of the IoT device traffic being
unencrypted [4]. The botnets, such as BASHLITE and Mirai,
pose significant threats to IoT networks due to their capacity
to compromise many devices and the variety of attacks they
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employ [5]. These security issues become even more critical,
particularly in the context of fog computing — a decentralized
processing and storage paradigm that enables data handling
closer to the network edge. Fog computing’s unique con-
straints and operational context demand specialized intrusion
detection solutions. These solutions need to address the lim-
ited computational resources, low-latency requirements, and
the dynamic nature of fog-based IoT networks, thus con-
tributing to the body of knowledge in this area [6], [7]. The
Mirai botnet attack emerged in 2016 and compromised var-
ious vulnerable IoT devices, including cameras and routers,
to conduct large-scale distributed denial of service (DDoS)
attacks such as Ack flooding, Syn flooding, UDP flooding,
UDP plain flooding, etc. [8]. Similarly, the Bashlite bot-
net (also known by other names such as Gafgyt, Q-Bot,
Torlus, Lizard-Stresser, and Lizkebab) targets IoT devices
and has been responsible for launching DDoS attacks, spread-
ing malware, and exploiting device vulnerabilities through
certain types of attacks including Scan, Junk, UDP, TCP,
and COMBO [9]. Therefore, efficient and effective intrusion
detection systems (IDS) are required to counteract the threat
of botnet attacks, especially for edge devices and fog com-
puting environments.

IDS plays a crucial role in detecting and mitigating cyber
threats. The anomaly-based IDS, in particular, are designed
to identify unusual patterns in network traffic, which may
indicate the presence of an attack. As the use of IoT has been
increasing recently, the need for effective anomaly-based
IDS has become indispensable [10]. While the traditional
machine learning models have widely been used for intrusion
detection in IoT networks [11], they face certain chal-
lenges, e.g., limited scalability, inadequate performance in
dealing with complex and evolving attack patterns, and
difficulty in handling high-dimensional data, [12], etc. There-
fore, there is a pressing need to develop new and efficient
deep learning models that can be used in IDS, particularly
designed for detecting botnet attacks in IoT devices. In recent
years, deep learning models have emerged as a promising
alternative, demonstrating superior performance in handling
large-scale, high-dimensional data and capturing complex
patterns (features) in the data [13]. Most of the existing
deep learning-based solutions for intrusion detection are not
lightweight and pose latency issues, making them unsuit-
able for implementation in edge devices in IoT networks or
fog computing. However, deep learning models, if designed
specifically for the type of attacks or keeping in view the
challenges in the IoT networks, can perform efficiently and
adequately well.

To address the aforementioned challenges, this paper
presents a lightweight and efficient deep-learning model tai-
lored specifically to detect the Mirai and Bashlite botnet
attacks. The proposed model is based on a combination and
tailored arrangement of 1D-Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) layers. The
novelty of the proposed model lies in using ‘Learnable Skip
Connections’. Traditional skip connections allow information
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to bypass one or more layers, and flow directly from one
part of the network to another. Unlike standard skip connec-
tions, which pass the information without any modulation,
learnable skip connections incorporate gating mechanisms
to control the flow of information dynamically. Essentially,
these mechanisms learn to regulate what information is useful
to propagate forward and what can be omitted. The learnable
skip connections add a level of adaptability to our proposed
architecture. These connections perform a kind of feature
selection, determining which features are important enough
to be directly propagated to deeper layers. As a result, the
network becomes better at focusing on the most relevant
patterns in the data, leading to improved model performance.
Moreover, the learnable skip connections contribute to the
overall compactness of the SkipGateNet, maintaining the
model’s lightweight characteristics. The gating mechanisms,
despite their adaptive capabilities, don’t introduce an exten-
sive number of parameters into the network, keeping the
computational costs manageable. This is particularly advan-
tageous for IoT settings, where computational resources are
often limited, such as real-time servers and processors that
work as edge devices or Fog Nodes.

The main contributions of this paper are:

1) This paper introduces a novel convolutional and
recurrent neural network architecture, SkipGateNet,
designed specifically for IoT botnet attack detection.
A key aspect of this architecture is the use of ‘Learnable
Skip Connections’. These connections are capable of
dynamically controlling the flow of information across
the network, enabling the model to focus on salient
features and ignore irrelevant ones, thus enhancing its
detection capabilities.

2) Gating mechanisms have been integrated into the
learnable skip connection blocks. Each learnable skip
connection employs a 1D convolution layer followed
by a sigmoid activation function to create a gate.
Integration of gating mechanisms enables adaptive fea-
ture selection in the proposed model. This process
allows the model to pay attention to more informa-
tive features, thereby mitigating the impact of noise
or irrelevant features that are prevalent in IoT data
streams.

3) SkipGateNet is compact, light and highly efficient hav-
ing a size of only 2596.87 KBs, a total of only 683,083
parameters and a fast inference time of only 8 millisec-
onds. This makes SkipGateNet an efficient solution
for botnet attack detection in resource-constrained IoT
networks.

4) Four deep learning architectures have been imple-
mented, trained and tested on the same dataset to
compare their accuracies and inference times with the
proposed SkipGateNet model. Experimented models
include two sequential CNN architectures with dense
layers, a simple CNN+LSTM architecture with dense
layers, and a CNN+LSTM architecture with stan-
dard skip connections. The proposed SkipGateNet
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outperformed all these architectures exhibiting an accu-
racy of 99.91% and 8.0 milliseconds inference time.
The rest of the paper is organized as follows. Section I
introduces the problem domain and the need for the develop-
ment of new and improved deep learning models for botnet
detection. Section II discusses the related work and the exist-
ing solutions available for botnet detection. In Section III, the
approach for detecting botnet attacks is outlined. Section IV is
devoted to the dataset used for the study, with a detailed expla-
nation of the data pre-processing and splitting techniques.
The main contribution of this paper is given in Section V,
where the proposed model with learnable skip connections
SkipGateNet is presented in detail. Section VI is dedicated
to the performance evaluation and results. In Section VII,
we present a comparative analysis of our proposed model
against deep learning models in the literature and self-
implemented architectures, as well as against traditional
machine learning models. Lastly, Section VIII concludes the
paper by summarizing the key findings and contributions of
the paper.

Il. RELATED WORK

Recently, various machine learning (ML) and deep learning
(DL) algorithms have been utilized for intrusion detection
applications. However, most of them did not focus on the
inference time and size of the utilized models. Speaking
of employing machine learning techniques in particular,
a handful of IDS can be found in which ML techniques
have been employed; for instance, the authors in [14] use
ML classification to secure IoT devices against attacks like
DoS. The authors utilize three datasets, i.e., UNSW-NB15,
NSL-KDD, and CIDDS-001, to benchmark the proposed
classifiers. Similarly, the authors in [15] have proposed semi-
distributed and distributed methods to address the limitations
of centralized IDS for resource-constrained devices, achiev-
ing comparable detection accuracy to superior centralized
IDS with inherent trade-offs between accuracy and building
time performance. Although these methods seem suitable
for resource-constrained devices, such as those used in fog
computing, their inference time has not been discussed. Fur-
thermore, a cross-layer-based IDS has been proposed for
detecting malicious activities in mobile ad-hoc networks
(MANETSs) and other IoT networks in [16]. The authors
claimed 98% and 90 % detection rates for high and low power
velocity scenarios, respectively. Moreover, the study in [17]
discusses shallow and deep machine learning-based IDS
in IoT environments. It evaluated their performance using
five benchmark datasets (NSL-KDD, IoTDevNet, DS20S,
IoTID20, and IoT Botnet dataset). The authors claim that
deep ML IDS works better than shallow ML IDS, especially
in the case of IoT attack detection. Besides, in [18], six ML
models are utilized to compare and evaluate the performance
of three different Feature Extractors (FE). The evaluation has
been carried out on three benchmark datasets (UNSW-NB15,
ToN-IoT, and CSE-CIC-IDS2018). The authors concluded
that the choice of datasets significantly alters the performance
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of the applied techniques, highlighting the need for a uni-
versal benchmark feature set. Although the paper analyzed
the performance of the feature extractors, it does not mention
their inference time, model size, or suitability for resource
constrained devices. In addition, an IDS that integrates the
MapReduce framework with machine learning (ML) tech-
niques is presented in [19]. Utilizing a dataset with multiple
network attacks, the model exhibited a detection accuracy of
95.7% validation accuracy implying that combining MapRe-
duce and ML is beneficial in intrusion detection. Regarding
machine learning-based IDS for Fog computing, the authors
in [20] propose a novel distributed IDS using fog computing
to detect DDoS attacks in blockchain-enabled IoT networks.
The model trains Random Forest (RF) and an optimized
gradient tree boosting system (XGBoost) on distributed fog
nodes, with RF outperforming XGBoost in certain scenar-
ios. While some proposed techniques are designed for IoT
networks and resource-constrained devices, most do not
explicitly discuss their inference time, model size, and suit-
ability in intrusion detection systems intended for fog nodes
or edge devices.

In addition to traditional machine learning techniques, var-
ious deep learning techniques have also been proposed for
intrusion detection systems. For example, in [21], the authors
introduce a DL artificial neural network (ANN) model for
detecting botnet attacks. The model is trained and evaluated
on the CTU-13 dataset and can efficiently identify botnets,
achieving 99.6% accuracy. Similarly, the authors in [22]
presented a hybrid IDS for the Internet of Medical Things
(IoMT). This system combines CNN and LSTM networks
and exhibits an average accuracy of 97.63%. Some hybrid
deep learning models have also been presented, such as
the authors in [23] an IDS utilizing a hybrid approach of
machine learning (ML) and deep learning (DL) techniques.
The model uses SMOTE for data balancing and XGBoost
for feature selection, aiming to handle large and imbalanced
datasets efficiently. The authors tested the model on two
datasets: KDDCUP’99 and CIC-MalMem-2022, achieving
exceptional accuracy of 99.99% and 100% respectively, with
no overfitting issues.

Regarding intrusion detection systems designed for bot-
nets, the authors in [24] leveraged latent representations of
network traffic features from CNNs to detect and classify
botnet attacks. Moreover, the work in [25] presented an ML
algorithm utilizing explainable Al It used the IRA-CIC-
DoHBrw-2020 dataset. The authors claimed a high precision
and F1 score of 99.91% and a recall of 99.92%. In addi-
tion, the authors in [26] studied smart home security attack
properties and suggested effective intrusion prevention mech-
anisms using various ML models and feature sets. Besides,
the authors in [27] have developed a malware detection
system, the FedMalDE, as named by the authors. Their frame-
work is based on federated learning and knowledge transfer
techniques. They employed a subgraph aggregated capsule
network (SACN) for capturing malicious behaviors. While
these papers showcase various deep learning techniques for
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intrusion detection systems, the majority do not explicitly
discuss the inference time and model size.

Moreover, researchers have also utilized various deep
learning techniques for the classification of various attacks,
e.g., in [28], the authors employed a CNN-LSTM algorithm
on the N-BaloT dataset, achieving an Fl-score, precision
and recall of 0.88, 93.04% and 91.91%, respectively, with
an overall accuracy of 90.88%. Similarly, in [29], a deep
belief network (DBN) algorithm was applied to the N-BaloT
dataset, yielding a higher Fl-score of 0.92. The precision
and recall were reported as 98.27% and 92.82%, respectively,
resulting in an accuracy of 95.60%. Another study [30] uti-
lized the CNN-LSTM algorithm on the N-BaloT dataset,
achieving an F1-score of 0.93. The precision and recall were
reported as 93.48% and 93.675%, respectively, resulting in
an overall accuracy of 94.30%. Moreover, the authors in [31]
explored the use of autoencoders on the N-BaloT dataset,
but specific performance metrics such as Fl-score, preci-
sion, and recall were not provided. However, the accuracy
was reported as 90.2%. Lastly, in [32], both autoencoders
and DNN algorithms were utilized on the N-BaloT dataset.
The Fl-score achieved was 0.80, with a precision of 99%
and a recall of 66%. The overall accuracy was reported
as 97.21%. These results demonstrate the performance of
different algorithms on the N-BaloT dataset, highlighting
their effectiveness in detecting and classifying IoT network
traffic. However, it is important to note that the design and
arrangement of deep learning layers, dataset preprocessing
techniques, and other factors like hyperparameters can influ-
ence the results obtained in each study. Therefore, further
investigation and comparative analysis are required to deter-
mine the most suitable algorithm for the N-BaloT dataset for
botnet detection.

The recent literature review reveals that while various deep
learning-based IDS have been proposed for detecting botnet
attacks in IoT networks, they present limitations in size,
inference time, and suitability for deployment in resource-
constrained devices, such as edge IoT devices that work as fog
nodes. This research gap highlights the need for lightweight
and efficient deep learning-based intrusion detection systems,
which can easily be deployed in real-time scenarios, espe-
cially for IoT devices in fog computing environments.

Ill. BOTNET ATTACK DETECTION APPROACH

The proposed SkipGateNet model is intended to be deployed
in anomaly-based IDS for resource constrained devices in
IOT and fog computing. A general overview of such type of
IDS is depicted in Fig. 1. Such an IDS comprises a series of
components, including a fog node, traffic capture, data filter-
ing, feature selection using a deep learning model, a warning
logger, and alert notification. A Fog Node is a decentral-
ized computing infrastructure that extends cloud computing
capabilities closer to the edge of the network. In the IDS
framework given in Fig. 1, the Fog Node acts as the primary
point for capturing, filtering, and analyzing network traffic,
thereby improving response time and reducing the load on the
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FIGURE 1. A general depiction of an IDS in a fog computing network.
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FIGURE 2. The utilized approach to detect botnet attacks using deep
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central server. The IDS uses network sensors or agents to col-
lect and store the raw data packets, which are then forwarded
to the Data Filtering component. This process helps gather
the necessary information to detect malicious activities and
identify potential security threats. By capturing, filtering, and
analyzing network traffic in real time, the system can identify
and respond to potential threats before they cause significant
damage. Such intrusion detection systems leverage tailored
deep learning models and preferably a distributed comput-
ing approach to provide a robust and efficient solution for
detecting network intrusions. In addition to processing data
efficiently, this approach provides real-time analysis while
reducing latency and bandwidth consumption.

Detecting botnet attacks is a critical challenge in maintain-
ing the security and integrity of modern IoT networks.

The deep learning approach utilized in this paper to iden-
tify botnet activities is given in Fig. 2. The process involves
key steps, such as dataset formulation, data pre-processing,
data splitting, building a tailored deep learning model, model
training, evaluation, and detection. The first step involves
collecting a comprehensive dataset containing normal and
botnet traffic data. N-BaloT dataset has been utilized for this
purpose. The next step is data pre-processing. It includes data
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balancing to ensure equal representation of normal and botnet
traffic, standardization to scale the input features to a similar
range, and one hot encoding to convert categorical features
into a binary format. These techniques help improve the
model’s learning capability and reduce the risk of overfitting.
After pre-processing, the dataset is split into training and
testing sets. In this paper, an 80-20 split is used, where the
larger portion is reserved for training and validation of the
model, and the smaller portion is used to evaluate the model’s
performance on unseen data.

The deep learning model is then trained on the prepared
training dataset. Keras Tuner has been utilized in this paper
for the optimization of hyper-parameters. During this phase,
the model learns to identify patterns and features that distin-
guish botnet traffic from normal traffic. Once the training is
complete, the model is evaluated on the test dataset using
various performance metrics, such as accuracy, precision,
recall, and F1-score. In addition, the reliability parameters,
i.e., Cohen’s Kappa coefficient and Mathew’s Correlation
Coefficient, have also been calculated to confirm the relia-
bility of the proposed model.

IV. DATASET

In this paper, the N-BaloT [33] dataset has been utilized. The
N-BaloT dataset is a comprehensive collection of network
traffic data specifically designed and collected for detecting
botnet attacks targeting IoT devices [5]. The dataset consists
of benign and malicious traffic data captured from various
types of IoT devices, including cameras, routers, and smart
home appliances. It comprises a total of 7,062,606 instances.
Each instance represents a network traffic snapshot, captured,
and processed to facilitate the identification of both benign
and malicious activities in IoT networks. The dataset includes
115 distinct features extracted from network traffic data.
These features are derived from several temporal windows,
capturing various aspects of the traffic, such as originating
IP, source MAC and IP address, communication channels,
and TCP/UDP sockets. The features are calculated over five-
time windows (100ms, 500ms, 1.5sec, 10sec, and 1min), and
they are designed to be computed quickly and incremen-
tally, supporting real-time anomaly detection. The attributes
extracted from the packet stream cover statistical measures
like weight, mean, standard deviation, radius, magnitude,
covariance, and Pearson correlation coefficient, among oth-
ers. These attributes are grouped under different headers like
stream aggregation (H, HH, HpHp, HH_jit) and timeframe
(with varying decay factors such as L5, L3, L1, etc.).

The N-BaloT dataset features authentic traffic data from
nine commercial IoT devices infected with Mirai and BASH-
LITE malware, incorporating ten different IoT attacks (five
types of attacks from each botnet). The Mirai attacks involved
automatic network scanning for vulnerable devices (Scan),
Ack flooding (Ack), Syn flooding (Syn), UDP flooding
(UDP), and a limited option UDP flooding optimized for
higher packets per second (UDPplain). On the other hand, the
BASHLITE attacks include network scanning for vulnerable
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TABLE 1. Details of the dataset.

Sr. Classes No. of Samples

1 mirai_udp 1,229,999

2 gafgyt udp 946,366

3 gafgyt tcp 859,850

4 mirai syn 733,299

5 mirai ack 643,821

6 benign 555,932

7 mirai_scan 537,979

8 mirai_udpplain 523,304

9 gafgyt combo 515,156

10 gafgyt_junk 261,789

11 gafgyt scan 255,111
Total Samples 7,062,606

devices (Scan), the transmission of spam data (Junk), UDP
flooding (UDP), TCP flooding (TCP), and a combination
of spam data transmission and establishing a connection to
a specified IP address and port (COMBO). The class-wise
detail of the complete dataset is given in Table 1.

A. DATASET PREPARATION AND PREPROCESSING
To effectively manage the extensive size of the dataset and to
utilize the complete dataset in both the training and testing
phases of the proposed model, the dataset is divided into
ten equal-sized subsets. There is no overlapping in these
subsets, i.e., no samples from a subset are repeated in any
other subset. Details of the data subsets for all classes are
given in Table 2. An Incremental learning strategy has been
employed for the subset-wise training of the model. This
approach allows the model to sequentially learn from the
subsets of data, integrating new information while retaining
previously acquired knowledge. One of the major challenges
in sequential incremental learning is catastrophic forgetting.
Catastrophic forgetting occurs in neural networks when they
learn new tasks sequentially; the training on the new data can
lead to the loss of previously learned information. To resolve
this, elastic weight consolidation (EWC) technique has been
utilized. EWC selectively slows down the learning on cer-
tain weights based on how important they are to previously
learned data. This technique helped the proposed model to be
trained on each subset one after the other, while minimizing
the forgetting of what it learned from the previous subsets.
In the context of the N-BaloT dataset utilized in this paper,
EWC is implemented by first training the model on the
initial subset and calculating a loss function that represents
the model’s performance on this subset. Following this, for
each subsequent subset, a new loss function is computed,
reflecting the model’s performance on the new data. The
crucial aspect of EWC is in its penalty term, which is added
to the loss function. This term identifies crucial parameters
(weights) in the neural network that are significant for the
performance on the previous subset. By adding a penalty for
significant changes to these weights, EWC effectively retains
the model’s performance on earlier subsets while allowing it
to learn from new data.
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TABLE 2. Subsets of classes for the training purposes.

Sr. Classes Subset 1 Subset2  Subset3  Subset4 Subset5 Subset6 Subset7 Subset8 Subset9  Subset 10 Total
1 mirai_udp 123000 123000 123000 123000 123000 123000 123000 123000 123000 122999 1,229,999
2 gafgyt_udp 94637 94637 94637 94637 94637 94637 94636 94636 94636 94636 946,366
3 gafgyt_tcp 85985 85985 85985 85985 85985 85985 85985 85985 85985 85985 859,850
4 mirai_syn 73330 73330 73330 73330 73330 73330 73330 73330 73330 73329 733,299
5 mirai_ack 64383 64382 64382 64382 64382 64382 64382 64382 64382 64382 643,821
6 benign 55594 55594 55593 55593 55593 55593 55593 55593 55593 55593 555,932
7 mirai_scan 53798 53798 53798 53798 53798 53798 53798 53798 53798 53797 537,979
8 mirai_udpplain 52331 52331 52331 52331 52330 52330 52330 52330 52330 52330 523,304
9 gafgyt combo 51516 51516 51516 51516 51516 51516 51515 51515 51515 51515 515,156
10 gafgyt_junk 26179 26179 26179 26179 26179 26179 26179 26179 26179 26178 261,789
11 gafgyt scan 25512 25511 25511 25511 25511 25511 25511 25511 25511 25511 255,111
Total Samples 7,062,606

B. DATA SPLITTING

To test the performance of the proposed model, each subset
was divided into three sets: training, validation, and testing.
An 80-20 split ratio was utilized for the training-testing set,
i.e., allocating 80% of the data for training and 20% for
testing. The training set was further divided using an 80-20
split ratio, with 80% of the data dedicated to training and 20%
to validation. This second split is beneficial for evaluating
the performance of the deep learning model during training
by measuring its accuracy on the validation set. This data
splitting ensured that the deep learning model was trained on
a distinct set of data and tested on a non-overlapping dataset,
i.e., this testing data was not included in the training and
validation set.

V. THE PROPOSED MODEL WITH LEARNABLE SKIP
CONNECTIONS

This paper presents SkipGateNet, a deep learning model
based on the combination and tailored arrangement of
1D- CNN and LSTM layers having ‘Learnable Skip Con-
nections’. The novelty of the proposed model lies in using
learnable skip connections having gating mechanisms to con-
trol the flow of information dynamically. The architecture of
the proposed model is given in Fig. 3. Before digging into the
proposed model’s architectural details, and it is essential to
first describe the details of the utilized layers, i.e., ID-CNN,
LSTM, and the Learnable Skip Connections. The following
subsections explain the utilization of layers in the proposed
model.

A. 1D-CNN
A 1D CNN is a convolutional neural network that handles
one-dimensional input data. It alternates between convolution
layers and pooling layers to extract features. These layers are
explained as follows.

Convolutional layers

In a 1D CNN layer, as depicted in Fig. 4, each convolu-
tional feature X,(n = 1,2, 3, ..,N) is linked with multiple
input features through a local weight matrix W, having
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dimensions P x Q. Here, P refers to the number of filters,
Q represents the length of the convolutional kernel (or filter).
Each filter (of length Q) convolves across the input data to
produce a feature map, and there are P number of such feature
maps due to P filters. A single unit of a convolutional feature
is mathematically expressed as follows [34]:

P 0
Xnk = A Z z ip,q+k—lwp,n,q + wo,n (D
p=1g=1
where
Xn.k represents the kth unit of the feature X,.
o represents the activation function.
ip,q represents the kth unit of the input feature /.
Wp,n,q T€Presents the unit g of the weight matrix W, ,,.
Similarly, the convolution operation or linking of the con-
volutional feature to the input features via the weight matrix
can be expressed mathematically as (2).

P
Xp=co | D LWy | (n=1,2,..N) 2
p=1
where

I, represents the pth input feature.
* represents the convolution operator.

1) POOLING LAYERS
The function of a pooling layer in a 1D CNN is to reduce the
dimensionality of the input features while preserving the most
important information. The pooling operation helps capture
the essential patterns in the data, which aids in identifying
potential intrusions. Also, it reduces computational com-
plexity, making the model more efficient and less prone to
overfitting.

Pooling functions normally include an average function
and a maximum function. For the maximum pooling function,
the pooling layer is defined as (3) [34].

M

Pn,k = max (xn,(kfl)xerm) 3)
m=1
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FIGURE 3. Architecture of the proposed model.

where

M represents the pooling size.

s represents the stride size.

And for the average pooling function, the pooling layer
output is defined as (4) [34].

M
Pnk = B Z (xn,(k—l)xs-i-m)

m=1

“

where
B represents the scale factor.
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LSTM Block

Attack category
output

1D- Convoutional layer,
padding as same and activation function as RelU
Input shape = 115, 1

LSTM layer
{Long short-term memory)

Flatten layer
It converts 2D array to 1D array

Learnable Addition layer
It adds up skipping Pooling layer
connection layer with Mn“ m‘g,
sequential convoutional layer

s represents the stride size.

It is believed that maximum pooling performance is better
than average pooling [35]. In this paper, the maximum pool-
ing (MaxPooling 1D) has been employed.

B. LSTM

For a standard RNN, if the input sequence i = (i1, i2, . . ., iN)
is known, (5) and (6) can be used to find the hidden
layer sequence I = (I1,0lp,...,1ly) and the output j =
(1,J2, - --,JN), respectively, by using an iterative method
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FIGURE 4. 1D CNN depicting an input layer, a convolution layer, and a
pooling layer.

’n-l Il+1 |
> ‘ I 2y : »
FIGURE 5. Structure of an LSTM cell.
fromn = 1to N [35].
In = AWiin + Wyl + up) (5)
Jn = leln + uj 6)
where
in(n=1,2,...,N)is aP dimensional vector.
l,(n=1,2,...,N)is aQ dimensional vector.
jn(m=1,2,...,N)is an R dimensional vector.

Wi, represents the input-hidden layer weight matrix.

u represents the bias vector.

A() represents the activation function.

LSTMs are believed to perform better than simple RNNSs.
To better grasp (7) to (11), a simple LSTM cell is depicted
in Fig. 5. The activation function A () is calculated as fol-
lows [36]:

en = 0 (Wiein + Wieln—1 + Whehy—1 + ue) 7
rn = 0 (Wirin + Wiply—y + Wiphn—1 + uy 3
hy = rphp—1 + en tanh (Wipiy + Wiply—y +up) - (9)
7r = o (Wigly + Wigly—1 + Wizhy—1 + u; (10)
vy = z; tanh (k) (11)

where

o represents the sigmoid function.

e, r, h, z represent the input gate, forgetting gate, output
gate, and the cell activation vector, respectively.
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FIGURE 6. A learnable skip connection with gating mechanism.

C. LEARNABLE SKIP CONNECTIONS

Traditional skip or residual connections were introduced as a
solution to the vanishing gradient problem in deep networks.
These connections allow information to bypass one or more
layers, and flow directly from one part of the network to
another. This strategy aids in backpropagation by creating an
unobstructed path for gradients to flow, enabling successful
training of deeper networks.

This research presents a novel method of enhancing these
skip connections with learnability. Unlike standard skip
connections, learnable skip connections incorporate gating
mechanisms to control the flow of information dynamically.
Essentially, these mechanisms learn to regulate what infor-
mation is useful to propagate forward and what can be
omitted. A learnable skip connection with gating mechanism
is depicted in Fig. 6.

In the proposed SkipGateNet model, each learnable skip
connection employs a 1D convolution layer followed by a
sigmoid activation function to create a gate. The 1D convolu-
tion layer acts as a learnable filter, learning the importance
of each feature in the data. This output is then passed
through a sigmoid function, which scales the values between
0 and 1, effectively determining the proportion of information
that should be forwarded through the skip connection. This
dynamic information flow is given in Fig. 7 and the gating
mechanism is mathematically expressed as;

gate = sigmoid(Conv1D(pool)) (12)
skip_con = Multiply()([skip_con, gate]) (13)

where ‘Conv1D (pool)’ denotes the 1D convolution operation
on the pooling layer output, ‘sigmoid’ is the sigmoid activa-
tion function, and ‘Multiply()’ represents the element-wise
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FIGURE 7. Information flow in learnable skip connection.

multiplication operation between the original skip connection
and the gate output.

The learnable skip connections with gating mechanisms
add a level of adaptability to our architecture. These con-
nections perform a kind of feature selection, determining
which features are important enough to be directly propa-
gated to deeper layers. As a result, the network becomes
better at focusing on the most relevant patterns in the
data, leading to improved model performance. In the con-
text of the proposed model SkipGateNet, the integration
of learnable skip connections provides a significant advan-
tage in dealing with botnet attack detection in IoT. IoT
data streams are often noisy and have many redundant
features. By using learnable skip connections, our model
can learn to focus on the most pertinent information while
ignoring irrelevant data, significantly improving detection
accuracy.

It is pertinent to mention here that the learnable skip
connections were originally introduced in [37]. The authors
used a Select, Attend, and Transfer (SAT) gate architec-
ture. The SAT Gate employs a sparsity-constrained selection
mechanism for channel selection, followed by an attention
mechanism for spatial focus. However, the learnable skip
connections used in this paper use a convolution-based gating
mechanism with sigmoid functions that dynamically adjusts
the flow of information based on the learned importance of
features.
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D. ARCHITECTURAL DETAILS OF THE PROPOSED MODEL
As illustrated in Fig. 3, the proposed SkipGateNet model
comprises three convolutional blocks, each containing mul-
tiple convolutional layers enhanced by learnable skip con-
nections with gating mechanisms. These skip connections
facilitate the seamless flow of information throughout the
network. After the third convolutional block, the output is
processed through two Long Short-Term Memory (LSTM)
layers. These LSTM layers are designed to address the van-
ishing gradient problem associated with traditional RNNs,
enabling the model to learn long-term dependencies effec-
tively. Subsequently, the output of the LSTM layers is
directed through a series of dense layers to generate the final
predictions for each input sample. The inclusion of learnable
skip connections with gating mechanisms allows the model
to dynamically adapt the information flow, improving the
model’s performance on complex tasks.

The complete overview of the model architecture is given
in Table 3. The deep learning model architecture begins with
an input tensor of dimensions 115 x 1. The first layer is a
1D convolutional layer with 64 filters, a kernel size of 3, and
‘same’ padding, which generates a 115 x 64 output tensor
with 256 parameters. Next, a max-pooling layer with a pool
size of 2 reduces the output shape to 57 x 64 without adding
any parameters. Subsequently, two 1D convolutional layers
with 128 filters, a kernel size of 3, and ‘same’ padding are
added.
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TABLE 3. The architecture of the proposed model.

Layers

Output Shape

input 3 (InputLayer)
convld 65 (ConvlD)
max_poolingld_15
(MaxPooling1D)
convld_66 (ConvlD)
convld 69 (ConvlD)
convld 67 (ConvlD)
multiply 15 (Multiply)
convld_68 (ConvlD)
add_15 (Add)
max_poolingld 16 (MaxPooling1 D
convld 70 (ConvlD)
convld_73 (ConvlD)
convld 71 (ConvlD)
multiply 16 (Multiply)
convld 72 (ConvlD)
add_16 (Add)
max_poolingld 17 (MaxPoolingl D
convld_74 (ConvlD)
convld_77 (ConvlD)
convld 75 (ConvlD)
multiply 17 (Multiply)
convld 76 (ConvlD)
add 17 (Add)

Istm 10 (LSTM)

[(None, 115, 1)]
(None, 115, 64)
(None, 57, 64)

(None, 57, 128)
(None, 57, 128)
(None, 57, 128)
(None, 57, 128)
(None, 57, 128)
(None, 57, 128)
(None, 28, 128)
(None, 28, 128)
(None, 28, 128)
(None, 28, 128)
(None, 28, 128)
(None, 28, 128)
(None, 28, 128)
(None, 14, 128)
(None, 14, 128)
(None, 14, 128)
(None, 14, 128)
(None, 14, 128)
(None, 14, 128)
(None, 14, 128)
(None, 14, 128)

Istm_11 (LSTM) (None, 32)
flatten 5 (Flatten) (None, 32)
dense 10 (Dense) (None, 64)
dense 11 (Dense) (None, 32)
dense 12 (Dense) (None, 11)

Parameters Connected to Layer
0 (]
256 ['input_3[0][0]]
0 ['convld_65[0][0]"]
8320 ['max_poolingld 15[0][0]']
8320 ['max_poolingld 15[0][0]']
24704 ['max_poolingld 15[0][0]']
0 ['convld 66[0][07],
49280 ['‘convld_67[0][0]']
0 ['multiply 15[0][0]',
0 ['add_15[0][0]"]
16512 ['max poolingld 16[0][0]']
16512 ['max_poolingld 16[0][0]']
49280 ['max_poolingld 16[0][0]']
0 ['convld_70[0][0],
49280 ['convld 71[0][0]"]
0 ['multiply _16[0][0],
0 ['add_16[0][0]"]
33024 ['max_poolingld 17[0][0]']
33024 ['max_poolingld 17[0][0]']
98560 ['max_poolingld 17[0][0]']
0 ['‘convld 74[0][0],
196864 ['convld 75[0][0]"]
0 ['multiply_17[0][0],
82176 ['add_17[0][0]"]
12416 ['Istm_10[0][0]']
0 ['lstm 11[0][0]]
2112 flatten_5[0][0]']

[
2080 ['dense 10[0][0]
363 ['dense_11[0][0]]

These convolutional layers, along with a Multiply layer
representing the gating mechanism, are connected to the pre-
vious layers. This combination results in a 57 x 128 output
tensor. An Add layer then merges the outputs of the gated
convolutional layers. The architecture repeats this pattern for
the next convolutional block. The second block starts with a
max-pooling layer, followed by two convolutional layers and
a gating mechanism, resulting in another 28 x 128 output
tensor. The third convolutional block follows a similar pat-
tern, with two convolutional layers and a gating mechanism
generating a 14 x 128 output tensor.

Subsequently, two LSTM layers with 64 units each are
added. The first LSTM layer, connected to the previous Add
layer, has 82,176 parameters and outputs a 14 x 64 tensor.
The second LSTM layer, connected to the first LSTM layer,
has 12,416 parameters and outputs a 32-dimensional vector.

The architecture concludes with three dense layers. The
first dense layer with 64 units connects to a Flatten layer,
which reshapes the input tensor into a 1D vector, and has
2,112 parameters. The second dense layer connects to the first
dense layer, has 32 units, and contributes 2,080 parameters.
The final dense layer comprises 11 units, corresponding to
the 11 classes, and has 363 parameters.

This model architecture is well-suited for classifying mul-
tiple classes and particularly excels in managing complex
data due to the added learnable skip connections with gat-
ing mechanisms. The blend of 1D convolutional layers,
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max-pooling layers, multiply layers for gating, LSTM layers,
and dense layers results in a powerful deep learning model
capable of producing accurate classifications.

E. SIZE AND PARAMETERS OF THE PROPOSED MODEL

A summary of the proposed deep learning model presenting
the total parameters and its size is given in Table 4. The model
consists of a total of 683,083 parameters, all of which are
trainable. The table displays the model size as 2596.87 KB,
which represents the memory required to store the model and
its associated parameters.

A smaller model size is generally preferred, as it enables
easier deployment on devices with limited memory capacity,
such as edge devices and fog nodes. This compactness allows
the model to be more efficient, making it suitable for the
real-time classification of IoT attacks across various IoT
platforms.

VI. PERFORMANCE EVALUATION AND RESULTS

A. PERFORMANCE PARAMETERS

To assess the performance of each model, the key perfor-
mance parameters, such as precision, recall, accuracy, and
F1-score, have been computed. These parameters were cal-
culated using (14) to (17). The quantities involved in the
calculation of the aforementioned performance parameters,
specifically True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN), are obtained from
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TABLE 4. Summary of the proposed model presenting its size and total parameters.

Total Parameters Trainable parameters

Non-Trainable parameters Model Size in KB

683,083 683,083

0 2596.87

TABLE 5. Aggregate training performance of the proposed model for all subsets.

Model Epochs Training Loss

Validation Loss Training Accuracy Validation

1 1.336

The Proposed Model :
0.031

100 0.096

1.381 39.32% 38.05%

97.01%
99.95%

99.38%
99.93%

0.1101
0.0915

confusion matrices. Precision, recall, and F1 score serve as
metrics for evaluating the performance of a classification
model, while accuracy is employed to gauge the overall cor-
rectness of predictions made by a model.

nTP

nTP + nFP
nTP

nFN + nTP
nTP + nTN

nFP + nTP + nTN + nFN
Precision x Recall

Precision = (14)

Recall = (15)

(16)

Accuracy =

F1 — score = 2x a7

Precision + Recall

B. RELIABILITY PARAMETERS

Cohen’s Kappa coefficient and Matthews Correlation Coef-
ficient are two metrics frequently used to evaluate the
performance of a classification model. This paper calculates
both to gauge the reliability of the proposed model.

1) COHEN'S KAPPA COEFFICIENT

The Cohen’s Kappa coefficient quantifies the agreement
between predicted and actual classifications while account-
ing for the possibility of chance agreement [38]. Ranging
from —1 to 1. A score of 1 indicates perfect agreement,
0 signifies chance agreement, and —1 demonstrates perfect
disagreement.

The Kappa coefficient or the Kappa statistic is a measure of
two accuracies, i.e., the observed accuracy and the expected
accuracy, which depend on the obtained confusion matri-
ces [38], [39]. The observed accuracy is defined as the ratio
of actual predicted labels from all the labels in a confusion
matrix and can be calculated by using (18). Whereas the
expected accuracy, which is dependent on the predicated and
actual labels, can be calculated using (19). After obtaining the
observed and expected accuracies, the kappa coefficient can
easily be calculated using (20).

TP; + TN;
TP; + TN; + FP; + FN;

Obs Acc = (18)
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FIGURE 8. Training curves on complete dataset (a) Training loss vs.
validation loss, and (b) Training accuracy vs. validation accuracy.

(>_; (Pred_labels x Actual_labels))

Exp Acc = (19)
TP; +TN;+ FP; + FN;
Obs Acc — Exp A
Kappa = s Acc xp Acc 20)
1 — Exp Acc
wherei € 0,1,2,3,...,9, 10, and itrepresents the 11 classes

used in this study.

2) MATTHEWS CORRELATION COEFFICIENT

The Matthews correlation coefficient (MCC) is a metric
measuring the quality of classification when the data is imbal-
anced [40]. Considering true and false positives as well as true
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and false negatives, the MCC ranges from —1 to 1. A score of
1 indicates perfect prediction, 0 signifies random prediction,
and —1 demonstrates completely wrong prediction. MCC is
calculated using (21).

TP;xTN; — FP,'XFN,'i

= /TP, +FP)(TP; + FN(IN; + FP)(IN; T FN))
@1

mMcc

C. RESULTS AND DISCUSSION

1) TRAINING AND VALIDATION RESULTS

The performance of the proposed model during training
was assessed using key metrics, including training accuracy,
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FIGURE 9. Confusion matrices of testing dataset for all 10 subsets: (a) Subset 1, (b) Subset 2, - - -, (i) Subset 9, and (j) Subset 10.

validation accuracy, training loss, and validation loss at var-
ious epochs. These metrics help in evaluating the overfitting
and underfitting of the trained models. Fig. 8 (a) and Fig. 8 (b)
display the training loss versus validation loss and the training
accuracy versus validation accuracy graphs of the proposed
model, respectively. The proposed model demonstrates a low
training loss 0.096% and an excellent training accuracy of
99.93%. The training performance of the proposed model is
also given in Table 5.

2) CLASS-WISE CLASSIFICATION REPORT
The performance of the proposed model on the test
dataset has also been measured using the key performance
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FIGURE 11. Aggregate confusion matrix for the complete dataset.

parameters, i.e., precision, recall, Fl-score, and accuracy.
A class-wise classification report that presents the proposed
model’s class-wise performance is given in Table 6. The
confusion matrices for the testing and validation dataset have
also been generated and are shown in Fig. 9 and Fig. 11.
Fig.9 shows the confusion matrices of the model’s perfor-
mance on each subset of the dataset, whereas Fig. 11 shows
an aggregate confusion matrix of the complete test dataset.
The confusion matrices help in the calculation of the afore-
mentioned performance parameters. The proposed model’s
exceptional performance is evident from the results given
in Table 6. In addition to the performance of each class,
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the macro-averages of precision, recall, and F1-score stand
at 99.00, signifying overall strong performance. The total
accuracy of the model is 99.91%, depicting that the model
has correctly classified 99.91% of instances in the dataset.
Moreover, the class-wise comparison of the classification is
also given in Fig. 10.

3) RELIABILITY PARAMETERS’ RESULTS

As described earlier, Cohen’s Kappa coefficient and
Matthews Correlation Coefficient have been calculated to
check the proposed models’ reliability. Table 7 presents
each class’s Kappa coefficient and Matthews Correlation
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TABLE 6. Classification report of each class on the test dataset.

TABLE 9. Inference time of all layers of the proposed model.

Aggregate  Aggregate  Aggregate Test

Class Precision Recall Fl-score Samples Layers Inference time in ms
benign 0.998469 0.999396 0.998932 110888 input_3 (InputLayer) 17.657
gafgyt_combo 0.998754  0.992856  0.995766 102458 convld_65 (ConviD) 1.321

max_poolingld 15 152
gafgyt junk 0986533 0.997651  0.991957 52780 (MaxPooling1 D) 5.258
gafgyt_scan 0.998955  0.999585  0.99927 50586 convld_66 (ConvlD) 16.954
convld 69 (ConvlD) 13.857
gafgyt_tcp 0.99967 0.999624  0.999647 172909 convld 67 (ConvID) 11258
gafgyt_udp 0.99976 0.999405  0.999582 188068 multiply 15 (Multiply) 1.112
mirai_ack 0.999953  0.999945  0.999949 128481 convld_68 (ConviD) 14.256
o add_15 (Add) 12.632
mirai_scan 0.999945  0.999714  0.999829 108405 max_poolingld 16 14256
mirai_syn 0.99998 0.999829  0.999905 146905 (MaxPoolinglD i
L convld 70 (ConvlD) 1.005
mirai_udp 0.999972  0.999923  0.999947 246493 convld 73 (ConvID) 18528
mirai_udpplain 0.999971  0.999865  0.999918 104096 convld_71 (ConvlD) 10.756
Macro Average 0.99 0.99 0.99 1412069 multiply_16 (Multiply) 9.865
convld 72 (ConvlD) 19.256
Accuracy 99.91% add_16 (Add) 2.056
max_poolingld 17
(MaxPooling1 D 2.025
TABLE 7. Results of reliability parameters. convld 74 (ConvlD) 2.349
convld 77 (ConvlD) 5.256
convld_75 (ConvlD) 5.658
multiply 17 (Multiply) 4.256
Class Kappa Mcc convld 76 (Conv1D) 2.589
- add 17 (Add) 2.056
benign 0.999831 0.99035 Istm 10 (LSTM) 5654
gafgyt combo 0.999388 0.99002 Istm_11 (LSTM) 2.799
gafgyt_junk 0.999388 0.98004 flatten_5 (Flatten) 5.665
dense 10 (Dense) 5.657
gafgyt scan 0.999948 0.99501 dense_11 (Dense) 6.656
gafgyt tcp 0.999912 0.99505 dense_12 (Dense) 4.346
gafeyt udp 0.999887 0.99005 Average inference time 7.999=8.0
mirai_ack 0.999991 0.99506
mirai_scan 0.999974 0.99026 . .
mirai_syn 0.99998 0.98965 classes are also 0.99, further validating the proposed model’s
mirai_udp 0.999981 0.99368 performance.
mirai_udpplain 0.999988 0.99007

TABLE 8. Details of hyperparameters.

Parameter Value Test Accuracy
le-2 99.41%
le-3 99.95%
0,
Learning Rate }:_‘5‘ gg;zoﬁ;
le-6 88.41%
le-7 34.08%
32 98.35%
Dense Layers Units 64 99.95%
128 98.75%
32 99.75%
LSTM layers units 64 99.95%
128 98.75%

Coefficient (MCC) values. For the Kappa coefficient, a score
of 1 indicates perfect agreement, O signifies chance agree-
ment, and —1 demonstrates perfect disagreement. It can be
seen from Table 7 that all values are quite close to 1 or 0.99,
which more precisely confirms the performance reliability
of the proposed model. Similarly, the MCC values for all
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4) HYPERPARAMETERS TUNING RESULTS

Hyper-parameters are parameters that are not learned by
the machine learning algorithm during training but are set
before training commences. These parameters govern the
algorithm’s behavior and can significantly influence the
model’s performance. In deep learning, these parameters
include the learning rate, batch size, number of epochs, opti-
mizer, activation functions, and number of layers, among
others. Table 8 provides the hyper-parameters tuned in this
study, which have been optimized using the Keras Tuner.
These parameters include the learning rate, the number of
units in the dense layers, and the number of units in the LSTM
layers. Various values for each hyper-parameter were tested,
and the corresponding test accuracy is reported in the table.
The proposed model’s overall test accuracy of 99.91% shows
the fine-tuning of these parameters.

5) INFERENCE TIME

Inference time refers to the duration required for a model
to process the input data and generate a prediction or
classification regarding the presence of malicious activ-
ity or an intrusion attempt. Lower inference times are
generally preferred, especially for edge devices and fog
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TABLE 10. Comparison of the proposed SkipGateNet with other DL models with same dataset.

Paper Dataset Algorithm Fl-score Precision Recall Accuracy
[28] N-Balot CNN-LSTM 0.88 93.04% 91.91% 90.88%
[29] N-BaloT DBN 0.92 98.27% 92.82% 95.60%
[30] N-BaloT CNN-LSTM 0.93 93.48% 93.675 94.30%
[31] N-BaloT Auto encoders - - - 90.2%
[32] N-BaloT Auto encoders, DNN 0.80 99% 66% 97.21%
[41] N-BaloT Auto encoders 0.99 99% 99% -
The Proposed N-BaloT CNN-LSTM with learnable 0.99 99% 99% 99.91%
SkipGateNet skip connections

TABLE 11. Comparison of the proposed model with similar architectures.

TABLE 12. Comparison of the proposed model with ML models.

Models Test Infer- Size in Total
accuracy ence time KB Parame-
(ms) ters
Model A 92.19% 8.1 2645.65 1,437,515
Model B 95.34% 9.9 2684.97 1,733,195
Model C 96.53% 10.4 2697.12 1,661,803
Model D 99.15% 8.3 2618.07 739,915
The Proposed 99.91% 8.0 2596.87 683,083
SkipGateNet
 Convl ~ Convl
‘ Maxpool | l Maxpool ‘ -
L] °
Conv2  Conv2 g
: [Ccoma] | =
Conv1 | Conv3 Conv3 S
P v ¥ =
Maxpool ‘ Maxpool | ‘ Maxpool ‘ Maxpool
X =4
COPVZ | Convs  Convs 2
* g
CO?V-" | Convé ~ Convé 5
v =
Maxpool Maxpool ‘ Maxpool ‘ | @
) - ;__ r | ) Maxpool
Co:nvS | Conv8  Conv8
Convé Conv9 Conv9

Skip Connection

d

] ) +
DEI?ISE 'DENSE ~ LSTM
)

- S

| DEI?ISE | \DEI'\ISE | | L%TM |
DENSE ‘ DENSE ‘ ‘ DENSE ‘ DENSE
(@) (b) (© (d)

FIGURE 12. Architectures of implemented models on same dataset for
comparison purposes; (a) Model A: a sequential CNN with 5 convolution
layers, (b) Model B: a sequential CNN with 7 convolution layers, (c) Model
C: a CNN+LSTM architecture, and (d) Model D: a CNN+LSTM with simple
skipping connections.

computing environments, as they enable faster decision-
making and more effective intrusion prevention. Table 9
shows the inference time of all layers of the proposed model,
along with the average inference time of the model. The
overall average inference time of the proposed model is
only 8 ms, which makes it suitable for intrusion detec-
tion systems intended for edge devices and fog computing
environments.
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Models Test Accuracy Inference Time in ms

Logistic Regression 82.56% 11.8

Random forest 99.05% 10.7

SVM 82.45% 9.6

Naive Bayes 60. 48% 10.3

K Neighbors Classifier 98.98% 9.3

The Proposed 99.91% 8.0

SkipGateNet

VIl. COMPARITIVE ANALYSIS OF THE PROPOSED MODEL
A. COMPARISON WITH DL MODELS IN LITERATURE AND
SELF-IMPLEMENTED ARCHITECTURES

In addition to being lightweight, compact in size and fast, the
proposed SkipGateNet model was intended to detect botnet
attacks effectively. The performance of the SkipGateNet has
been compared with the five recent state-of-the-art works that
used deep learning (including CNN+LSTM) on the same
dataset (N-BaloT). It is evident from the results shown in
Table 10 that the proposed SkipGateNet outperformed all
models in terms of Fl-score, precision, recall and accuracy,
validating the efficient detection of botnet attacks.

In addition, four different types of deep learning architec-
tures also have been implemented, trained and tested on the
same dataset for comparison purposes. Experimented models
include:

o Model A: a sequential CNN having 5 convolution layers
and 3 dense layers.

Model B: a sequential CNN having 7 convolution layers
and 3 dense layers.

Model C: a CNN+LSTM having 7 convolution layers,
2 LSTM layers, and a dense layer.

Model D: a CNN+LSTM with simple skip connections,

7 convolution layers, 2 LSTM layers, and a dense layer.

The architectural details of the model are given in Fig. 12
and the comparison of these models with the proposed Skip-
GateNet model in terms of test accuracy, inference time, total
parameters, and size in KBs is given in Table 11. It can be
seen that the proposed SkipGateNet has highest accuracy of
99.91% in the fastest inference time of 8 milliseconds. The
simple sequential CNNs have less inference time but they
exhibit low accuracies and fail to extract features efficiently.
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TABLE 13. Results of the ablation study.

Exp. Components Accuracy Inference Model
No. Time (ms)  Size (KB)
1 1 Convolutional Block 95.38% 5.12 10,976.19
2 2 Convolutional Blocks 96.66% 6.89 5,365.12
3 3 Convolutional Block 98.21% 9.20 7,912.00
4 1 Convolutional Block +  98.25% 6.49 10,282.61
Simple Skip
Connections
5 2 Convolutional Blocks 98.69% 9.11 6,134.25
+ Simple Skip
Connections
6 3 Convolutional Blocks 99.72% 11.36 6,951.73
+ Simple Skip
Connections
7 3 Convolutional Blocks 99.70% 7.78 5,560.08
+ Learnable Skip
Connections
8 3 Convolutional Blocks  99.91% 7.99=8.0 2,596.87
+ Learnable Skip
Connections + LSTM
(The Proposed Model)

B. COMPARISON WITH MACHINE LEARNING MODELS
The proposed deep learning model has been intended to
detect botnet attacks in edge devices and fog computing
environments and is presented to be more accurate and faster
than the existing traditional machine learning techniques.
Therefore, several traditional machine learning models have
been implemented on the same dataset to compare its perfor-
mance and inference time. Five traditional machine learning
models have been implemented for the comparison with the
proposed model, i.e., Logistic Regression, Random Forest,
SVM, Naive Bayes, and K Neighbors Classifier. Models have
been compared on two metrics, test accuracy and inference
time. It can be seen from Table 12 that the proposed deep
learning model has the highest accuracy of 99.91% and has a
minimum inference time of just 8.0 ms.

VIIl. ABLATION STUDY

An ablation study involves systematically removing or alter-
ing certain components of the model to understand the impact
of each component on the model’s performance. We used
the same dataset and experimental setup as for the base-
line or proposed. Different components of the model were
removed and then added step-by-step or removed to compare
their performance. It can be seen in Table 13 that simple
sequential convolutional components exhibited low accura-
cies with large model sizes. Adding skip connections helped
in reducing the model size and improving the accuracy. While
adding the learnable skip connections, significantly improved
the accuracy of the model with the smallest size and fast
inference time. The ablation study validated the efficacy of
the proposed architecture to detect botnet attacks.

IX. CONCLUSION

This paper addressed the critical need for effective and effi-
cient Intrusion Detection Systems (IDS) to detect botnet
attacks, especially in IoT and Fog computing environments.
Such resource-constrained environments need small sizes and
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fast yet powerful decision-making models to detect mali-
cious intrusions in the network. For the challenges mentioned
above, a 1D-CNN and LSTM-based deep neural network
with learnable skip connections was proposed and presented
in this paper. This combination of convolutional and LSTM
layers enables the model to learn both temporal and spatial
features in the data, while the learnable skip connections are
capable of dynamically controlling the flow of information
across the network, enabling the model to focus on salient
features and ignore irrelevant ones, thus enhancing its detec-
tion capabilities. The proposed model was trained and tested
on actual IoT network traffic data (the N-BaloT dataset).
This dataset features authentic traffic data from nine com-
mercial 10T devices, including cameras, routers, and smart
home appliances infected with the Mirai and BASHLITE
malware, incorporating a total of 10 different IoT attacks.
With a compact size of 2596.87 KB, an inference time of
8.0 milliseconds, and a test accuracy of 99.91%, the proposed
model proved to be well-suited to be deployed in resource-
constrained environments. The proposed SkipGateNet model
outperformed all models in comparison in terms of accuracy
and inference time. Furthermore, the future research could
explore the integration of SkipGateNet with federated learn-
ing for distributed IoT environments, and the application of
transfer learning to enhance its adaptability to different IoT
domains and attack types.
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