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ABSTRACT Biofuels derived from feedstock offer a sustainable source for meeting energy needs. The
design of supply chains that deliver these fuels needs to consider quality variability with special attention to
shipping costs, because biofuel feedstocks are voluminous. Stochastic programming models that consider
all these considerations incur a heavy computational burden. The present work proposes a hybrid strategy
that leverages machine learning to reduce the computational complexity of stochastic programming models
via problem space reduction. First, numerous randomly generated reduced-space versions of the problem
are solved multiple times to generate a set of solution data based on the concept of bootstrapping. Next,
a supervised machine learning algorithm is implemented to predict a potentially beneficial mixed integer
linear program problem space from which a near-optimal solution can be obtained. Finally, the mixed
integer linear program selects the optimal solution from the reduced space generated by the machine
learning algorithm. Through extensive numerical experimentation, we determine how much the problem
space can be reduced, how many times the reduced space problem needs to be solved and the best performing
machine learning techniques for this application. Several supervised learning algorithms, including logistic
regression, decision tree, random forest, support vector machine, and k-nearest neighbors, are evaluated. The
numerical experiments demonstrate that our proposed solution procedure yields near-optimal outcomes with
a considerably reduced computational burden.

INDEX TERMS Machine learning, supply chain design, biofuels, stochastic programming.

I. INTRODUCTION

The design of cost-competitive biofuel supply chains (BSCs)
is riddled with considerations that result in robust but
computationally complex mathematical models [1]. The high
volume of biomass relative to the energy yield makes its
transportation strategy of paramount importance. As such,
the locations of biomass sources and conversion facilities are
often chosen to minimize these costs. In addition, it is often
advisable to include depots as preprocessing facilities where
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the biomass undergoes densification to facilitate shipping
to conversion facilities. Optimal depot location in relation
to the supplier is critical to overall cost competitiveness,
and there exist stochastic optimization models with such
objectives [2]. Biomass is also a crop, and thus, there is
inherent uncertainty in the yield based on factors such as
weather; BSC design models should consider this inherent
stochasticity [3]. In addition to yield, biomass also has
quality-related variability in relation to conversion to biofuel.
Namely, the moisture and ash content should be taken into
account in BSC design, as they directly impact conversion
costs and yields [4]. All of the above considerations often lead
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to computationally complex stochastic optimization models
that seek to optimize facility placement and biomass routing.
Based on these challenges, machine learning has gained
traction as a tool to reduce the computational burden of
complex optimization models [5], [6]. Goettsch et al. utilized
machine learning to reduce the number of potential depot
locations for biomass cofiring [7].

In this work, we propose a solution procedure that
leverages machine learning to solve a stochastic optimization
model for optimal BSC design. Inspired by statistical boot-
strapping, our proposed solution procedure first randomly
builds sets of problems where the space of stage-one
decisions, namely, potential biorefinery locations, is reduced.
Next, it combines solutions obtained from these reduced
space versions of the model into a dataset used for machine
learning classification. The classifier then selects the best
candidates for the stage-one decision variables at hand and
executes the model a final time to obtain the optimal solution.
The overall structure of the proposed solution procedure is
outlined below in Figure 1.

Our proposed solution procedure is applied to a deter-
ministic version of the BSC design model to assess to what
extent the problem space can be reduced when building the
dataset for classification, how many runs of the reduced
space problem are required to build a quality dataset for
classification, and what classification techniques are best
suited for this solution procedure. These results are then
applied to the stochastic version of the mathematical model.

Il. LITERATURE REVIEW

The design of biofuel supply chains is a vast and complex
field covering many different aspects [2], [3], [8], [9].
However, our literature review only explores prior works
that most closely influenced our model. Linear programming
models are often utilized in the modeling of biomass
supply chains. Panichelli and Gnansounou presented a model
that makes use of a geographic information system (GIS)
approach to determine the optimal location of biomass
suppliers in relation to torrefaction plants and gasification
facilities [ 10]. Inter-facility resource competition and variable
biomass pricing were the main model considerations. The
model’s objective function sought to minimize the marginal
costs related to the supply of torrefied wood to the gasification
plants to determine the plants’ locations. Dijkstra’s algorithm
was used to find the shortest route between forest sites
and torrefaction plants to determine the allocation of the
existing biomass supply. The method of this paper differs
from their approach in that we determine the optimal location
of biorefineries and depots rather than focusing on biomass
supply. Other implementations of linear programming in
relation to biomass supply chains sought to implement
the uncertainty in regard to transportation when designing
depots [11]. In Cundiff, Dias and Sherali [11], supply
uncertainty was explained by four growing season and harvest
month weather scenarios. The scenarios are then used in a
multistage Liner Program (LP) model to determine the cost

VOLUME 12, 2024

and optimal size of monthly inter-facility biomass shipments.
This concept of using weather to influence supply chain
uncertainty is of vital importance when dealing with cost
optimization as it pertains to biomass. The variable growing
conditions directly affected the characteristics of the supply
and should not be overlooked when seeking to formulate
optimization models for biomass supply chains. The complex
interactions between biomass logistics and supply chain
design and the desire to simultaneously optimize facility
locations and biomass supply flow has motivated many
authors to utilize mixed integer linear programming [12],
[13], [14], [15], [16]. Bowling and El-Halwagi [17] structured
their biomass supply chain as a network with nodes contain-
ing locations (suppliers, pre-treatment sites and conversion
facilities), and the arcs indicate transportation links between
them. Within the Mixed Integer Linear Programming (MILP),
binary variables were utilized to determine whether facilities
are constructed at a particular location, and continuous
decision variables are used to describe the biomass flow. The
model was optimized based on economic, environmental and
energy objectives and considered constraints that included
things such as capacities, demands and mass balances. Our
proposed model structure is quite similar to the aforemen-
tioned model, specifically with regard to network design.
Major logistics improvements within targeted strategic areas
within biomass supply chains have recently been proposed
and offer the potential to increase the economic feasibility
of consumer utilization of biofuels. Namely, the moisture
and ash content of biomass and their effect on supply
chain logistics. To incorporate these quantities into supply
chain decisions, researchers often use two-stage stochastic
programming models. Castillo et al. [18], made use of trust
region cuts and multi-cuts to solve a two-stage stochastic
model to determine the optimal or near-optimal location of
biorefineries and their associated conversion technologies
under the uncertainty that accompanies biomass moisture
content. Another innovation in the biomass supply chain
network has been the introduction of depots to pre-process
and condense biomass prior to transportation to biorefineries.
The key advantages of this approach are twofold. First,
the preprocessing of biomass offers improved physical and
chemical consistency that reduces the variability associated
with the conversion of raw biomass into biofuels. Second,
the densification and drying that occurs in depots and their
proximity to suppliers and mass transportation, i.e., railways,
has the potential to reduce total supply chain transportation
costs. Aboytes-Ojeda et al. [1] introduced a two-stage
stochastic model that used a hub and spoke network including
depots that pre-process biomass. In addition to moisture
variability, the model also considered the natural variability
in biomass ash content when determining the depot locations,
biorefinery locations, selection of conversion technologies,
and biomass required for bioethanol production. The impact
of moisture and ash variability on supply chain decisions
was demonstrated by performing a case study in Texas.
Numerous examples of using the L-shaped method, among
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FIGURE 1. Outline of the ML-driven problem space reduction solution procedure.

others, to solve large-scale optimization problems can be
found in the literature. For example, Marufuzzaman et al. [19]
introduced a two-stage stage stochastic model to design and
manage a biodiesel supply chain. The solution approach
was implemented to solve a case study in the state of
Mississippi utilizing a hybrid method between Lagrangian
relaxation and L-shaped. The present work is distinguished
from a design perspective due to utilizing the L-shaped
method for a byproduct (biochar, bioethanol and biodiesel)
biomass supply chain to explore more complex interactions.
In addition, our model also considers multiple biomass
types with unique conversion mass ratios. The conversion
technology for biomass in the present work is fast pyrolysis.
Fast pyrolysis takes raw biomass and converts it to bio-
oil, biochar and syngas. Supply chains incorporating this
conversion technology should use more than one of these
byproducts rather than focusing on just bio-oil. Casler and
Boe [20] demonstrated that pyrolysis was a more effective
means of conversion than co-firing for meeting the electricity
demands of Taiwan. Additionally, they used bio-oil to meet
electricity demands, and biochar was used as a soil additive
to increase crop yields in Taiwanese farms. In contrast, the
present work seeks to use biochar to meet coal plant demands
rather than as a soil additive. Additionally, the present model
is distinguished by proposing and testing a novel solution
procedure that leverages machine learning to find quality
solutions at reduced computational cost. Categorization of
the closely related previous works is summarized below in
Table 1.

The present work proposes a novel model in the field of
bioenergy supply chain network design. The contributions
of this work are threefold. From the modeling perspective,
we propose a two-stage stochastic programming model that
addresses the random nature of the biomass quality-related
properties, includes the investment and operational costs,
and analyzes the trade-off between bioethanol, biodiesel, and
biochar. From the algorithmic development point of view,
a novel algorithm is proposed that leverages machine learn-
ing to reduce computation time while preserving solution
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TABLE 1. Present model contributions.

Bowling, Castillo-Villar, Aboytes- This
Ojeda, Work

El- Eksioglu, Castillo-

Halwagi, Villar,

Ponce- Taherkhorsandi, Eksioglu,

Ortega

[17] [18] [1]
Hub and spoke network X X X X
Considers variability in X X X
moisture and ash content
Utilizes depots to reduce X X
transportation costs and
processing variability
Uses L-shape Method X X X
Considers multiple biomass X
byproducts
Considers multiple biomass X
types
Utilizes  machine  learning X
driven.

solution procedure

integrity. This solution procedure is aimed at reducing the
computational burden of complex two-stage optimization
models. From a pragmatic standpoint, we created a realistic
case study at the state level to test our solution procedure. Our
results show that our algorithm has the potential to generate
optimal solutions of high-resolution BSC design problems at
the national level.

Ill. MATHEMATICAL MODEL

The model is a two-stage stochastic hub-and-spoke problem,
where the first-stage decision variables consist of determining
which biorefineries and depots to open and the arcs that
connect them. The second-stage decision variables determine
how much of each type of biomass each supplier should
produce as well as the biomass routing through the BSC
from supplier to depot to refinery to cities and power plants.
The model aims to design a supply chain that converts
feedstock to a variety of biofuels via fast pyrolysis to meet
known demands. The model considers three types of biomass
(corn stover, switchgrass, and miscanthus) that then convert
to three fuels (bioethanol, biocoal, and biodiesel). There is
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Counties
Powerplants

FIGURE 2. Hub and spoke network.

stochasticity in the moisture and ash content of the biomass
modeled through scenarios. This variability affects supply as
well as conversion yields, densification costs and conversion
costs. In total, the model consists of 5711 stage-one decision
variables and 944,460 stage two decision variables. The
mathematical formulation is as follows.

Sets:

C: Set of counties (suppliers) for alli € C

D: Set of potential locations for depots for all j € D
BB: Set of potential locations for biorefineries, k € B
P: Set of power plants, p € P

F: Set of cities, f € F

T Set of arcs from C to D, (i,j) € T

R: Setof arcs from D to B, (j, k) € R

U: Set of arcs from Bto P, (k,p) e U

V: Set of arcs from Bto F, (k,f) € V

Z: Set of biomass types, z € Z

Q: Set of scenarios, 0 € Q

Decision Variables:

Xjjz(0):Volume of biomass of type z € Z along arc
(i,j) € 7 under scenario o €

Yjkz(0): Flow of pre-processed biomass of type z € Z
along arc (j, k) € R under scenario o € Q2

myp(0): Flow of biochar along arc (k,p) € U under
scenario o €

nir(0): Flow of bioethanol along arc (k, f) € V under
scenario o € 2

dir(0): Flow of biodiesel along arc (k,f) € V under
scenario o € 2

Ajc: An integer variable denoting the number of unit
trains connecting depot j € D to biorefinery k € B

Br: A binary variable that takes the value 1 if k € B
if the potential location is used as a biorefinery and
0 otherwise

W;: A binary variable that takes the value 1 if potential
location j € D is used as a depot and O otherwise

m1(0): Third party coal supply under scenario o € 2
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m2(0): Third party bioethanol supply under scenario
0e
m3(0): Third party biodiesel supply under scenario
0€

Parameters:

&;: Investment cost to open a depot at node j € D

¢;(0): Moisture level of biomass in County i € C under
scenario o € Q.

ok: Investment cost to open a biorefinery at location
k e B.

Yir: Fixed cost of loading/unloading a unit train along
arc (j, k) € R every week for a period of one year (52
weeks)

p(0): Probability of scenario 0 € Q

ciT: Unit cost charged per metric ton shipped along arc
iG,peT

c],?: Unit cost charged per metric ton shipped along arc
. k)eR

c%: Unit cost charged per metric ton shipped along arc
(k,pyel

c}c): Unit cost charged per liter shipped along recurrent
arc (k,k)e B

o1: Represents the penalty cost for demand shortage of
coal

as: Represents the penalty cost for demand shortage of
bioethanol

a3: Represents the penalty cost for demand shortage of
biodiesel

si(0): Available supply in county i € C for scenario
0e

gkr: Conversion factor for biomass/bio-oil supplied to
city f € F applying pyrolysis

Vjk: Maximum capacity of a unit train along arc
(. k)eR

uj: Represents the preprocessing capacity of depot
facility j € D

gk : Production capacity of biorefinery k € B.

dp: Total demand of biochar for power plant p € P

dy: Total demand of bioethanol for city f € F

sp.: Production yield of biochar for species z € Z

s7,: Production yield of bio-oil for species z € Z

sg.: Production yield of syngas for species z € Z

The stochastic model minimizes the total costs associated
with the BCS design, as shown in Eq. (1). These total costs
include investment costs to open depots, the operation of
biorefineries and their connecting arcs, transportation costs
and demand penalty terms.

Min :

DEWi+ D b+ D D VA

jeD keB jeD keB

+D 7 p0) | DD ek oijz0)

0€Q ieC jeD zeZ

+2 2 > om0+ > > clhmip(o)

j€DkeBzeZ keBpeP
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+ D> cl (g (0) + dig (0))
keBfeF

+ D ami(p, o)+ D (am(f, 0) + a3ms(f, 0))

peP feF
(H
Subject to :

D xip(0) < Si(o) VieC 0€Q, zeZ, (2)
jeD
> (I—ei(0)xi(0)=)  yjui(0) Vi€ D, z€ Z, 0€Q,
ieC keBB

3
> my0)+mi(p.o)=d, 0€Q. peP (4
keB
ngfnkf(o) +mff,0)=dr 0e€eQ, feF
keB

(5
> yi(0) <Ay VjeD, keB, oeg,
€2

(6)
> xijp <uW; VjeD, (7)
ieC zeZ
Z)’jkz(o) <qpr YkeB, ze€Z, 0€eQ,
jeD

3
Z myp(0) = z Zmzyjkz(o), Vk e B, o€ Q,
peP jeD zeZ

)
Z m(0) = Z Zs;:zyjkz(o), Vk e B, o€ Q,
feF jeD zeZ

(10)

Ajk <058k + W), VkeB, jeD, (11)
xj;>0 VieC, jeD, zeZ oeQ, (12

Viz(0) >0VjeD, keB, zeZ o€, (13)
mp(0) >0 VYkeB, peP, o0eQ, (14)
me(0) >0 VkeB, feF, o0eQ, (15)

mT1(0) >0 YoeQ; m)>0 Voe, (16)
W;e{0,1} VieD; Brel0,1} VkeB, (17)
Ay €{0,1} VjeD, kebB. (18)

Constraint 2 enforces supply capacity for counties. Con-
straint 3 ensures mass conservation between wet and dry
mass. Constraints 4 and 5 are concerned with demand
satisfaction. Constraints 6, 7 and 8 ensure that rail car, depot
and biorefinery capacities, respectively, are met. Constraints
9 and 10 enforce mass equality on the conversion of biomass
to bio-oil and biochar. Constraint 11 is a connectivity
constraint that avoids unrealistic connections. Constraints
12 to 15 are domain constraints ensuring non-negativity in
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physical quantities as well as enforcing binary status on first-
stage decision variables.

IV. MACHINE LEARNING PROBLEM FORMULATION

We use machine learning to reduce the problem space of the
potential biorefinery locations to reduce the computational
complexity of the large-scale MILP problem biofuel supply
chain network design without significantly sacrificing the
quality of the solution. The full list of potential locations
is derived from the Bioenergy Atlas site [21]. A suitability
analysis conducted on this list identified 167 potential
locations. Numerical testing and supply/demand analysis
have shown that approximately 10 can be expected to be
opened for a given run of the optimization model. Thus,
reduction of the potential locations is desirable not only to
reduce the number of binary variables in the optimization
model associated with the opening of biorefineries (Bi)
but also to reduce the depot connection binaries (Aj;) as
well as continuous biomass inflow (Yj;(0)) and outflow
(mip(0), nis (0), dis (0)) terms. Specifically, eliminating one
potential biorefinery from the problem space results in the
elimination of 34 stage 1 variables and 3300 stage 2 variables
from the problem space. Unfortunately, the criteria for the
elimination of potential biorefineries are complex for a few
reasons. Different connecting cities have differing demands,
and connecting depots have different biomass amounts, types
and quality, to name a few. As such, simple elimination,
such as choosing refineries that have the smallest average
distance to cities, power plants and depots, is not a sufficient
exclusion criterion. Machine learning thus represents a
promising tool to capture the complexity of how to select a
suitable biorefinery for an optimal solution, and the solution
procedure leverages various techniques to exclude refineries
from the problem space without heavily compromising
optimality in the final solution.

To leverage machine learning to reduce the number of
potential biorefineries in the optimization model, it is first
necessary to frame the problem in a way that is conducive
to generating optimal solutions. A dataset of features and
responses must be constructed such that the application of
machine learning will yield information on what makes a
refinery desirable based on model behavior. In the proposed
solution procedure, features are restricted to properties of
biorefineries that are present prior to any knowledge gained
from running the optimization model. Quantities such as
how much biomass a refinery processes and the biomass
flow in and out of the refinery are not suitable for features,
as the model would have to be run to determine them.
As such, since all potential refinery locations have identical
capacities and investment costs, the distances from each
potential refinery to connecting facilities are the most suitable
properties to select as features. Each potential refinery has
33 potential depot connections as well as 17 potential power
plant connections and 8 potential city connections for a total
of 58 distances. Distances from potential biorefineries to
other candidate biorefineries are not included as features in
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the present model. For responses, the optimization model
will have to be run, from which a binary response is
recorded to take the value 1 if the refinery was opened
and O otherwise. The proposed solution procedure will run
the optimization model on a restricted problem space of a
randomly selected subset of potential biorefinery locations to
generate responses. This process is repeated to yield a large
set of data generated over multiple runs of the optimization
model that will be suitable for a classification fit. The
proposed process has the following inputs: k the number of
restricted runs of the MILP model to be conducted, n the
number of stage-1 variables (potential biorefinery locations)
to be considered in each run, M the mathematical model,
81 the optimality gap for the reduced space MILP runs,
8> the optimality gap for the final solution MILP run, C
the classification algorithm selected, and X, r) the features
of the stage-1 variable to be reduced (distances). Within the
algorithm, D is the dataset used for the classification fit, x
is the fit classifier and S is the final reported solution to
the optimization problem. The data generation process of
the proposed machine learning framework, which is based
on solving a randomly generated reduced-space version of
the problem multiple times, has a close relationship with
statistical bootstrapping [22]. Therefore, the resulting dataset
enjoys the simplicity, effectiveness, and statistical properties
of bootstrapping samples.

Algorithm 1 Machine Learning-Powered MILP Problem
Space Reduction Solution Procedure
Input: k, n, M, 61, &2, C, X(z 1)
Initialize Dk f+1)-
fori=1,2,...,kdo
X(nf) < Randomly select n rows of X, r)
m <Reduce M to only consider x, r).
yn < Solve m with optimality gap &;.
forj=1,2,...,ndo
Dii—1ysntj < [xG,f)» Vjl-
end for
end for
x < FitC to D.
Y < Apply x to X.
r<1
fori=1,2,...,zdo
if Y; = 1 then
x;" <~ X,'
r<r+1
end if
end for
m* <—Reduce M to only consider x*.
S <« Solve m* with optimality gap §,.
Output: S

The process outlined above introduces key questions that
are discussed here. First, how many refineries (n) should be
selected for a randomly restricted run of the optimization
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model? There will be a trade-off in information gained
from each run of the optimization model and how long
each run will take, as a larger problem space per run
will result in longer run times. Second, how many times
should the optimization model be run (k) to build a dataset
that gives us confidence in the classifier’s predictions?
This question has the same consideration as the previous
question, with the caveat that more runs will also increase
the incidence of multiple responses for the same refinery that
could result in complications with the selected classification
algorithm. Third, what classification method(s) are best
suited for this problem type? This is an interesting question
due to the nature of how the responses are generated.
Each response is innately coupled with the ones that were
generated during the run of the optimization model from
which it was generated. In other words, each response
does not yield reliable information outright, which will be
a hurdle for the selected classifier to overcome. Fourth
and ultimately, is the proposed solution procedure suitable
for preserving optimality while reducing computational
time? A summary of the discussed research questions is
shown below.

o What are best practices for the number of potential
biorefineries included per run?

o What are best practices for the number of runs of
the optimization model required to build a reliable
classifier?

« What are the best classification methods and parameters
for this application?

« Is the proposed solution procedure suitable for preserv-
ing optimality while reducing computational time?

A. DESIGN OF EXPERIMENTS

The design of experiments (DOE) formulated to answer the
above research questions is as follows. To answer question
one, 20, 30, 40 and 50 randomly selected refineries per run
of the optimization model will be tested. This constitutes
keeping 12%, 18%, 24%, and 30% of the potential biorefinery
location space. Additionally, this selection will generate
training datasets with approximately 50% to 20% positive
responses. Since ten refineries are expected to be opened per
run, restricting the problem space to 10 would give little to
no useful information because most (or all) of the responses
would be open. The upper limit of 50 is assigned because any
further increase will make it so that the computational time
for the generation of the dataset to be used for classification
will encroach on that of solving the full problem space
optimization model. To determine best practices for question
two, datasets will be constructed consisting of 10, 20, 30,
40 and 50 runs of the optimization model. Preliminary
testing indicated that values below this range do not yield
acceptable classifier performance, while values above this
range offer little to no apparent benefit. For question 3, the
classification methods to be tested are logistic regression
(LR), random forest (RF), K nearest neighbor (KNN), support
vector machine (SVM), and decision tree (DT). Neural
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networks were also considered for the study, but their high
computational cost coupled with unremarkable performance
in this application led to their omission. The sections to follow
constitute a large DOE that seeks to determine best practices
for the number of refineries per run (n) and the number of
runs of the optimization model used to build the datasets
(k). In addition, analysis is performed on each of the
5 classification methods to determine best practices in regards
to sub-types and hyper-parameter tuning for each of the
combinations of n and k. To start determining the suitability
of and best practices for the proposed solution procedure,
it is necessary to generate a large collection of solutions to
the randomly reduced optimization model for each of the
proposed values of n. As a result, the stochastic version of
the model is computationally challenged to solve a sufficient
number of times to perform the proposed DOE. Thus, the
analysis is conducted on the deterministic (1 scenario) version
of the model solved to a 1% optimality gap. For each value of
n, n potential biorefinery locations were randomly selected,
and the optimization model was solved. This process is
repeated 90 times to yield a total of 90 solutions per value
of n for a total of 360 solutions. From these solution sets,
k solutions were randomly selected for each value of &
considered to build a dataset. To determine the repeatability of
the proposed solution procedure, this selection was repeated
10 times for each combination of n and k for a total of
200 datasets.

V. NUMERICAL EXPERIMENTATION

Computation was carried out on a computer with an Intel(R)
Core(TM) 19-7980XE CPU @ 2.60 GHz and 32 GB of
RAM. Additionally, IBM ILOG CPLEX 12.8.0 was used
to solve the deterministic version of the MILP with an
optimality gap of 1% when building the training datasets
and 0% when determining the final solutions. MATLAB’s
Statistics and Machine Learning Toolkit was used to perform
the ML fits. For KNN, cityblock distances were used, each
dataset was swept over a range of 5-20 nearest neighbors,
and the best performer in terms of prediction accuracy
was used. For RF, bagging was used with a resampling
percentage of 10%, which was determined by preliminary
testing. For SVM, polynomial and Gaussian kernels were
used based on performance in preliminary testing. Further
information on fit parameters and performance can be found
in Appendix . For comparison, the full MILP problem was
solved and had an objective function value of $4,944,406,330
and computational time of 18,905 seconds. The set of optimal
refineries was recorded and used to compute recall. In the
following, we analyze our proposed ML-powered solution
procedure. First, the computational time to generate the
training datasets is discussed, followed by performance in
terms of accuracy and recall for the various methods. The
section concludes with a comparison of the solution quality
and time of selected ML-derived solutions versus the full
solution.
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TABLE 2. Comparison of classifier performance.

10 Runs Per Sample | 20 Runs Per Sample | 30 Runs Per Sample | 40 Runs Per Sample | 50 Runs Per Sample

20 Refineries 3.74%
Per Run 83.70

LR: 83.68%

LR: 83.23%
KNN:83.52%
DT: 82.44
SVM:83.87%
RF:84.09%

LR: 83.54% LR: 8

LR: 82.42%
KNN: 85.62%

DT: 84.88%
SVM: 85.87%

RF:86.10%

LR: 82.89%
KNN: 84.44%
DT: 85.71%
SVM: 86.64%
RF:86.73%

LR: 82.17%
KNN: 86.10%

30 Refineries
Per Run

40 Refineries LR: 81.18%
Per Run KNN:86.13%
DT: 85.44%
SVM:86.30%
RF: 86.75%

LR: 82.76%
KNN: 87.09%
DT: 86.63%
SVM:87.58%
RF: 87.00%

LR: 83.72%
KNN: 86.82%
DT: 87.34%
SVM:88.15%
RF: 87.43%

LR: 83.64%
KNN: §7.50%
DT: 87.43%
SVM:88.10%
RF: 87.79%

50 Refineries LR: 84.78% LR: 85.19%
Per Run KNN: 86.21% KNN: 87.86%
DT: 86.96%
SVM: 87.01%
RF: 87.81%

LR: 85.91% LR: 85.75%
KNN: 88.43% KNN: 89.00%
DT: 89.17% DT:89.33%
VM 0% SVM:89.00%
RF: 89.34%

DT:88.62%
SVM:88.88%
RF: 88.60%

%
RF: 88.88%

RF:89.02%

A. COMPUTATIONAL TIME TO GENERATE DATASETS

The first step in the implementation of our proposed approach
is to generate training sets. This occurs through running the
MILP with a relaxed solution gap (%1) multiple times and
recording which biorefineries opened in each run. In total,
360 runs of the MILP model were performed, 90 for each
case of refineries per run. The runs are randomly selected
without replacement to build out datasets for each of the runs
per sample considered. Each combination of runs per sample
and refineries per run yields 10 distinct datasets which are
averaged; the average time to build these datasets is shown in
Figure 3. As expected, increasing the runs per sample linearly
increases computational time. Beyond the 20 refineries per
run case, we observe a considerable jump in computational
time when increasing the number of refineries per run. This
is logical because increasing the number of refineries per run
increases the computational complexity of each run of the
MILP.

B. CLASSIFIER PERFORMANCE

To assess classifier performance, the mean accuracy across
the 10 samples (for each combination of refineries per run
and runs per sample) is used. Accuracy is determined by
performing a classification fit on 80% of the data and
applying this fit to the remaining 20%. Table 2 details the
classifier performances. The blue text indicates the best
performer in that problem set. violet denotes the next best,
and red signifies the third best. The results indicate that the
RF, KNN, SVM and DT methods generally outperform LR
and that the four aforementioned methods perform similarly.
From an accuracy consideration, RF slightly beats the other
methods in most cases, having the highest accuracy in
11 of 20 cases and never failing to appear in the top 3.
We note that due to the nature of the way the data are
generated, near 100% accuracy should not be expected. Each
run of the MILP model randomly samples refineries with
replacement, so each dataset is likely to have multiple repeat
variables with differing responses. Figure 4 collects the best
performance along each combination of refineries per run
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FIGURE 3. Average computational time to generate data for classification. Figure.

and runs per sample to determine performance trends. We
observe accuracy increases for increasing both refineries per
run and runs per sample. Accuracy is more closely related
to refineries per run, as this increases the size of potential
biorefineries each run of the MILP can use during its com-
putations, thus reducing the instances of “weaker” refineries
being selected as optimal. Increasing the number of runs per
sample also shows a weak trend in accuracy improvement.
However, when considering deviation in accuracy between
samples, runs per sample reduces deviation up to 30 runs per
sample. From an accuracy perspective 30 runs per sample
with 40 biorefineries per run would be we recommendation.
An analysis of the classification results considering the full
set of potential biorefinery locations indicates that it would be
unwieldy to keep all the positive responses. Each ML method
loosely follows the trend:
10

BL = — 167 (19)
n

where n is the number of potential biorefineries considered
when building the training set and BL is the number of
biorefineries given a positive response. In short, the trend
shows that the percentage of positive responses per run of
the model used to generate the dataset for classification is
reflected in the percentage of positive responses yielded when
the classifier is applied to the full list of potential biorefinery
locations. As such, we propose to narrow responses by only
keeping a certain number of the top responses. Figure 5 shows
this recall, i.e, the fraction of the optimal potential biorefinery
locations are present, when narrowing responses to the top 10,
20 and 30.

Results indicate that once again, increasing the potential
biorefineries per run of the MILP model has a larger
impact performance when compared to increasing the
runs per sample. When keeping 30 of the high values
of refineries per run and runs per sample, RF shows
the best performance, but for smaller datasets and lower
numbers of responses, the KNN shows the best performance.
These two methods stand out because the features used
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for classification are physical distances, and the datasets
are generated by combining smaller runs of the model,
which is reminiscent of bagging methods. From these results
and the accuracy results, we recommend keeping the top
30 responses and considering 40 biorefineries per run for
a total of 30 runs. The recommended method is RF for
this problem in that region, but if smaller datasets are
desirable to further reduce computational time, then KNN is
recommended.

C. FINAL SOLUTIONS

To assess the overall performance of the proposed solution
procedure, KNN and RF solutions from the 40 refineries
per run and 30 runs per sample case are compared to the
full solution and to three heuristics that reduce the space of
potential biorefineries. The first heuristic involves generating
a score by summing the mean normalized distances from each
refinery location to depots, cities and power plants.

2 dik 2 di > dip

ng * maxj(djx)  ng xmaxy(dir)  np * max,(dip)
(20)

Iy =

where, dj, dir, and dy, denote the distances from potential
depot locations to potential biorefinery locations, potential
biorefineries to cities and potential biorefineries to power
plants, respectively. After each weighed score is obtained,
a user-defined cutoff point is used to reduce the space.
The second heuristic only considers the distances from
refineries to potential depot locations, and the third heuristic
considers the distances from each refinery to cities and
power plants. These approaches are formulated below in
Equations 18 and 19, respectively.

Zj djk

= ———. 21
k ng * max;(dj;) D
dy di
I = Zf 7 Zp P ) (22)
ng * maxy(dyr) — np * max,(dip)
33859



IEEE Access

K. Keith et al.: Machine Learning-Based Problem Space Reduction in Stochastic Programming Models

Mean Accuracy vs. Runs per Sample

0.85 f
-

=20 Refineries
=30 Refineries

40 Refineries
=50 Refineries

Accuracy

o
T

075 - -
10 20 30 40 50

Runs per Sample

STD of Accuracy vs. Runs per Sample

—20 Refineries
———30 Refineries

40 Refineries
002 —— 50 Refineries

0.015

001

STD of Accuracy

0.005 -

10 20 30 a0 50
Runs per Sample

FIGURE 4. Best classifier performance. Figure.
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FIGURE 5. Recall for ML methods with reference figure.

The cutoff point for each heuristic is 30, which matches the
cutoff point for each of the ML-driven solution procedures
tested in this section. Each of the 3 heuristics as well as
3 solutions obtained from both the RF and KNN solution
procedures are shown below in table 3. Note that the
computational times reported include the time to build
training sets and fit classifiers. The results indicate that

33860

the proposed solution procedure was successful in reducing
computation time by approximately 90% with only slight
increases in OBJ values. One of the KNN solutions managed
to match the optimal solution, but the average RF solution
was better across the set of experiments. Both the KNN
and RF solutions heavily outperformed the three heuristics
tested in regards to optimality. For the three heuristics, the

VOLUME 12, 2024



K. Keith et al.: Machine Learning-Based Problem Space Reduction in Stochastic Programming Models

IEEE Access

RF

Biorefinery to Cites and

County to Depot Depot to Biorefinery Power Plants

2,500,000
2,000,000
1,500,000
1,000,000

500,000

: ]

-500,000
-1,000,000
-1,500,000
-2,000,000

ERF1 MRF2 MRF3

FIGURE 6. Cost difference breakdown for KNN and RF solutions.

TABLE 3. Comparison of solutions.

Average Solution (USD) | Percent Increase | Computational Time (s) | Percent Reduction
KNN 1 4,944.872,631 0.0000% 1076 94.30%
KNN 2 4,945.315,690 0.0090% 2.263 88.03%
KNN 3 4,945,043,291 0.0035% 1,644 91.30%
RF 1 4,944.891,670 0.0004% 1,418 92.50%
RF 2 4,944.891,670 0.0004% 1,134 94.00%
RF 3 4,944,891,670 0.0004% 1,545 91.83%
Heuristic 1 4,960,163,615 0.3092% 1,078 94.30%
Heuristic 2 4,984,292,968 0.7972% 3,567 81.13%
Heuristic 3 4,958,548,296 0.2766% 3,010 84.08%
Full Solution 4,944,872,631 N/A 18,905 N/A

solutions indicate that filtering potential biorefineries based
on proximity to cities and power plants is more important
than depot proximity. This is logically consistent because
byproducts are shipped out from refineries via truck and incur
a heavier per unit distance cost as opposed to the biomass
that is shipped via railroad into each refinery. Further analysis
of the KNN and RF solutions revealed that the number of
biorefineries, depots and unit trains as well as the third party
costs are identical to those of the optimal solution. This result
indicates that the cost difference comes from shipping along
arcs U, V, R, and 7. These differing costs are presented in
figure 6 as a comparison to the costs present in the optimal
solution.

Interestingly, the ML-derived solutions show reduced costs
in depot to biorefinery shipping that are not offset by the
increase they experience in byproduct shipping costs. This
outcome is attributed to depot distances accounting for 33 of
the 58 features used in the classification fits. In conclusion,
the results indicate that the ML-driven solution procedure is
successful in reducing computational cost while preserving
optimality and that both outperform the proposed space-
reducing heuristics.

VI. APPLICATION TO STOCHASTIC MODEL

The best practices discovered in the previous section are
applied to the stochastic version of the BSC model here.
This model was solved 30 times considering 40 randomly
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[ | Biorefinery investment cost 2,039,647.97

u Unit train contracting cost 138,005.55

m  Shipping of byproducts to cities

and powerplants 35136.85

L} Demand shortage penalty 2,009,980.23

Total 5,004,101.36

FIGURE 7. Cost breakdown for stochastic solution.

selected potential biorefineries per run. The average run time
for each of these was 663 seconds for a total of 13,260
seconds to build the dataset for classification. Each run
of the model was solved using CPLEX’s built-in Bender’s
decomposition algorithm with an optimality gap of 5%.
From there, RF was selected as the classification algorithm,
and the set of potential biorefineries for the final run of
the BSC model was restricted to the top 30 responses.
Considering only these 30 potential biorefinery locations,
the model was run a final time with an optimality gap of
2.5%. The time required to complete this final run of the
BSC design model was 128,593 seconds. A breakdown of the
solution is shown in Figure 7. The investment and operational
costs of biorefineries are the largest contributors to overall
network costs. For the shipping arcs, we note that shipments
from depots to biorefineries represent the majority of the
costs, as the model opts to open depots near suppliers and
biorefineries near cities and power plants so that the raw
biomass and byproducts that are shipped via truck do not
have to travel as far. The bulk of the distance covered is from
depots to biorefineries where lower cost railway shipping is
utilized.

VIi. CONCLUSION
The development of robust optimization models for the
design of biomass supply chains that are cost competitive,
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FIGURE 9. KNN performance by number of neighbors.
10 Runs Per Sample | 20 Runs Per Sample | 30 Runs Per Sample | 40 Runs Per Sample | 50 Runs Per Sample
20 Refineries Per Run Gaussian G i Gaussian Gaussian Gaussian
30 Refineries Per Run Polynomial Polynomial Polynomial Gaussian Gaussian
40 Refineries Per Run Polynomial Polynomial Polynomial Polynomial Polynomial
50 Refineries Per Run Polynomial Polynomial Polynomial Polynomial Polynomial
TABLE 5. Best performing resampling percentage.
10 Runs Per Sample | 20 Runs Per Sample | 30 Runs Per Sample | 40 Runs Per Sample | 50 Runs Per Sample
20 Refineries Per Run 25% 25% 10% 10% 10%
30 Refineries Per Run 25% 25% 25% 25% 10%
40 Refineries Per Run 75% 25% 25% 25% 25%
50 Refineries Per Run 50% 50% 50% 50% 25%
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FIGURE 11. Logistic regression performance.

satisfy real-world demands and capture the inherent uncer-
tainty in biomass quality leads to heavy computational
burdens. Here, we proposed a novel machine learning driven
solution procedure to aid in solving stochastic optimization
models of this type via stage-one variable space reduction.
This solution procedure utilized multiple reduced space runs
of the BSC model to build a dataset suitable for classification
to derive a reduced space that contains potential biorefinery
locations likely to be selected as optimal. Our strategy
raised four key questions in modeling this problem: how
much can the space be reduced when building the dataset,
how many runs are required to build a reliable dataset,
what classification techniques are most suitable, and is the
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Refineries per Run

proposed approach effective in meeting its goals? Our clas-
sification accuracy results indicated that for a consideration
of 167 total refineries, selecting 40 refineries per run (which
is approximately 25% of the total set) when building the
datasets was optimal in terms managing prediction accuracy
and computational time. The consideration of fewer refineries
lead to reduced accuracy, while the consideration of more
refineries generated minimal accuracy gains. Contextualizing
40 refineries requires 4 times the number selected in a
given run of the model, meaning that the training data were
composed of 25% positive responses (elaborate). Thirty runs
per sample was deemed the best number of iterations based
on trends observed in the standard deviation of accuracy
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FIGURE 12. KNN performance.
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FIGURE 13. Decision tree performance.

between samples of the same size. Accuracy and recall
considerations demonstrated RF and KNN to be the best
of the classification techniques considered. RF achieved the
best performance when a higher number of responses were
kept for larger datasets. KNN performed well across all trials
but stood out for small datasets and situations where only a
small number of responses were kept. These outcomes are
attributed to the features for classification being physical
distances, which is well-suited to KNN-type algorithms.
Regarding RF, the solution procedure is reminiscent of
bagging methods, as randomly selected reduced space runs
of the optimization model are combined to build the training
datasets. The solution procedure, when applied to the deter-
ministic version of the model, resulted in an approximately
90% overall computation time reduction with only a small
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(approximately 0.0004%) increase in the objective value.
The solution procedure was then applied to obtain a near-
optimal solution of the stochastic version of the BSC model,
which otherwise would be computationally exhaustive given
the same level of computational resources. For future
works, we will consider better modeling of the correlation
among the refineries for building the machine learning
datasets.

APPENDIX. RELEVANT TUNING PARAMETERS
Tables 4 and 5, and Fig. 10.

APPENDIX. VISUALIZATION OF CLASSIFIER
PERFORMANCE
See Figs. 11-15.
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FIGURE 14. SVM performance.
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FIGURE 15. RF performance.
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