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ABSTRACT Sensor array geometry has a direct impact on the direction-of-arrival (DOA) estimation of
a seismic signal. In this paper, we design a planar array that aims to optimize the DOA estimation of
a narrowband signal in the sense of the minimum mean-squared-periodic-error (MSPE) obtained by the
maximum a-posteriori (MAP) estimator of the DOA. We investigate the MSPE of the MAP estimator as a
main design criterion and compare it with the criteria: 1) the cyclic Bayesian Cramér-Rao bound (CBCRB);
and 2) the expected log-likelihood (ELL). The theoretical properties of these criteria are discussed.
We show that minimizing the CBCRB is equivalent to maximizing the expected Fisher information matrix.
Additionally, maximizing the ELL under a uniform prior is equivalent to minimizing the Kullback-Leibler
divergence between the posterior PDF and its estimation. The criteria are compared across three different
array geometries, specifically: small arrays, uniform circular arrays (UCAs), and concentric circular arrays
(CCAs). Simulation results show that 1) direct MAP-MSPE optimization notably exceeds CBCRB- and
ELL-based designs, especially in small arrays; 2) UCAs have suboptimal performance compared to
non-circular arrays inmany scenarios; 3) under theMAP-MSPE criterion, CCAsmatch unconstrained design
performance with lower computational complexity, making them preferable for smaller arrays; 4) for CCAs
and larger UCAs, CBCRB and MAP-MSPE designs yield similar results, while the ELL design excels in
the case of small UCAs. Our results highlight the need for selecting suitable array geometries and design
criteria in accordance with the scenario and array size in order to achieve the best DOA estimation results.

INDEX TERMS Array design, cyclic Bayesian Cramér-Rao bound (CBCRB), direction-of-arrival (DOA),
expected log-likelihood (ELL), minimum mean-squared-periodic-error (MSPE), seismology, seismic array.

I. INTRODUCTION
The direction-of-arrival (DOA) estimation of signals imping-
ing on a sensor array is a well-studied problem in signal
processing with a variety of applications, such as communi-
cations, radar, and sonar (see, e.g. [1], [2], [3] and references
therein), and various solutions have been proposed [4], [5],
[6], [7]. In particular, the DOA estimation of a seismic
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signal can be used to determine the seismic source origin,
distinguish between different seismic phases, separate waves
from various seismic events, such as earthquakes and human-
made explosions, and improve the signal-to-noise ratio (SNR)
[8]. The work in [9] delves into specific methodologies
and technologies used in array processing for microseismic
monitoring. Its focus on advanced signal processing and
seismic array technologies contributes to better monitoring
and understanding of induced seismicity, thereby improving
operational safety and environmental management. DOA
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estimation performance is influenced by a number of factors,
such as the number of sensors and the antenna directivity.
In [10], the impact of antenna directivity and realistic antenna
behavior on DOA estimation accuracy was experimentally
evaluated. Additionally, improved target localization directly
enhances the precision of DOA estimation [11], [12]. The
works in [13] and [14] proposed iterative implementation
methods that markedly improved source localization accu-
racy in environments with multipath propagation, and in
areas with mixed interference, respectively. Time-difference-
of-arrival (TDOA) measurements are widely used to enhance
DOA estimation [15], [16]. Moreover, DOA estimation
performance strongly depends on the positions of the array
sensors. Therefore, careful array design is crucial, subject
to physical constraints such as field conditions that may
preclude optimum geometries and a limited number of
deployed sensors [17]. This paper focuses on optimizing
the sensor locations within a seismic planar array for DOA
estimation.

In the general array processing literature, the design
of arrays based on different criteria has been extensively
investigated. For the sparse linear array, different criteria have
been proposed in recent years, such as identifiability and
recoverability conditions [18]. The work in [19] deals with
the optimization of a sparse array in terms of its ability to
detect and identify a large number of sources. Optimal sensor
geometry for TDOA-based localization has been well-studied
in recent years [20], [21]. A large amount of work has
been done on designing array geometries by minimizing
different variations of the Cramér-Rao Bound (CRB) onDOA
estimation [22], [23], [24], [25], [26], [27], [28], [29], [30].
For example, in [31], the stochastic CRB and the asymptotic
mean-squared-error (MSE) of the MUSIC algorithm [32]
are used to optimize sensor locations in a linear array. The
expected CRB (ECRB) and the expected Fisher information
matrix (FIM) are suggested as design criteria in [26] and
[29]. In [22] and [25], necessary and sufficient conditions
on array element locations are found such that the array is
isotropic, in the sense that the CRB on the DOA of a single
source is uniform for all angles. The advantage of the CRB
as an array-design criterion is that it is independent of any
particular estimator and, under some conditions, describes
the asymptotic performance of the maximum likelihood
(ML) estimator [22]. In [33], an analytical method was
derived for finding the sparse sensor array that achieves a
minimum CRB for the case of one plane wave impinging.
In [34], an array geometry for non-circular signals, which
increases the aperture for non-circular signals and the number
of degrees of freedom for DOA estimation, is presented.
However, the CRB does not take into account large estimation
errors (outliers) [27], [35]. Outliers constitute a fundamental
issue in DOA estimation, and are the result of a large
relative height of local maxima in the ambiguity function, i.e.
the sidelobe level [36], [37]. Therefore, many CRB-derived
designs impose additional constraints to deal with outliers,

such as a constraint on the intersensor spacing [27], [28],
[29] or on the sidelobe level [24]. However, existing
CRB-based methods do not consider the periodic nature of
the DOA.

A different approach aims to lower the probability of
outliers and ambiguities [3]. Minimization of the probability
of gross errors leads to more accurate DOA estimates in
low SNR regions. In [38], a measure of similarity between
array response vectors is introduced, and a tight lower bound
on this similarity measure is suggested as an array-design
criterion, where the array with the highest bound has the
best ambiguity resolution. Minimization of the expected log-
likelihood (ELL) with respect to (w.r.t.) the sensor positions
is also described in [39], where the ELL serves as a design
criterion due to its relation to the local maxima of the
likelihood function and its ability to improve the DOA
estimation performance [36].
The seismic literature offers a variety of array-design

methods. Seismic arrays are usually designed subject to land
topography limitations and use traditional geometries such
as the linear, circular, concentric, cross-shaped, or L-shaped
geometries [8], [40]. Minimization of the spatial-spectrum
estimation error serves as a common design method [41].
Using this method results in a concentric circular geometry,
which is a popular seismic array design and is also widely
used in other applications [3], [8]. Other works in the
seismology literature determine the sensors’ positioning in a
way that minimizes the influence of ambient noise on array
performance, e.g. by constraining zero noise correlation [42]
or by maximizing the beamforming SNR gain w.r.t. the
sensors’ positions [43]. However, these design methods are
not specifically focused on improving the DOA estimation
performance. The Mount Meron seismic array in northern
Israel [44], shown in Fig. 1, is an example of a small
aperture array that has motivated this work. Its sensor
arrangement, intentionally scattered, is designed to minimize
noise correlation between the sensors.

In this paper, we aim to design a planar array that optimizes
DOA estimation in the sense of mean-squared-periodic-
error (MSPE), which is a natural periodic equivalent of the
MSE criterion for periodic estimation problems [45]. The
maximum a-posteriori (MAP) estimator is commonly used
for Bayesian estimation of the DOA, and thus, in practice,
we use the numerical MSPE of the MAP estimator as a
main design criterion. Since the MAP-MSPE design depends
on the specific choice of the estimator and can be only
numerically evaluated, it is compared to two other design
criteria. The first is a variation of the Bayesian CRB
(BCRB), the cyclic BCRB (CBCRB) [46], which considers
the periodic nature of the DOA.We show that minimizing the
CBCRB criterion is equivalent to maximizing the expected
FIM in [26]. We minimize the CBCRB while constraining
the outlier probability approximation given in [36], in order
to obtain good performance for both small and large error
regimes. The second criterion is a Bayesian variation of the
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ELL from [39], which aims to reduce outlier occurrence.1

We prove that under a uniform prior, maximizing the ELL
is equivalent to minimizing the Kullback-Leibler divergence
(KLD) between the posterior probability density function
(PDF) and its estimation. We compare the geometries
obtained by the MAP-MSPE, the constrained CBCRB, and
the Bayesian ELL, in three examples: 1) a small array
with 19 possible locations and 4 available sensors; 2) a
uniform circular array (UCA); and 3) a concentric circular
array (CCA). The simulations in Section IV are based
on the characteristics of the Mount Meron seismic array
illustrated in Fig. 1. Results show that theMAP-MSPE design
outperforms the CBCRB and ELL designs across all tests
performed. Additionally, we highlight the suboptimality of
UCAs compared to non-isotropic arrays, whereas CCAs are
preferable for larger arrays.

In the rest of this paper we denote vectors by boldface
lowercase letters and matrices by boldface uppercase letters.
The operators (·)T , (·)H , (·)−1, | · |, and Tr(·) denote the
transpose, Hermite, inverse, determinant, and trace operators,
respectively. The matrix IM is the identity matrix of orderM .
The operator ⌊·⌋ denotes the floor function. The mth element
of the vector a is denoted by am. In the following, Ex[·] and
Ex|θ [·|θ ], denote the expectation and conditional expectation
operators given the parameter θ , for any measurable function
A(·): Ex[A(x)] =

∫
�N
x
A(x)fx(x) dx and Ex|θ [A(x)|θ] =∫

�N
x
A(x)fx|θ (x|θ ) dx.

FIGURE 1. Geometry of the Mount Meron seismic array: the red triangles
denote the locations of the array sensors that are located near Mount
Meron.

II. PROBLEM FORMULATION
In this section, we present the measurements model in
Subsection II-A and discuss the MAP estimator and the
MSPE as a benchmark for DOA estimation performance of
this model in Subsection II-B.

A. MEASUREMENT MODEL
We consider a planar array composed of K sensors located
in the x, y plane. We assume a narrowband, far-field,

1Not to be confused with the expected likelihood approach in [47] and
[48]. In this work, we refer to the ELL as the expectation of the likelihood
function.

single-source that impinges on the array from the direction
given by the azimuth angle θ ∈ [−π, π), named DOA.
The measurements model can be described as follows
(see, e.g. [1]):

x(tn) = s(tn)a(Z , θ) + v(tn), n = 0, . . . ,N − 1, (1)

where s(tn) and v(tn) are the complex envelope of the signal
and of the additive noise, respectively, and x(tn) contains the
measurements from all sensors at time tn. The steering vector
of the kth sensor over the direction θ is defined as

[a(Z , θ)]k = exp
{
−j

2π
λ

(
zkx sin(θ ) + zky cos(θ )

)}
, (2)

k = 1, . . . ,K , where Z = [z1, . . . , zK ]T ∈ RK×2 is
the augmented matrix of the sensors’ positions, in which
zk = [zkx , zky]T is the kth sensor location. For the
sake of simplicity, we assume that the velocity is known,
and therefore the wavelength, λ, is also known. Likewise,
for the sake of simplicity, the noise is assumed to be
uncorrelated between seismometers in the array, even though
this assumption may not hold in practice [49], [50]. The
signal s(tn) and the noise v(tn) are assumed to be independent
identically distributed (i.i.d.), zero-mean, circular, complex,
Gaussian random processes with second-order moments
Es[s(tn)s∗(tn)] = σ 2

s and Ev[v(tn)vH (tn)] = σ 2
v I , where

σ 2
s and σ 2

v are the known signal and noise variances,
respectively. We assume stationary statistics of the noise and
signal during the observation time.

Since our goal is to obtain an array design that is suitable
for any DOA, we consider θ to be a random parameter.
In particular, since no prior knowledge is available about the
DOA, θ is assumed to be uniformly distributed over [−π, π).
In addition, according to the model in (1), it can be verified
that the conditional PDF of the observations, x, given the
DOA, θ , is

fx|θ (x|θ ) =
1

πKN |R(θ )|N

× exp

{
−

N−1∑
n=0

xH (tn)R−1(θ )x(tn)

}
, (3)

∀θ ∈ [−π, π), x(tn) ∈ �x , where�x is the observation space,

x
△
= [xT (t0), xT (t1), . . . , xT (tN−1)]T , and the covariance

matrix is given by

R(θ ) = σ 2
s a(Z , θ)aH (Z , θ) + σ 2

v I . (4)

The model presented in (1) is periodic w.r.t. the unknown
parameter θ , since the array response from (2) satisfies

a(Z , θ) = a(Z , θ + 2πm), ∀m ∈ Z. (5)

By substituting (4) into (3), we obtain that the a-posteriori
PDF fx|θ (x|θ ) is a periodic function w.r.t. θ . Thus, we can
properly define a Bayesian periodic parameter estimation
problem.

We consider the estimation of the random parameter θ ∈

[−π, π), based on a random observation vector x ∈ �x ,
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where �x is the observation space. Let fθ |x(·|x), fx|θ (·|θ ),
fθ (·), fx(·), and fx,θ (·, ·) denote the a-posteriori, conditional,
a-priori, observation, and joint PDFs, respectively, where
fθ |x(ϕ|x) = 0 and fθ (ϕ) = 0, ∀ϕ /∈ [−π, π). We assume a
periodic parameter estimation model where the observation
model is periodic w.r.t. the unknown parameters, according
to the following definition.
Definition 1: A Bayesian periodic parameter estimation

model is characterized by: 1) a 2π -periodic estimation cost
function; and 2) a conditional PDF (a-posteriori PDF),
fx|θ (x|ϕ), that is periodic w.r.t. ϕ with a period T = 2π ,
∀x ∈ �x .

B. MSPE OF THE MAP ESTIMATOR
Our goal in this paper is to compare different approaches for
choosing the sensor positions, Z , where positions are chosen
from a set of possible sensor positions, Z . The positions
are chosen in order to improve the performance of the
estimation of the DOA in the sense of the MSPE in practical
schemes. Thus, we consider here the MAP estimator, which
is commonly used for Bayesian estimation of the DOA owing
to its tractability and closed-form expression [51].

The MAP estimator is given by

θ̂MAP(x)
△
= argmax

α∈[−π,π)
fθ |x(α|x)

= argmax
α∈[−π,π)

log fx|θ (x|α), (6)

where fθ |x(α|x) is the conditional PDF of the DOA, θ , given
the observations, x. The last equality in (6) is obtained since
the prior is assumed to be uniform (i.e. is a constant ∀α ∈

[−π, π)), as considered in this paper (see Subsection II-A).
By substituting (3) and (4) in (6) and removing constant
terms, the MAP estimator in this case is given by [52]

θ̂MAP(x) = argmax
α∈[−π,π)

aH (Z , α)R̂ a(Z , α), (7)

where

R̂ =
1
N

N−1∑
n=0

x(tn)xH (tn) (8)

is the sample covariance matrix. Since θ is uniformly
distributed, the estimator in (7) is also the ML non-Bayesian
estimator.

In 2π periodic parameter estimation problems, as defined
inDefinition 1 and such as theDOAproblem considered here,
only modulo-2π-errors should be considered. As a result,
conventional performance criteria, such as theMSE criterion,
may lead to absurd results, especially if the unknown state is
close to the edges of the circular domain [45]. A commonly-
used criterion for periodic parameter estimation is the MSPE,
which is the natural periodic-equivalent of the MSE criterion
[45]. In this work, we use the MSPE criterion both for
performance analysis of the DOA estimation and as a design
criterion of the array geometry. TheMSPE is calculated as the

square of themodulo−2π estimation error. Themodulo−2π
operator is defined as2

mod2π [ε] = ε − 2π
⌊
0.5 +

ε

2π

⌋
, ∀ε ∈ R. (9)

Thus, for a given DOA estimator, θ̂ : �N
x → [−π, π), the

MSPE is given by

MSPE(θ̂ )
△
= Ex,θ

[(
mod2π

[
θ̂ (x) − θ

])2]
. (10)

III. ARRAY DESIGN OPTIMIZATION CRITERIA
In this section, we discuss three design criteria for array
geometry. In Subsection III-A we discuss the MSPE of the
MAP estimator. The constrained CBCRB and the Bayesian
ELL criteria are presented in Subsections III-B and III-C,
respectively, as low-complexity alternatives to the MAP-
MSPE criterion. For each design criterion, we choose the
sensor positions, Z , where the positions are chosen from a
set of possible sensor positions, Z .

A. MSPE OF THE MAP ESTIMATOR
In this subsection, we present the MSPE of the MAP
estimator as the optimization criterion for array design. For
a given DOA estimator, θ̂ : �N

x → [−π, π), the sensor
positions that minimize the MSPE are defined as

Z∗
= arg min

Z∈Z
Ex,θ

[(
mod2π

[
θ̂ (x) − θ

] )2]

= arg min
Z∈Z

∫
x(t0)∈�x

. . .

∫
x(tN−1)∈�x

π∫
−π

(
mod2π

[
θ̂ (x) − θ

])2
×

1
2π

fx|θ (x|θ ) dx(t0) . . . dx(tN−1) dθ, (11)

where fx|θ is defined in (3) and we substituted the uniform
a-priori PDF of θ , fθ (θ ) =

1
2π , ∀θ ∈ [−π, π). It should

be noted that in (11), both the measurements, x, and the
covariance matrix, R(θ ), depend on the sensors’ locations, Z .

In order to calculate the optimal sensor positions according
to (11), a DOA estimator must be chosen. The natural choice
is to use the minimum MSPE (MMSPE) estimator [53],
which minimizes the MSPE in (10) among all the possible
estimators. However, in the general case this estimator is
analytically intractable [53]. Thus, we use theMAP estimator,
introduced in Subsection II-B, as the estimator for this array
design. By substituting (7) in (11), we obtain that the MSPE
of the MAP estimator is

ZMSPE
= arg min

Z∈Z
Ex,θ

[(
mod2π

[
θ̂MAP (x) − θ

])2]
. (12)

The rationale behind using the MAP-MSPE in (12)
as a design criterion is that the MAP estimator is used
in practice and not the MMSPE, and that the MSPE is

2It should be noted that even when we restrict the estimator to the region
[−π, π), the resulting estimation error can still take values in the region
[−2π, 2π ).
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an appropriate performance measure for DOA estimation.
However, calculating ZMSPE exhibits several difficulties,
and it is usually analytically intractable. The criteria in the
next subsections deal with this intractability. However, it is
important to note that, when applicable (e.g. for small arrays),
array geometries that result from the design based on the
MSPE of the MAP estimator as an optimization criterion
can significantly outperform the arrays derived from the
commonly used criteria, as we demonstrate in Section IV.

B. CYCLIC BAYESIAN CRAMÉR-RAO BOUND (CBCRB)
In this subsection, we present the sensor array design criterion
of the CBCRB. Methods based on the non-Bayesian CRB
and the expected FIM for the purpose of array design are
widely used in the literature [22], [23], [24], [25], [26], [30].
However, for the Bayesian case, the BCRB itself requires
restrictive regularity conditions and usually does not exist in
periodic settings. For example, it requires that the a-priori
PDF of the parameter approaches zero at the endpoints of
the parameter support [54]. The CBCRB, which is a cyclic
version of the BCRB, was proposed in [45]. The CBCRBwas
developed as a lower bound on the mean-cyclic-error (MCE)
and, in addition, serves as a lower bound on the MSPE,
as was shown in [45]. Therefore, it can be used to assess DOA
estimation performance and for system design.

The CBCRB for the general case is defined by

CBCRB = 2 − 2
(
1 +

1
J (p)

)−
1
2

, (13)

where

J (p) = Ex,θ

[(
∂

∂θ
log f (p)x,θ (x, θ)

)2
]

(14)

is the periodic FIM, in which f (p)x,θ is a 2π-periodic extension
of fx,θ (for more details see [45]). The CBCRB can be
computed even for cases where the BCRB does not exist, such
as for a uniform a-priori PDF of θ . In particular, it is shown
in Appendix A that for a uniform prior PDF over [−π, π) and
a periodic a-posteriori PDF, (14) can be written as

J (p) = Ex,θ

[
∂

∂θ
log

(
1
2π

fx|θ (x|θ )
)2

]
. (15)

In addition, in Appendix B it is shown that the periodic
FIM from (15) for the model in (1) is given by

J (p) =
N SNR2

1 + K SNR

(
2π
λ

)2 (
KTr(ZZT ) − 1TZZT 1

)
, (16)

where SNR
△
=

σ 2
s

σ 2
v
. By substituting (16) in (13) we obtain that

the CBCRB for the considered model is given by

CBCRB

= 2 − 2

×

(
1 +

1

N SNR2

1+K SNR

(
2π
λ

)2 (
KTr(ZZT ) − 1TZZT 1

))−
1
2

.

(17)

Therefore, a design criterion of the array geometry using the
CBCRB is given by

ZCBCRB
= arg min

Z∈Z
CBCRB(Z ). (18)

Nevertheless, Cramér-Rao type bounds are small-error
bounds in the sense that they are achievable (under some con-
ditions) for high SNRs, but are not tight for low values of SNR
and/or small numbers of sensors, mainly because they do not
take into account the effects of high sidelobes or ambiguity
in the directions of the array beampattern. Therefore, design
criteria that are based on these bounds should be combined
with constraints to avoid array ambiguities or a high sidelobe
level that can result in DOA estimation outliers. In particular,
we show in the simulations in Section IV that without any
constraint the array design obtained by (18) results in poor
performance in practice, due to outliers and a small number
of sensors. Thus, in order to avoid large estimation errors,
a constraint must be applied alongside the CBCRB criterion.
Inspired by previous works (see, e.g. [55] and references
therein), we use here the probability of an outlier to formulate
a constraint on the optimization problem in (18).

It has been shown in [36] that the outlier probability, i.e.
the probability that the DOA estimation corresponds with
sidelobe maxima, can be approximated by

P[outlier] ≈

Np∑
m=1

Pm(Z , θ), (19)

where the individual probabilities Pm(Z , θ) are the pairwise
error probabilities, i.e. the probabilities that the main lobe
is lower than sidelobe m. In particular, in our model, these
probabilities are given by (see Eq. (22) in [36])

Pm(Z , θ)=
1

(1 + qm(Z , θ))2N−1

N−1∑
l=0

(
2N − 1

l

)
qlm(Z , θ),

(20)

where

qm(Z , θ) =

√
1 +

4σ 2
v (Kσ 2

s +σ 2
v )

K2σ 4
s (1−r2(Z ,θ,θm))

+ 1√
1 +

4σ 2
v (Kσ 2

s +σ 2
v )

K2σ 4
s (1−r2(Z ,θ,θm))

− 1

, (21)

{θm}
Np
m=1 are the beampattern local maxima positions, and

r(Z , θ, θm) =
|aH (Z ,θ )a(Z ,θm)|

K .
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We use the outlier probability in (19) to define the
constraint on the CBCRB criterion. The constraint on the
outlier probability is given by

max
θ∈[−π,π)

1
Np

Np∑
m=1

Pm(Z , θ) ≤ ε0(SNR), (22)

where 0 ≤ ε0(SNR) ≤ 1 is a user-selected threshold, which
is calibrated according to the SNR. This is a constraint on
the outlier probability for the worst-case scenario w.r.t. θ .
Therefore, the constraint is determined according to the
largest outlier probability, which is dependent on the DOA
angle. To conclude, we define the constrained CBCRB design
criterion by

ZCon-CBCRB
= arg min

Z∈Z
CBCRB(Z )

s.t max
θ∈[−π,π)

1
Np

Np∑
m=1

Pm(Z , θ) ≤ ε0(SNR).

(23)

Discussion: It can be verified that in the considered
setting, the periodic FIM, J (p), in (15) is equal to the
expected non-Bayesian FIM in [26], which serves as an
array-design criterion. However, it should be noted that the
CBCRB serves as a lower bound on the MSPE, where the
expected non-Bayesian FIM does not bound the MSPE, and
is suggested as an ad-hoc method. The following proposition
describes the relation between minimizing the CBCRB and
the conventional, deterministic approach.
Proposition 1: Minimization of (13) w.r.t. Z is equivalent

to maximization of the expected non-Bayesian FIM for a
periodic a-posteriori PDF and a uniform prior, i.e. where
θ ∼ U [−π, π), where both terms exist.

Proof: The proof appears in Appendix A.
As a result of Proposition 1, the proposed approach of
minimizing the CBCRB gives a new interpretation to the
existing method of maximizing the expected FIM with a
uniform prior. However, if the prior is not uniform, or if the
a-posteriori PDF is not a periodic function, then these criteria
are different, and it is expected that the constrained CBCRB
will lead to a better design for Bayesian DOA estimation.

C. EXPECTED LOG-LIKELIHOOD (ELL)
In this subsection, we propose the Bayesian ELL criterion,
which is inspired by the non-Bayesian ELL design criterion
suggested in [39]. We define the logarithm of the joint
likelihood function as

g(Z , α) = log
(
fx,θ (x, α)

)
, ∀α ∈ [−π, π), x ∈ �. (24)

Then, the ELL is defined as

h(Z , α)
△
= Eθ

[
Ex|θ

[
g(Z , α)

∣∣θ]]
. (25)

It is important to distinguish between the DOA, θ , and α,
which is an arbitrary angle. In Appendix D, it is shown that

for the model in (1), h(Z , α) is given by

h(Z , α) =
SNR2 N

1 + K SNR

K∑
k,l=1

I0
(
− j

2π
λ

√
1z2xkl + 1z2ykl

)
× exp

{
j
2π
λ
(sin(α)1zxkl + cos(α)1zykl )

}
+ c,

(26)

where1zxkl = zkx−zlx and I0 is the modified Bessel function
of the first kind [56, p. 339, sec. 3.338, Eq. (4)] and c is a
constant that is independent of α, θ or Z .
The ELL design is obtained by solving a minimax problem

on the objective function h(Z , α) defined in (25). That is,
according to this design, the sensors’ positions are determined
by

ZELL
= arg min

Z∈Z
max

α∈[−π,π)
h(Z , α). (27)

The following proposition presents the relation between
the ELL and the KLD between the posterior PDF and its
estimation.
Proposition 2: Maximizing Ex|θ

[
g(Z , α)

∣∣θ]
w.r.t. α is

equivalent to minimizing the KLD DKL
(
fx|θ (x|θ )||fx|θ (x|α)

)
w.r.t. α.

Proof: The proof appears in Appendix E.
Proposition 2 implies that the angle that maximizes h(Z , α) is
the angle of arrival that describes best the true measurements’
PDF. By maximizing (25) w.r.t. α, we minimize the KLD
between the two PDFs fx|θ (x|θ ) and fx|θ (x|α), and thus,
increase their similarity. The motivation for minimizing
h(Z , α) w.r.t. Z is related to the array ambiguity and can be
explained as follows. We aim to reduce outlier occurrence
by minimizing h(Z , α) w.r.t. sensor positions. This may be
interpreted as reducing the similarity between the PDFs
w.r.t. the sensor positions. Although this is only an intuitive
explanation, simulation results in Section IV show that this
criterion leads to a design with a relatively low estimation
error in the sense of MSPE.

IV. SIMULATIONS
In this section, we present simulation results for different
arrays. In Subsections IV-A, IV-B, and IV-C, we consider a
small array, a UCA, and a CCA, respectively. It should be
noted that the proposed criteria can be applied to additional
array configurations, such as sparse linear arrays and uniform
linear arrays, by inserting appropriate array shape constraints
into the optimization problems.

We evaluate the performance of array geometries obtained
by the following methods.

• MAP-MSPE from Subsection III-A - the MAP-MSPE-
derived geometry from (12) is determined by using
5, 000 Monte Carlo simulations.

• Constrained CBCRB from Subsection III-B - we
calculated the left side of (22) for all possible array
designs. The value of ε0(SNR) from the constrained
CBCRB in (23) is set to be the 10th percentile of this
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set of values, i.e. 10 percent of all calculated values are
below the chosen threshold.

• Bayesian ELL from Subsection III-C.

We evaluate the MSPE performance of the MAP estimator
from (7) for each array design that is obtained by the
different criteria. Additionally, to further analyze the results,
we present the CBCRB of each array by substituting the
appropriate Z into (17).

In the following, the measurements were simulated
according to the model in Section II-A, with N = 30 time
samples. We set the wavelength to λ = 1, 000 [m] in order
to provide a reasonable ratio to the aperture size and as it
represents a value where the array performs best in terms of
both sensitivity andwave pattern accuracy (wave velocity and
frequency are set to 3000 [ msec ] and 3 [Hz]). For each tested
case, the performance of the MAP estimator for a given array
is evaluated by 5,000 Monte-Carlo simulations.

The sensor array settings in our simulations are based on
the characteristics of the Mount Meron seismic array [44],
presented in Fig. 1. This includes the wavelength, the number
of potential positions, and the grid size for sensor placements,
all chosen to align with the specifications of this array.
It should be noted that the proposed criteria are broadly
applicable to different settings with periodic estimation
problems as defined in Definition 1. However for different
signal types it is necessary to make specific adjustments, such
as aligning the steering vector in (2) to correspond to the
signal characteristics and modifying key parameters like the
wavelength.

A. DESIGN OF SMALL ARRAY
In this subsection, we consider a small array. Small seismic
arrays, especially tripartite arrays, are widely used for seismic
recordings for different goals [57]. We denote P as the
number of possible sensor positions. Over all possible array
geometry combinations and for each design method, the
optimal design was found by an exhaustive search. In the
following simulations, we use K = 4 sensors, P =

19 potential locations.3

We examine three different values of SNR in order
to evaluate the design’s robustness to noise. Each of the
criteria results in a group of solutions that represent optimal
geometries under this criterion. For each criterion, we present
a single, arbitrary representative optimal geometry in Fig.
2. First, we note that each criterion results in a different
optimal geometry for the different SNR values. It can be
seen that the ELL design criterion is independent of the SNR
value, as expected from its definition in (27). In addition,
we can conclude that the constrained CBCRBdesign criterion
converges at σ 2

s = 1. It can be seen that for the MAP-
MSPE and constrained CBCRB criteria there is a preference
for large distances between the sensors, which aids in the
estimation/identification of the angles. We can see that

3This setting is chosen in accordance with the Mount Meron seismic array
(http://www.fdsn.org/networks/detail/IS/) [44], which was also used in [49].

the MAP-MSPE and constrained CBCRB criteria result in
different optimal designs; thus, assuming the availability of
ample computational power, the MAP-MSPE design should
be preferred.

In Fig. 3, We compare the performance of the MAP
estimator of the DOA from (7) for the arrays that are
obtained using the three design criteria. The performance
of the array with locations ZCBCRB that are obtained by
minimizing directly the CBCRB in (18) without constraints
is also presented, in order to demonstrate the necessity of
the constraint in (23). The root MSPE (RMSPE) of the MAP
estimator and the root CBCRB of each design are presented
in Fig. 3 versus SNR, where the designs for the different
criteria are conducted under the assumption that SNR =

0dB. Similar results were obtained for other SNR values.
It can be seen that, as expected, the MAP-MSPE design,
ZMSPE, has the smallest MSPE at the designed SNR, i.e.
at SNR = 0 dB. In addition, when increasing the SNR, ZMSPE

still achieves the best performance. When decreasing the
SNR, the constrained CBCRB design, ZCon-CBCRB, achieves
a slightly lower MSPE, where these two criteria exhibit
the best performance compared to the other criteria. Thus,
we can conclude that the MAP-MSPE is relatively stable
under SNR mismatch. As a result, when optimizing for a
small array (i.e. when the computational expense of the
MAP-MSPE criterion is acceptable), theMAP-MSPE design,
ZMSPE, should be used. In these cases, the MAP-MSPE
criterion will lead to the best MSPE performance. For
large arrays, when the computation of MAP-MSPE becomes
intractable, the constrained CBCRB should be used; although
it is not optimal, it provides good performance with a
reasonable computation time. Finally, it can be seen that the
unconstrained design of ZCBCRB achieves poor results, and
the practical MSPE of the MAP estimator with the array
obtained by ZCBCRB does not attain its CBCRB bound, even
for high SNR values. These results imply that the constraint
has a great influence on the optimal geometry, by preferring
geometries that are not prone to outliers. It should also be
noted that the performance resulting from the MAP-MSPE
design, i.e. by ZMSPE, attains its associated CBCRB at the
designed SNR, i.e. at SNR = 0 dB. Furthermore, it also
attains the CBCRB of the ZCBCRB design, which is a lower
bound on the MSPE of all the different scenarios. In theory,
the CBCRB of the MAP-MSPE criterion is bounded by
the CBCRB of the unconstrained CBCRB criterion, yet for
our problem, they coincide. This further supports the MAP
estimator choice we made in Subsection III-A. In addition,
it can be seen in Fig. 2 that the ZELL design is independent
of the SNR value, while the actual MSPE performance of the
MAP estimator for this design depends on the SNR value.
Thus, at lower SNRs the associated MAP estimator achieves
high MSPE values, but as the SNR increases, its performance
attains the associated CBCRB. Furthermore, as the SNR
increases, outlier probability decreases and ZCon-CBCRB and
ZELL produce similar results. The results in Fig. 3 describe
the mean estimation performance over all the possible DOAs.
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FIGURE 2. An example of optimal geometries of the sensor array according to the three design criteria for different SNR values, where σ2
v = 1 in all

scenarios.

Looking at the accuracy of each DOA estimation is crucial for
understanding the strategies behind the different criteria. The
arrays are designed to have no preferable direction, which we
achieve by defining θ ∼ U[−π, π).

In Fig. 4, we present the resultant performance of the
different array designs for different DOA values. The number
of Monte-Carlo simulations was increased to 50 · 103 for

each DOA value and the rest of the simulation parameters
were unchanged. The performance is calculated for SNR =

0, 7dB. Firstly, it can be seen that the practical performance
of the three criteria is not uniform across the DOAs.
In addition, ZMSPE has the best performance for almost every
DOA, especially under a high SNR (SNR = 7dB), which
corresponds to the conclusion we made regarding Fig. 3
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FIGURE 3. RMSPE versus SNR, designed under SNR = 0dB. The black
vertical dashed line represents the SNR that was assumed during the
design process.

that the ZMSPE design results in the lowest MSPE for an
SNR higher than the designed value of SNR = 0dB. For
a low SNR (SNR = 0dB), the MSPE of ZMSPE is not
as smooth as the MSPE of ZCon-CBCRB or of ZELL, which
can be explained by the narrower mainlobe of the ZMSPE

beampattern. As the SNR increases, both the ZCon-CBCRB

and the ZELL designs exhibit improved performance, though
each excels at different DOA values. However, averaging
the performances of the two designs results in an equal
mean value of the MSPE, similar to the results in Fig. 3.
The ZCon-CBCRB behavior is dominated by the imposed
constraint threshold. Therefore, we ensure a low outlier
probability by the constraint threshold. These observations
lead to the conclusion that CBCRB and ELL may be poor
approximations of the MSPE when the number of sensors is
small.

B. UNIFORM CIRCULAR ARRAYS (UCAs)
The UCA is a popular design for DOA estimation since
it has uniform performance regardless of the angle of
arrival [58], [59]. Therefore, determining the optimal UCA
according to the suggested criteria and comparing it to non-
UCA configurations are of great interest. In addition, the
UCA leads to an optimization procedure with significantly
lower computational complexity since the optimization of
the different criteria involves only 1D searches on the
array radius. In Appendix F, the CBCRB under the UCA
assumption is derived, and it is shown that, in this case,
ZCBCRB corresponds to the design with the largest radius.
As explained in Subsection III-B, the CBCRB alone does not
acknowledge the array’s ambiguity, and therefor can result in
large errors and suboptimal performance without constraints.
Under the UCA assumption, the constraint on the CBCRB
decreases the optimal (maximal) radius value in order to
obtain an outlier probability below some threshold.

In this subsection, we first compare the different criteria
for a small UCA (K = 4) and for a larger UCA (K = 20).

FIGURE 4. RMPSE versus DOA for (a) SNR = 0dB and (b) SNR = 7dB.

In Figs. 5a and 5b we present the results for K = 4 and
K = 20, respectively, where the designs for the different
criteria are conducted under the assumption that SNR =

0dB. We consider that the number of optional radii is 50,
where the largest possible radius is r = 500[m] (as in
Fig. 2), and the rest of the parameters are unchanged. The
results for a small UCA are presented in Fig. 5a; it can be
seen that, in contrast to the non-UCA constrained arrays
in Subsection IV-A where the performance of ZELL was
suboptimal compared to ZMSPE and ZCon-CBCRB, here, ZELL

and ZMSPE exhibit almost the same performance and are
favorable over the performance of the ZCon-CBCRB design.
Once again, the MAP-MSPE criterion leads to the optimal
overall performance and attains the CBCRB of the MSPE
design and of the ELL design. In Fig. 5b it can be seen
that for a larger UCA, ZMSPE and ZCBCRB exhibit the same
performance, and have the lowest MSPE while attaining the
CBCRB across all SNR values. A large number of sensors
reduces the outlier probability; therefore, the added constraint
to the CBCRB in the ZCon-CBCRB design is not only no
longer crucial, but also leads to worse performance between
the different criteria. In this case, the CBCRB is an optimal
design criterion, which is also analytically tractable. The
outlier probability is reduced significantly to the point that
the performance of the estimator resembles its behavior
approaching the asymptotic region, i.e. where fine estimation
error occurs, and the estimator attains the lower bound. It can
be seen that for all the different criteria, the estimator attains
the CBCRB for most SNR values. Additionally, in the case of
K = 4 and K = 20, the CBCRB of the MAP-MSPE design
was the lowest bound.
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FIGURE 5. RMPSE versus SNR for (a) small (K = 4 sensors) and (b) large
(K = 20 sensors) with UCA constraint.

In the following, the optimal small UCA is compared to
arrays derived in Subsection IV-A to show that a UCA con-
straint may lead to suboptimal performance. We compare the
MAP-MSPE design under the UCA constraint, ZMSPE-UCA

(from Fig. 5a), to the MAP-MSPE, constrained CBCRB and
ELL designs from Fig. 3. The results are presented in Fig. 6
and Fig. 7. The optimal UCA is chosen from a larger pool
of optional positions than the arrays taken from Z in Fig. 2.
It can be observed that ZMSPE-UCA achieves suboptimal
performance compared to ZMSPE and ZCon-CBCRB. Therefore,
the UCAs are not part of the optimal geometries set in
Subsection IV-A. The suboptimality of the UCA introduced
here matches the results obtained in [27], [28], [29], and [60],
where it was shown that non-uniform and uniform V-shaped
arrays outperform the UCA in the MSE sense, and therefore
could outperform the UCA in the sense of MSPE. The non-
UCA arrays may have a lower MSPE than the UCA since
they exhibit a larger aperture size [60], which is shown in
Appendix F to lower the CBCRB. These results show that,
in some cases, UCAs are outperformed by a non-isotropic
array for almost all DOAs. For these cases, there is no
advantage in imposing the UCA constraint.

FIGURE 6. RMPSE versus SNR for various design criteria, with UCA
constraint.

FIGURE 7. RMPSE versus DOA for various design criteria, with UCA
constraint.

C. CONCENTRIC CIRCULAR ARRAYS (CCAs)
The concentric circular geometry is a popular seismic array
and is widely used in other applications [3], [8], and [41]
where this geometry is known to minimize the spatial-
spectrum-estimation-error. In this subsection, the concentric
circular geometry is examined. First, we derive the optimal
CCAs and compare the results for the different criteria.

The design is constrained to be a CCA, with one center
sensor and a three-sensor UCA. Then, the array is optimized
w.r.t. the UCA radius. The total number of sensors is K = 4,
and the designs for the different criteria are conducted for
SNR = 0dB. We consider that the number of optional radii
is 50, where the largest possible radius is r = 500[m]
(as in Fig. 2), and the rest of the parameters are set as
in Subsection IV-A. The results are presented in Fig. 8.
It can be seen that ZCBCRB has very similar performance
to that achieved by ZMSPE. Therefore, under the simulation
settings, the CCA constraint resolves the ambiguity that
may occur in some non-constrained geometries. In addition,
we can observe that this geometry has isotropic properties that
are described through the uniform performance of the four
criteria w.r.t. DOA.

In the following, the optimal CCA design is compared to
arrays derived in Subsection IV-A. We compare the MAP-
MSPE design under the CCA constraint, ZMSPE-CCA, from
Fig. 8, to the MAP-MSPE, constrained CBCRB and ELL
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FIGURE 8. RMPSE versus SNR for various design criteria, with CCA
constraint.

FIGURE 9. RMPSE versus SNR for various design criteria, with CCA
constraint.

designs from Fig. 3. The results are presented in Fig. 9 and
Fig. 10. It can be seen that the performance of ZMSPE-CCA

is almost indistinguishable from the performance of ZMSPE.
For K = 4 sensors, ZMSPE-CCA is determined only by the
radius of the outer circle. When increasing the number of
sensors, the optimization of a CCA depends on a larger set
of parameters, such as the number of outer circles and the
number of sensors in each circle. Therefore, the CCA may
be a nearly optimal choice for a small geometry, but does not
necessarily achieve the minimum MSPE for a large number
of sensors.

D. DISCUSSION
In this subsection, we discuss the results obtained in
Subsections IV-A-IV-C.

1) SMALL ARRAYS
First, when optimizing for a small array, whether it has a
specific shape (i.e. UCA or CCA) or a non-isotropic array,
the MAP-MSPE design has the smallest MSPE across all
DOAs, as can be seen in Figs. 3, 5a and 8. The performance

FIGURE 10. RMPSE versus DOA for various design criteria, with CCA
constraint.

TABLE 1. The run-time of the different criteria for a UCA with K = 4, 20,

and 40 sensors..

of the constrained CBCRB and the ELL criteria were
suboptimal, especially for an array with a small number of
sensors. Moreover, for the MAP-MSPE design, the estimator
consistently achieves the CBCRB, indicating its suitability
for DOA estimation. It should be noted that when optimizing
for a small array or a specifically structured array, such as
the UCA, the computational expense of the MAP-MSPE is
acceptable. In these cases, the MAP-MSPE criterion should
be used, since it will lead to the best MSPE performance.
However, when the optimization problem contains a range
of sensors, the computation of the MAP-MSPE becomes
intractable, and the CBCRB and ELL criteria should be
used for arrays with shape constraint (e.g. UCA or CCA),
and the constrained CBCRB criterion is advantageous for
non-isotropic arrays. The computational complexity of the
MAP-MSPE criterion is significantly higher than those of the
ELL and the constrained CBCRB criteria since it involves
the computation of the MAP estimator for any tested design.
To demonstrate the computational cost of using the MAP-
MSPE design, we present in Table 1 the run-times for each
criterion. The run-time is evaluated using MATLAB on a
4.2 GHz Intel Core i7 iMac with Radeon Pro 575 4 GB
and 32 GB DDR4.
It can be seen that in this case, the run-time of calculating
the MAP-MSPE design is substantially larger than for the
other criteria. Furthermore, the gap between the run-time of
the MAP-MSPE design and the other designs increases as the
number of sensors increases.

2) UCA, CCA, AND ARBITRARY DESIGN
We compare the performance of the different designs for
the UCA with a small (K = 4) and a large (K = 20)
number of sensors. As is shown in Figs. 5a and 5b, in this
case, the MAP-MSPE design outperforms the other two
criteria. Furthermore, we compare the performance of the
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different designs for the UCA and for an arraywithout a shape
constraint. We show (see Figs. 6 and 7) that the MAP-MSPE
design where we constrained the array to have a UCA shape,
achieved suboptimal performance compared to the MAP-
MSPE and CBCRB for an unconstrained array. The UCA
shaped MAP-MSPE was outperformed by a non-isotropic-
array for almost all DOAs, and there is no advantage in
imposing the UCA shape in terms of array design.

On the other hand, comparing the MAP-MSPE design
under the CCA design with the performance of the three
designs for the array with no shape constraint demonstrates
(see Figs. 9 and 10) that the MAP-MSPE design exhibits
similar performance under both cases and it outperforms
the non-isotropic ELL and CBCRB criteria in both cases.
The computational complexity of the MAP-MSPE design
is lower when considering the CCA shape since it involves
optimization over one dimension. Thus, the MAP-MSPE for
the CCAmay be a nearly optimal choice for a small geometry
and should be preferred.

3) CBCRB AND OUTLIERS
We also explore the importance of the outlier probability
constraint for the CBCRB criterion. We show that for
smaller arrays, the performance of this criterion significantly
improves when adding an outlier constraint, but for larger
arrays, where the outlier probability decreases substantially,
the constrained CBCRB performed worse than any other
design, and especially than the non-constrained CBCRB, as is
shown in Fig. 5b. In addition, for some shape constraints
(e.g. CCA) the outlier probability is reduced, even for smaller
arrays; thus the added constraint to the CBCRB design is no
longer crucial and worsens the performance of the design,
as is seen in Fig. 8. The MAP-MSPE design is more prone to
outlier occurrence than the two other design criteria, which
can be observed by the results in Fig. 5a. This may be
explained by the fact that both the constrained CBCRB and
ELL designs aim explicitly to reduce outliers, whereas the
MAP-MSPE does not.

4) ELL AND CONSTRAINED CBCRB
The ELL and constrainedCBCRBdesigns are low-complexity
alternatives to the MAP-MSPE. The ELL design is
independent of the SNR, whereas the constrained CBCRB
criterion converges at SNR = 0dB. For non-isotropic
small arrays, the constrained CBCRB design results in a
lower MSPE than the MAP-MSPE for low SNR values (see
Fig. 3). The ELL criterion achieves a notable decrease in
MSPE values for high SNR values, performing very similarly
to the constrained CBCRB (see Fig. 4b). For UCAs, the
ELL design almost achieves the MAP-MSPE design (see
Fig. 5a). However, for a larger UCA array, both the ELL and
constrained CBCRB were suboptimal. This can be explained
by the fact that these two criteria aim to reduce outliers, and
for larger arrays, the probability of outliers is significantly
lower. In Fig. 8, similar results were obtained for CCA
geometries.

V. SUMMARY
In this paper, we consider the problem of optimizing sensor
placement, i.e. array design, to improve the DOA estimation
of a seismic wave. We proposed the MAP-MSPE criterion
for optimal sensor design. Since the parameter estimation
has a periodic nature, the MSPE is the relevant objective
function in the optimization. In addition, the MSPE of
the MAP estimator is chosen as a performance measure,
since the MAP estimator is the commonly used method
in practice for DOA estimation, owing to its tractability
and closed-form expression. We also present the constrained
CBCRB and the ELL criteria as low-complexity alternatives
to the MAP-MSPE criterion, that are independent of a
specific estimation method. We analytically show that 1)
minimizing the CBCRB criterion is equivalent to maximizing
the expected FIM; and 2) under a uniform prior, maximizing
the ELL is equivalent to minimizing the KLD between the
posterior PDF and its estimation. To evaluate the performance
of the three sensor placement methods, we compare the
performance of the MAP estimator resulting from these
sensor array designs over small aperture arrays, UCAs, and
CCAs. For all these examples and for small and larger
arrays, the MAP-MSPE design resulted in overall lower
MSPE values. Moreover, under the MAP-MSPE design, the
estimator consistently achieves the CBCRB of this design.
Furthermore, the CBCRB of the MAP-MSPE is aligned to
the lowest bound in every simulation; this corroborates the
suitability of this design and the validity of choosing theMAP
estimator for this problem. Given the suboptimality of the
constrained CBCRB and ELL and current computing power,
designing with the MAP-MSPE criterion is an attractive
alternative, especially for small arrays that are widely used
for seismic recordings [57]. This is also important when
large processing power is available, so one can rely on
simulation rather than approximations. In addition, we show
that UCA and CCA, which are popular geometries due to
their isotropic property, are not necessarily optimal in the
sense of MSPE. Nevertheless, for a larger number of sensors,
concentric circular optimization is more complicated due to
the increasing number of inner circles, and CCA designs
should be preferred. These conclusions are not limited to
seismic arrays and are also valid for other sensor array
applications.

Future research could focus on applying the proposed
criteria to sparse linear array configurations. This includes
implementing tailoredmethods specifically designed for such
arrays, notably nested and coprime arrays. A comparative
analysis between these configurations would provide insights
and significantly enhance our overall understanding of the
distinct performance characteristics of each array type.

APPENDIX A
PERIODIC FIM FOR A UNIFORM PRIOR
In the first part of this appendix, we show that for a
uniform prior over [−π, π) and a periodic estimation problem
as defined in Definition 1, the periodic FIM in (14) can
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be computed by (15). First, we note that the 2π-periodic
extension of a uniform prior PDF w.r.t. θ can be written as

f (p)θ (θ ) =

∞∑
l=−∞

fθ (θ + 2π l) =
1
2π

, ∀θ ∈ R. (28)

In addition, given that the a-posteriori PDF is a periodic
function w.r.t. θ ∀x ∈ �x , we obtain that

f (p)x|θ (x|θ ) = fx|θ (x|θ ).

Thus, by using the Bayes rule and the periodic extension
in (28), we obtain that the periodic extension of f (p)x,θ (x, θ) for
a uniform prior (as in the model in Subsection II-A) is given
by

f (p)x,θ (x, θ) = f (p)x|θ (x|θ )f
(p)
θ (θ ) =

1
2π

fx|θ (x|θ ), ∀θ ∈ R. (29)

By substituting (29) into (14), one obtains

J (p) = Eθ

[
Ex|θ

[(
∂

∂θ
log

1
2π

fx|θ (x|θ )
)2 ∣∣∣θ]]

, (30)

which is equal to (15).
The second part of the appendix proves Proposition 1,

as follows. We assume that the a-posteriori PDF is a periodic
function w.r.t. θ , and that θ is uniformly distributed over
[−π, π). Thus, (30) holds, and the internal expectation
in (30), Ex|θ

[(
∂
∂θ

log fx|θ (x|θ )
)2

|θ
]
, is equal to the Fisher

information for the non-Bayesian estimation of a determin-
istic unknown parameter, θ , if all the regularity conditions
of the BCRB and the non-Bayesian Fisher information hold.
Therefore, in cases where J (p) is well defined, θ has a uniform
prior over [−π, π), and the a-posteriori PDF is a periodic
function w.r.t. θ , J (p) is equal to the expected non-Bayesian
Fisher information. Thus, in these cases, maximizing J (p),
is equivalent to maximizing the expected non-Bayesian FIM,
which proves Proposition 1.

APPENDIX B
PERIODIC FIM CALCULATION
In this appendix, we develop the periodic FIM for the model
in (1), and show that it is given by (16). By substituting (3) in
the internal expectation in (30), we obtain

Ex|θ

[(
∂

∂θ
log fx|θ (x|θ )

)2 ∣∣∣θ]

=
2N K SNR2

1 + K SNR

×

(
2π
λ

)2 K∑
k=1

(
zkx cos(θ ) − zky sin(θ)

)2
−

1
K

×

K∑
k,l=1

(
zkx cos(θ ) − zky sin(θ )

)(
zlx cos(θ ) − zly sin(θ)

)
,

(31)

where SNR =
σ 2
s

σ 2
v
. (31) was obtained using the trace operator

and the measurement covariance,

Ex|θ

[
x(tn)xH (tn)

∣∣θ]
= σ 2

v I + σ 2
s a(Z , θ)aH (Z , θ), (32)

and the property in [61, Eq. (160)] described by(
I + SNR a(Z , θ)aH (Z , θ)

)−1

= I −
SNR a(Z , θ)aH (Z , θ)

1 + K SNR
.

(33)

The result in (31) was obtained in various papers (see,
e.g. [62]) since Ex|θ

[(
∂
∂θ

log fx|θ (x|θ )
)2

|θ
]
is equal to the

Fisher information under the linear Gaussian model for the
estimation of a deterministic θ . Substituting (31) in (30) and
using the fact that θ has a uniform prior PDF in [−π, π)
results in

J (p) =
2N K SNR2

1 + K SNR

(
2π
λ

)2 [ K∑
k=1

(
z2kx + z2ky

)
−

1
K

K∑
k,l=1

(
zkxzlx + zkyzly

)]
. (34)

Finally, by substituting Z = [z1, . . . , zK ]T , where zk =

[zkx , zky]T , k = 1, . . . ,K , in (34) and using the properties
of the trace operator, it can be verified that the result in (34)
can be rewritten as (16).

APPENDIX C
ELL CRITERION FOR DETERMINISTIC DOA
In this appendix, we show that when assuming a deter-
ministic θ , the objective functions in [39, Eq. (25a)]
and in Section III-C coincide. In [39], the objective
function for the purpose of sensor placement is denoted
by |H (sin(θ), cos(θ),Z )|, where H (sin(θ ), cos(θ ),Z ) is the
Fourier transform of the spatial sampling pattern and is given
by

H (sin(θ), cos(θ),Z )

=

K∑
k=1

exp
{
−j

2π
λ
[sin(θ), cos(θ )]zk

}
.

(35)

We show that taking the inner expectation in (26) results
in the same objective function as in [39]. The conditional
distribution of the measurements model in Section II-A w.r.t.
θ is given by

fx|θ (x|θ = α)

=

N−1∏
n=0

1
πk |σ 2

v I + σ 2
s a(Z , α)aH (Z , α)|

× exp
{
−xH (tn)

(
σ 2
v I + σ 2

s a(Z , α)aH (Z , α)
)−1

x(tn)
}
.

(36)
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Using the property in [61, Eq. (24)] described by∣∣I + SNR − a(Z , θ)aH (Z , θ)
∣∣ = 1 + K SNR (37)

and (33), and by taking the logarithm of (36) and writing the
expressions which are not dependent on α and Z as a constant
c, we obtain the following expression

g(Z , α) =
SNR

σ 2
v + K σ 2

s
aH (Z , α)

×

N−1∑
n=0

x(tn)xH (tn)a(Z , α) + c, (38)

∀α ∈ [−π, π). From this point, we treat g(Z , α) as a
likelihood function, where α is a search parameter, and θ is
the true deterministic DOA. The conditional expectation of
g(Z , α) given θ is

Ex|θ

[
g(Z , α)

∣∣θ]
=

N SNR
σ 2
v + K σ 2

s

× aH (Z , α)
(

σ 2
v I + σ 2

s a(Z , θ)aH (Z , θ)
)
a(α,Z ). (39)

With some algebra, we obtain∣∣∣∣aH (Z , θ)a(Z , α)
∣∣∣∣2
2

=

K∑
k,l=1

exp
{
− j

2π
λ

[(
sin(θ )

− sin(α)
)
1zxkl +

(
cos(θ ) − cos(α)

)
1zykl

]}
=

∣∣∣H(
sin(θ ) − sin(α), cos(θ) − cos(α),Z

)∣∣∣2, (40)

where 1zxkl = zxk − zxl . Using (40), (39) is given by

Ex|θ

[
g(Z , α)

∣∣θ]
=

K SNR N
1 + K SNR

+
SNR2 N

1 + K SNR

×

K∑
k,l=1

exp
{

− j
2π
λ

[(
sin(θ ) − sin(α)

)
1zxkl

+
(
cos(θ ) − cos(α)

)
1zykl

]}
+ c

∼

∣∣∣H(
sin(θ ) − sin(α), cos(θ) − cos(α),Z

)∣∣∣2. (41)

Therefore, assuming that the DOA is a deterministic parame-
ter and the conditional distribution in (36), the ELL design
criterion presented in this paper coincides with the design
criterion in [39].

APPENDIX D
ELL DERIVATION FOR OUR MODEL
In Appendix C, we obtained Ex|θ

[
g(Z , α)|θ

]
in (41), where c

is a constant that encapsulates the expressions that are inde-
pendent of α and Z . We will perform Eθ

[
Ex|θ

[
g(Z , α)|θ

]]
,

and again denote by c the expressions that are not dependent
on θ :

Eθ

[∣∣∣∣aH (Z , α)a(Z , θ)
∣∣∣∣2
2

]
+ c

= c+
1
2π

×

∫ π

−π

K∑
k,l=1

exp
{

− j
2π
λ

[
(sin(θ) − sin(α))1zxkl

+ (cos(θ) − cos(α))1zykl
]}

dθ = c+
1
2π

×

K∑
k,l=1

exp
{
j
2π
λ

(
sin(α)1zxkl + cos(α)1zykl

)}
×

∫ π

−π

exp
{

− j
2π
λ

(
sin(θ )1zxkl + cos(θ )1zykl

)}
dθ

= c+

K∑
k,l=1

I0
(

− j
2π
λ

√
1z2xkl + 1z2ykl

)
× exp

{
− j

2π
λ

(
sin(α)1zxlk + cos(α)1zylk

)}
, (42)

where 1zxkl = zxk − zxl = −1zxlk and I0 is the modified
Bessel function of the first kind [56, p. 339, sec. 3.338,
Eq. (4)].

APPENDIX E
PROOF OF PROPOSITION 2
In this appendix, we prove Proposition 2, which relates the
ELL criterion and the KLD. The KLD [63] is given by

DKL

(
fx|θ (x|θ )||fx|θ (x|α)

)
= Ex|θ

[
log

(
fx|θ (x|θ )
fx|θ (x|α)

) ∣∣θ]
=

∫
�N
x

log
(
fx|θ (x|θ )
fx|θ (x|α)

)
fx|θ (x|θ ) dx, (43)

where θ is defined to be the true, unknown DOA, and α is the
estimated arrival angle. Using (33) and (37), and substituting
the conditional distribution in (36) into (43), the DKL for the
presented model in Subsection II-A is given by

DKL

(
fx|θ (x|θ )||fx|θ (x|α)

)
=

SNR
σ 2
v + K σ 2

s
Ex|θ

[ N−1∑
n=0

xH (tn)

×

(
a(Z , θ)aH (Z , θ) − a(Z , α)aH (Z , α)

)
x(tn)

∣∣θ]
. (44)

Using the trace operator and (32), (44) is given by

DKL(fx|θ (x|θ )||fx|θ (x|α))

=
SNR2 N

1 + K SNR

(
K 2

− |aH (Z , θ)a(Z , α)|2
)

, (45)

where (45) depends on Z and α through ||aH (Z , θ)a(Z , α)||22.
The dependency of ||aH (Z , θ)a(Z , α)||22 on Z and α is given

35840 VOLUME 12, 2024



N. Z. Katz et al.: Geometry Design for DOA Estimation in Seismic 2D-Arrays: Simulation Study

in (40), which is the same objective function defined as the
ELL criterion in [39, Eq. (25a)].

APPENDIX F
CBCRB CRITERION FOR UCA
Let’s assume a UCA design where the locations of the sensors
are given by

zk = r[cos(φk ), sin(φk )], (46)

whereφk describes the locations of the equally spaced sensors
around a circle of radius r ,

φk =
2π (k − 1)

K
, k = 1, . . . ,K . (47)

Given the monotonic relation between the CBCRB and
the periodic FIM as given in (13), the minimization in (23)
is equivalent to maximizing the periodic FIM in (16).
Since the maximization is w.r.t. Z , the non-negative term
N SNR2

1+K SNR

(
2π
λ

)2
can be omitted from the maximization

of (16). Thus, the minimization in (23) is equivalent to
maximizing the following w.r.t. Z :

J (p) = Tr
(
ZZT

)
−

1
K
1TZZT 1. (48)

For the UCA assumption, (48) can be written as

J (p) = Kr2 −
1
K
r2

K∑
k,l=1

cos(φk − φl). (49)

Since the locations are determined from a finite set of
locations Z , we will add a new constraint r ≤ R, where R
is the largest radius possible from the optimal locations in Z .
We will show that (48) is non-negative:

r2

K −
1
K

K∑
k,l=1

cos(φk − φl)


≥ r2

(
K −

K 2

K

)
= 0. (50)

Thus, (49) is maximized for a maximal r , and (23) is given
by

rCBCRB

= max

r : max
θ∈[−π,π)

1
Np

Np∑
m=1

Pm(r, θ) ≤ ε0(SNR)

 .

(51)
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