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ABSTRACT Transfer learning (TL) is an increasingly popular approach to training deep learning (DL)
models that leverages the knowledge gained by training a foundation model on diverse, large-scale datasets
for use on downstream tasks where less domain- or task-specific data is available. The literature is rich with
TL techniques and applications; however, the bulk of the research makes use of deterministic DL models
which are often uncalibrated and lack the ability to communicate a measure of epistemic (model) uncertainty
in prediction. Unlike their deterministic counterparts, Bayesian DL (BDL) models are often well-calibrated,
provide access to epistemic uncertainty for a prediction, and are capable of achieving competitive predictive
performance. In this study, we propose variational inference pre-trained audio neural networks (VI-PANNs).
VI-PANNs are a variational inference variant of the popular ResNet-54 architecture which are pre-trained
on AudioSet, a large-scale audio event detection dataset. We evaluate the quality of the resulting uncertainty
when transferring knowledge from VI-PANNs to other downstream acoustic classification tasks using the
ESC-50, UrbanSound8K, and DCASE2013 datasets. We demonstrate, for the first time, that it is possible to
transfer calibrated uncertainty information along with knowledge from upstream tasks to enhance a model’s
capability to perform downstream tasks.

INDEX TERMS Audio event detection, AudioSet, Bayesian deep learning, transfer learning, uncertainty
decomposition, uncertainty quantification.

I. INTRODUCTION
Transfer learning (TL) leverages knowledge gained from
large foundation models to enhance performance on down-
stream tasks. In the audio domain, the feasibility of TL
has been demonstrated through the successful application
of TL techniques in numerous applications ranging from
music genre classification to heart sound classification [1],
[2], [3], [4], [5], [6]. While deterministic embeddings pre-
vail, variational embeddings provide a promising Bayesian
alternative. By using variational inference (VI) to infer
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posterior distributions over latent features, we obtain vari-
ational embeddings which capture uncertainty and enable
new analyses of transferred representations. However, the
use of variational embeddings in TL remains relatively
unexplored despite their ability to capture uncertainty. Uncer-
tainty estimation is crucial for assessing model credibility
and identifying unreliable predictions [7], [8], [9], [10].
Specifically, the variance of variational embeddings provides
epistemic uncertainty estimates that indicate when models
lack knowledge [8], [9]. This benefits building reliable
artificial intelligence systems across audio domains.

In this study, we conduct a comprehensive analysis of
uncertainty-aware TL with variational audio embeddings.
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Bayesian versions of the popular ResNet architecture [11]
are first trained on the large-scale AudioSet dataset to extract
robust acoustic features along with uncertainty estimates.
Building off the work of [1], we call our approach variational
inference pre-trained audio neural networks (VI-PANNs).
VI-PANNs are then transferred to three audio classification
benchmark datasets - ESC-50 [12], UrbanSound8K [13], and
DCASE2013 [14]. Our goal is to rigorously evaluate the
quality and utility of the resulting uncertainty from variational
embeddings after transfer to sparse data scenarios.

While extensive work exists on uncertainty quantification
and decomposition for classification problems [15], [16],
[17], the focus of this work is on the multi-class case, where
each sample contains only a single label. Unfortunately, this
restriction hinders the application of existing techniques to
real-world datasets where multiple labels may be present
in each sample [7], [18], [19]. To address this limitation,
we describe a new uncertainty decomposition method for use
in multi-label classification and demonstrate its efficacy on
AudioSet.

This manuscript makes several contributions:
1) We modify the popular ResNet-54 architecture used

in [1] to create two distinct VI model variants, namely
MC dropout [20] and Flipout [21]. This modification
enhances the model by providing access to calibrated
epistemic (model) uncertainty information, which was
lacking in the original model. We pre-train these
VI-PANN models on the AudioSet dataset, and share
the resulting checkpoints for future research.1

2) We derive a method for decomposing uncertainty
information in the multi-label classification scenario.

3) We apply the multi-label uncertainty decomposition
technique to analyze the uncertainty of VI-PANNs on
the AudioSet validation set, providing insights into the
model’s performance in real-world scenarios.

4) We systematically evaluate Bayesian TL techniques
with a specific emphasis on the quality of uncertainty.
This evaluation is conducted using three publicly
available audio datasets (ESC-50, UrbanSound8K, and
DCASE2013).

5) In the audio pattern recognition domain, we demon-
strate, for the first time, the feasibility of transferring
calibrated uncertainty information alongside knowl-
edge from upstream tasks. This transfer markedly
enhances a model’s capability to excel in downstream
tasks, showcasing an innovative approach in leveraging
uncertainty for improved model performance.

II. RELATED WORK
A. TRANSFER LEARNING IN AUDIO
Recently, with popular deep learning frameworks like
PyTorch offering pre-trained initializations for modernmodel
architectures, TL has become an integral part of modern
model development workflows. Building upon this, research

1https://github.com/marko-orescanin-nps/VI-PANN

efforts have leveraged the large-scale AudioSet dataset to
pre-train deep neural networks for enhanced performance on
downstream audio tasks [1], [5]. A commonTL approach is to
directly extract features from a pre-trained model fixed after
the initial training. This method transfers general acoustic
knowledge to new tasks without updating the model parame-
ters. However, fine-tuning the pre-trained model by allowing
parameter updates during training on the downstream data
can further improve results by adapting to the task [1]. In this
manuscript, we refer to these techniques as ‘‘fixed-feature’’
and ‘‘fine-tuned,’’ respectively. Leveraging large pre-trained
models via either technique provides significant performance
gains across various audio applications [1], [5].

B. BAYESIAN DEEP LEARNING
The inability of modern deterministic deep learning models
to communicate a measure of epistemic (model) uncertainty
in prediction has led to an increased interest in Bayesian
deep learning (BDL), specifically in remote sensing [7], [8],
[9], medical [22], [23], and safety-critical applications [24].
Although there are a number of different approaches
to BDL, we focus our experiments on VI. Due to the
increased speed and the ability to scale with data and
models, VI is often favored over techniques like Markov
Chain Monte Carlo (MCMC) [25]. In modern probabilistic
machine learning libraries like BayesianTorch [26], the
most common VI implementations are Flipout [21] and
the Local Reparameterization Trick [27]. Due to the fact
that both of these approaches represent each model weight
using a Gaussian Distribution (i.e., each weight is defined
using two model parameters, a mean and a variance), they
effectively double the number of model parameters. In 2016,
Gal et al. [20] showed that it was possible to perform VI by
training a model with dropout layers preceding every weight
layer and activating those dropout layers during inference.
This approach, called MC dropout, does not double the
number of model parameters. For this reason, along with the
minimal changes required to common deep learning model
architectures and training procedures, MC dropout is often
favored over other VI approaches. In this work, we focus on
the Flipout and MC dropout implementations of VI.

C. UNCERTAINTY QUANTIFICATION AND
DECOMPOSITION IN MULTI-CLASS CLASSIFICATION
One of the primary motivations behind using BDL models is
to gain access to high-quality uncertainty for predictions. The
existing research literature is rich with techniques for quanti-
fying and decomposing uncertainty. In [28], Kendall and Gal
provide insight into two types of uncertainty that can be mod-
eled. Aleatoric, or irreducible, uncertainty is the uncertainty
inherent in the data. Epistemic, or reducible, uncertainty is
the uncertainty about the prediction due to uncertainty about
the model. In addition to providing a detailed description
of these uncertainties, the authors describe a method for
measuring predictive (total) uncertainty, based on output
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FIGURE 1. Uncertainty calibration plots for foundation model training on AudioSet. Comparison plot of test set accuracy vs. percentage of evaluation
data retained based on entropy (left), epistemic uncertainty (center), and aleatoric uncertainty (right). Shading represents a 95% confidence interval
(CI).

FIGURE 2. Uncertainty box plots depicting results of Monte Carlo (MC) Dropout model (top row) and Flipout model(bottom row) trained on AudioSet.
The plots compare predictive entropy (left), epistemic uncertainty (middle), and aleatoric uncertainty (right) as the models are evaluated on both the
AudioSet test set and the ShipsEar dataset. Both the median (orange line) and mean (dashed green line) are presented.

variance, and decomposing the total uncertainty into its
aleatoric and epistemic components using the laws of total
variance. Unfortunately, the method used by Kendall and Gal
requires the use of extra parameters to model the mean and
variance of the model output. Kwon et al. [22] expands upon
the work in [28] by proposing a method for calculating these
component uncertainties without the use of additional model
parameters.

Another line of research is based on the use of entropy
as a measure of predictive uncertainty [16], [17]. We detail
the approach of Chai [17], as we use this method for
multi-class classification, and it is the basis of our multi-
label classification decomposition method. In BDL multi-
class classification problems, we approximate the predictive
probabilty p(y = c | x) using MC integration with
M samples [29]. The average probability per class p̄c is

calculated using

p̄c =
1
M

M∑
m=1

p̂cm , (1)

where p̂cm = p(y = c | x, θm) and θm is sampled from an
approximation of p(θ |D). DefiningC as the set of all possible
classes, we can then compute the entropy of a prediction with

H[y | x,D] = −

∑
c∈C

p̄c log p̄c. (2)

Depeweg et al. [16] and Chai [17] use the entropy from
Eq. (2) as a measure of total uncertainty and decompose that
uncertainty using the following:

H[y | x,D] = I[y, θ | x,D]︸ ︷︷ ︸
Epistemic

+ Eθ∼p(θ |D)[H[y | x, θ]]︸ ︷︷ ︸
Aleatoric

, (3)
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FIGURE 3. Uncertainty calibration plots comparing fixed-feature and fine-tuning TL techniques on UrbanSound8K. Comparison plots of test set
accuracy vs. percentage of evaluation data retained based on Entropy (top), Epistemic Uncertainty (middle) and Aleatoric Uncertainty (bottom). Drop
VI-PANN is on the left, Det-Flip VI-PANN in the center, and Flip VI-PANN on the right. Shading represents a 95% CI.

where E is expected value and I is mutual information.
Similar to the calculation of predictive entropy in Eq. (2),
we approximate the aleatoric uncertainty component using
MC integration to arrive at the following estimator:

Eθ∼p(θ |D)[H[y | x, θ]] ≈ −
1
M

M∑
m=1

∑
c∈C

p̂cm log p̂cm . (4)

Finally, the epistemic uncertainty component is calculated by
finding the difference between Eq. (2) and (4).

III. METHODOLOGY
A. ARCHITECTURE
As a starting point, we adopt the ResNet-54 architecture
described in [1] and make use of the source code provided
by the authors. In order to evaluate VI-PANN, we implement
MC dropout [20] and Flipout [21] variants of the pre-trained
audio neural network (PANN) architecture in [1].

For the MC dropout variant, the architecture of [1] is
left unmodified during training. However, during inference,
we explicitly keep dropout layers active.

In order to implement the Flipout model, we utilize the
Bayesian-Torch [26] software package. Using Bayesian-
Torch, we convert deterministic layers to Bayesian layers.
More specifically, linear layers are converted to LinearFlipout
layers and Conv2d layers are converted to Conv2dFlipout.
These weight layers are initialized using the MOPED
methodology described in [30]. In our case, initialization is
done by calling the Bayesian-Torch dnn_to_bnn() function
with our pre-trained deterministic model and the default
moped_delta parameter of 0.5. We then modify the cross
entropy loss function from [1] to a loss function based on
the following form of the negative Evidence Lower Bound
(ELBO):

Lq = KL[qφ(θ ) || p(θ)] − Eq
[
log p (D|θ)

]
, (5)
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FIGURE 4. Uncertainty calibration plots comparing Drop, Flip, and Det-Flip VI-PANN variants on UrbanSound8k. Comparison plots of test set
accuracy vs. percentage of evaluation data retained based on Entropy (left), Epistemic Uncertainty (center) and Aleatoric Uncertainty (right).
Plots corresponding to fine-tuned models are on the top, fixed-feature model plots are on the bottom. Shading represents a 95% CI.

where KL corresponds to the Kullback-Leibler (KL) diver-
gence, and Eq represents the expected value under the
probability distribution qφ(θ ). A detailed discussion and
derivation of this objective can be found in [8].

B. UNCERTAINTY QUANTIFICATION AND
DECOMPOSITION IN MULTI-LABEL CLASSIFICATION
In this work, we train and evaluate BDL models on both
multi-class and multi-label classification tasks. In the multi-
class case (ESC-50, UrbanSound8K, and DCASE2013),
we can directly apply the techniques described in
Depeweg et al. [16] and Chai [17]. In the multi-label
case (AudioSet), however, we must modify the multi-class
uncertainty decomposition technique to account for the
fact that each class is an independent binary classification
problem. Following the methodology in [17], we start by
calculating the predictive entropy (i.e., total uncertainty).
To calculate the predictive entropy, we first calculate the
entropy for each class

H[y | x,D] = −p̄c log p̄c − (1 − p̄c) log(1 − p̄c), (6)

where p̄c is defined in Eq. (1). Next, to capture the total
entropy of the prediction, we sum over all classes

∑
c∈C H[y |

x,D]. Borrowing the definition of p̂cm from Section II-C,
and modifying Eq. (2.21) from [17] for the multi-label
case, we are left with the following estimator for aleatoric
uncertainty

Eθ∼p(θ |D)[H[y | x, θ]]

≈ −

∑
c∈C

1
M

M∑
m=1

p̂cm log p̂cm + (1 − p̂cm ) log(1 − p̂cm ). (7)

Finally, in order to compute epistemic uncertainty, we calcu-
late the difference between Eq. (6) and (7),

I[y, θ | x,D] ≈ H[y | x,D] − Eθ∼p(θ |D)[H[y | x, θ]]. (8)

C. MODEL EVALUATION
In order to align with [1] and [19], we present our pre-training
results using mean average precision (mAP), area under the
curve (AUC), and d-prime. Similar to [1], we calculate each
metric using macro-averaging (i.e., we calculate each class
individually and average across classes).

For assessing model calibration, we draw on the insights
from Filos et al. [29], who demonstrated that a well-calibrated
model’s performance improves when high-uncertainty pre-
dictions are discarded. Furthermore, Ortiz et al. [9], [31]
demonstrated on large scale multispectral satellite datasets
(multi-year data) for both classification and regression appli-
cations that proper calibration and uncertainty quantification
are critical for operational use of neural network models
in geoscience applications. Consequently, we employ mAP
and accuracy versus data retained curves to evaluate model
calibration based on predictive entropy, aleatoric uncertainty,
and epistemic uncertainty. Plot shading represents a 95% CI
calculated over 20 replications.

To illustrate the practicality of calibrated model uncer-
tainty, we assess each of our VI-PANNs on the ShipsEar
dataset [32]. ShipsEar is a multi-class classification dataset
comprising 90 underwater sound recordings of 11 different
types of ships. This dataset was chosen because each sample
is out-of-distribution (OOD), and the recordings, captured
underwater with hydrophones, differ from the microphones
used in the TL datasets in this study. Consequently, we can
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FIGURE 5. Uncertainty box plots depicting results of MC Dropout (top row), Flipout (middle row), and Det-Flip (bottom row) fine tuned on
UrbanSound8k. The plots compare predictive entropy (left), epistemic uncertainty (middle), and aleatoric uncertainty (right) as the models are
evaluated on both UrbanSound8k and the ShipsEar dataset. Both the median (orange line) and mean (dashed green line) are presented.

analyze the change in model uncertainty (total, aleatoric, and
epistemic) when each model is evaluated on data types and
distributions it hasn’t been trained on.

Due to the fact that our TL datasets require cross-fold
validation, we present all results averaged across folds.

D. BAYESIAN DEEP LEARNING MODEL PRE-TRAINING
In order to pre-train our models on AudioSet, we adopt
the approach and hyperparameters from [1]. Specifically,
to standardize and control for the acoustic pre-processing
hyperparameters, enabling a direct and meaningful com-
parison of model performance between our VI-PANNs and
the deterministic models detailed in [1], AudioSet acoustic
segments are resampled to 32kHz and converted to log-mel
spectrograms using a Hamming window of 1024, a hop size
of 320, and 64 mel filter banks. Additionally, following the
approach in [1], we remove frequencies above 14kHz and
below 50Hz from the samples. For additional details on

acoustic pre-processing hyperparameter selection, we refer
the interested reader to [1]. We use a batch size of 32,
and an Adam optimizer with a learning rate of 0.001. For
the MC dropout variants, we use a dropout rate of 0.2 for
convolutional layers, and 0.5 for linear layers.

We apply this training setup to our YouTube-curated repos-
itory of approximately 1.7M 10-second, unbalanced audio
clips. Similar to [1], we employ mixup [33] augmentation
with α = 1.0; however, we make no effort to balance
the training dataset. As the goal of our investigation is
not to match state-of-the-art performance on the AudioSet
tagging task but rather construct large-parameter probabilistic
versions of AudioSet pre-trained networks to investigate the
benefits they confer to uncertainty analysis in the acoustic
domain, we train our deterministic PANN and MC dropout
VI-PANN for approximately 3M steps. In order to train
our Flipout VI-PANN, we initialize the network priors and
posteriors using MOPED [30] with the learned weights from
our deterministic PANN. We then train the Flipout VI-PANN
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FIGURE 6. Uncertainty calibration plots comparing fixed-feature and fine-tuning TL techniques on ESC-50. Comparison plots of test set accuracy vs.
percentage of evaluation data retained based on Entropy (top), Epistemic Uncertainty (middle) and Aleatoric Uncertainty (bottom). Drop VI-PANN is on
the left, Det-Flip VI-PANN in the center, and Flip VI-PANN on the right. Shading represents a 95% CI.

for an additional 2M steps. The deterministic PANN and
both VI-PANNs are evaluated using the AudioSet balanced
evaluation split.

E. BAYESIAN TRANSFER LEARNING
In our TL experiments, we explore three distinct TL
strategies.

1) Flip Strategy:

• Initialize a Flipout model with parameters from our
Flipout VI-PANN.

• Replace the classification head with a new Flipout
head, using the Bayesian-Torch LinearFlipout
layer defaults.

• Freeze the backbone, train the classification head
for 200 epochs with a learning rate of 0.001
(referred to as ‘‘fixed-feature’’), then unfreeze the

backbone, reduce the learning rate by a factor of
10, and train for an additional 200 epochs (referred
to as ‘‘fine-tuned’’).

2) Det-Flip Strategy:

• Initialize a deterministic model with our determin-
istic PANN using MOPED (moped_delta = 0.5),
as described in III-A.

• Replace the deterministic headwith a Flipout head,
following the Flip strategy workflow.

3) Drop Strategy:

• Initialize an MC dropout model with our MC
dropout VI-PANN.

• Replace the head with an MC dropout head
(dropout rate: 0.5), and follow the Flip strategy
workflow.
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FIGURE 7. Uncertainty calibration plots comparing Drop, Flip, and Det-Flip VI-PANN variants on ESC-50. Comparison plots of test set accuracy vs.
percentage of evaluation data retained based on Entropy (left), Epistemic Uncertainty (center) and Aleatoric Uncertainty (right). Plots corresponding to
fine-tuned models are on the top, fixed-feature model plots are on the bottom. Shading represents a 95% CI.

TABLE 1. Model parameter counts and multiply-accumulate operations
(MACs) of the three VI model variants used in the transfer learning
experiments.

For comparison, we include results from a deterministic
baseline (Det):

• Initialize a deterministic model with our deterministic
PANN.

• Replace the head with a deterministic head and follow
the Flip strategy training workflow.

These diverse strategies allow us to assess the impact of
different transfer learning approaches on model performance.

For comparison, Table 1 contains a summary of TL
model variant, number of parameters, and the number of
multiply-accumulate operations (MACs). The presentation
is segmented by dataset, as the input feature shape and the
number of classes have distinct impacts on the MACs and
number of model parameters, respectively.

IV. RESULTS AND DISCUSSION
A. DATASETS
To comprehensively evaluate the uncertainty-aware trans-
fer learning approach, we select a single foundation

TABLE 2. Characteristics of the datasets used to evaluate VI-PANN
embeddings in transfer learning.

dataset, AudioSet, and three diverse audio classification
datasets - ESC-50, UrbanSound8K, and DCASE2013.
These datasets offer various sound recognition tasks
to assess the generalization of variational embeddings.
A summary of the TL dataset details is presented in
Table 2.

AudioSet [19]: A large-scale audio event recognition
dataset consisting of 2.1M 10-second audio samples. Each
of these samples were extracted from videos on YouTube and
hand-annotated. Of the approximately 2.1M videos listed in
the original AudioSet paper [19], we were only able to obtain
approximately 1.7M (many videos from the published dataset
are no longer available via the links from [19]). AudioSet
has an ontology of 527 classes and is a heavily imbalanced,
multi-label dataset (i.e., one or more labels can be present in
a given sample). It is essential to note that the label quality
varies significantly across classes, with some having noisy
labels and others exhibiting high-quality annotations. Within
the AudioSet data, there are three splits: a balanced evaluation
split, a balanced training split, and an unbalanced training
split.
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FIGURE 8. Uncertainty box plots depicting results of MC Dropout (top row), Flipout (middle row), and Det-Flip (bottom row) fine tuned on ESC-50. The
plots compare predictive entropy (left), epistemic uncertainty (middle), and aleatoric uncertainty (right) as the models are evaluated on both the
ESC-50 and the ShipsEar dataset. Both the median (orange line) and mean (dashed green line) are presented.

ESC-50 [12]: A multi-class classification dataset which
consists of 2000 five-second recordings organized into
50 classes. Split into 5-folds for cross-validation, it cov-
ers a variety of environmental sound events like gun-
shots, dogs barking, and applause. The ESC-50 dataset
is suitable for evaluating fine-grained event recognition
capabilities.

UrbanSound8K [13]: A multi-class classification dataset
containing 8732 urban sound excerpts up to 4 seconds,
categorized into 10 classes. Split into 10-folds for cross-
validation, this dataset is commonly used to evaluate a
model’s ability to identify ambient urban noises such as air
conditioner, car horn, and children playing.

DCASE2013 [14]: A multi-class dataset with 10 classes
representing various acoustic scenes and events. It consists
of 100 audio samples, each 30 seconds in duration, and is
split into 5-folds for cross-validation. DCASE2013 is com-
monly used to evaluate acoustic scene/event classification in
medium duration recordings.

Together, these datasets enable a rigorous evaluation of our
approach on diverse audio classification tasks with labelled
data far more scarce than the large foundation dataset.
Furthermore, the variety of sounds and context shifts across
datasets allows us to evaluate the ability of VI-PANNs to
transfer and generalize their learned variational embeddings.
Analyzing uncertainties on these datasets will reveal how
embedding distributions capture model credibility across
different acoustic environments and events.

B. FOUNDATION MODEL (AUDIOSET)
The results of our AudioSet pre-training are summarized
in Table 3. Each of our models exhibits comparable
performance, as measured by mAP, AUC, and d-prime, to the
ResNet-54 PANN presented in [1]. Alongside performance
metrics, we provide predictive entropy (total uncertainty),
epistemic uncertainty, and aleatoric uncertainty calibration
plots for our VI-PANNs in Fig. 1.
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FIGURE 9. Uncertainty calibration plots comparing fixed-feature and fine-tuning TL techniques on DCASE2013. Comparison plots of test set accuracy
vs. percentage of evaluation data retained based on Entropy (top), Epistemic Uncertainty (middle) and Aleatoric Uncertainty (bottom). Drop VI-PANN is
on the left, Det-Flip VI-PANN in the center, and Flip VI-PANN on the right. Shading represents a 95% CI.

Our Flipout VI-PANN demonstrates well-calibrated uncer-
tainty across all three measures. In contrast, the MC dropout
VI-PANN exhibits poor calibration. A well-calibrated model
typically shows improved performance as high-uncertainty
predictions are discarded [29]. The observed poor calibration
is likely attributed to the complexity and significant class
imbalance within the AudioSet dataset. Additionally, the
lack of explicit learning of the dropout parameter during the
training process may contribute to this issue [34].

In Fig. 2, we present box plots that compare the model
uncertainty on both the AudioSet test set and the ShipsEar
dataset. Although results from both the Flipout and MC
Dropout models are included, our primary focus is on
the Flipout model due to its demonstrated calibration
across all three types of uncertainty. Upon analyzing the
model’s response to samples from the ShipsEar dataset,
we observe a subtle increase in both average entropy and

aleatoric uncertainty when compared to the AudioSet test
set. Conversely, the average epistemic uncertainty remains
consistent across both datasets. Notably, the plots reveal a
tighter distribution of uncertainty on the ShipsEar dataset in
contrast to the AudioSet dataset. This phenomenon is likely
attributed to the diversity of the input data, extreme class
imbalance, and unsatisfactory label quality observed in many
underrepresented classes within the AudioSet dataset.

C. TRANSFER LEARNING
The transfer learning (TL) results for ESC-50, Urban-
Sound8K, and DCASE2013 are detailed in Table 4. For
context, the results of training models from scratch (i.e.,
without TL) are also provided in Table 5. Each model variant
(Det, Det-Flip, Drop, Flip) exhibits comparable perfor-
mance across the three datasets. Notably, fine-tuned models
demonstrate a substantial increase in accuracy compared to
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FIGURE 10. Uncertainty calibration plots comparing Drop, Flip, and Det-Flip VI-PANN variants on DCASE2013. Comparison plots of test set accuracy vs.
percentage of evaluation data retained based on Entropy (left), Epistemic Uncertainty (center) and Aleatoric Uncertainty (right). Plots corresponding to
fine-tuned models are on the top, fixed-feature model plots are on the bottom. Shading represents a 95% CI.

TABLE 3. Model mean average precision (mAP), area under the receiver
operating characteristic curve (AUC), and d-prime after pre-training on the
AudioSet dataset.

fixed-feature (fixed) models and both TL techniques provide
significant performance increases over the models trained
from scratch on the TL datasets. As expected, when trained
from scratch on the relatively small TL datasets, the high-
capacity ResNet-54 models perform relatively poorly and
suffer from overfitting. The Flip variant which contains
2x the learnable parameters, when compared to the other
variants, performs particularly poorly. Although the Det
PANN slightly outperforms others in accuracy on ESC-50
and DCASE2013, it lacks the capability to provide access to
epistemic uncertainty in predictions.

For reference, we present the results alongside the state-
of-the-art (SOTA) results for each dataset. It is essential to
clarify that the primary aim of this study was not to achieve
SOTA performance on these datasets. Instead, our goal was
to demonstrate performance comparable to existing methods
while also offering calibrated epistemic uncertainty informa-
tion. Nonetheless, our VI-PANNs demonstrate comparable

performance (within 2 to 3% accuracy) to these SOTA
approaches. It’s worth noting that many of the model archi-
tectures employed to achieve SOTA performance on these
datasets are Transformer-based. In contrast to our approach,
these Transformer-based architectures are deterministic and
do not provide access to calibrated epistemic uncertainty
information.

Furthermore, we provide calibration plots for Urban-
Sound8K (Figs. 3 and 4), ESC-50 (Figs. 6 and 7), and
DCASE2013 (Figs. 9 and 10). These plots reveal that,
following TL, when fixing the features of the base model and
after fine-tuning, all three variants of our VI-PANNs result in
well-calibrated models. The stairstep pattern evident in the
DCASE2013 plots is attributed to the comparatively small
size of the DCASE2013 dataset.

In each of the UrbanSound8k calibration plots, the curve
of the TL model learned from fixed-features starts at a lower
accuracy and crosses over that of the TL model fine-tuned,
achieving a higher accuracy at the same percentage of data
retained. These results suggest that fine-tuning may have
an adverse effect on model calibration if care is not taken
in the fine-tuning process. Intuitively, one might extend the
hyperparameter evaluation of fine-tuning andmodel selection
to include calibration curves.

In Figs. 5, 8, and 11, we depict box plots that compare
model uncertainty for each of the TL datasets (Urban-
Sound8k, ESC-50, and DCASE2013) and the ShipsEar
dataset. Since the fine-tuned models demonstrated superior
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FIGURE 11. Uncertainty box plots depicting results of MC Dropout (top row), Flipout (middle row), and Det-Flip (bottom row) fine tuned on
DCASE2013. The plots compare predictive entropy (left), epistemic uncertainty (middle), and aleatoric uncertainty (right) as the models are evaluated
on both DCASE2013 and the ShipsEar dataset. Both the median (orange line) and mean (dashed green line) are presented.

TABLE 4. Transfer learning experiment model accuracies on ESC-50,
UrbanSound8k, and DCASE2013.

performance compared to the fixed-feature models, we show-
case the results of the fine-tuned Dropout, Flipout, and
Det-Flip models. In contrast to the AudioSet results, when
assessed on the ShipsEar dataset, all three model variants
exhibit a notable increase in average entropy, epistemic
uncertainty, and aleatoric uncertainty compared to the TL
dataset. Moreover, the plots illustrate a considerably broader
distribution of uncertainty compared to the TL datasets.
This outcome is anticipated given that these models perform
exceptionally well with low uncertainty on the TL datasets.

TABLE 5. Baseline model accuracies after training on ESC-50,
UrbanSound8k, and DCASE2013 without transfer learning.

V. CONCLUSION
In this study, we introduce VI-PANNs as a Bayesian
alternative to widely adopted deterministic audio embedding
methods. Trained on AudioSet, our VI-PANNs exhibit
calibrated models through the use of the Flipout approach,
underscoring the significance of variational audio embed-
dings. By adapting uncertainty decomposition techniques for
multi-label classification, we enable a nuanced analysis of
uncertainty estimates not only on AudioSet but also on other
multi-label datasets. Notably, our work represents the first
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adaptation of the uncertainty decomposition from [16] and
[17] for application in multi-label problems.
Our transfer learning (TL) experiments onwell-established

datasets demonstrate comparable or improved performance
compared to previous state-of-the-art methods, leveraging
a similar model architecture. Importantly, our Det-Flip
VI-PANN, constructed with a deterministic PANN and a
Flipout classification head, achieves high performance at a
relatively low cost compared to pre-training a full Flipout
model. This establishes robust baselines for uncertainty-
aware audio transfer learning in scenarios with limited
labeled data, offering valuable insights for practitioners.

Crucially, the presented methodology for TL with varia-
tional audio embeddings is universal and applicable to diverse
audio tasks. The insights gained emphasize the intrinsic
value of Bayesian neural networks in facilitating reliable and
transparent transfer learning within the audio domain.
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