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ABSTRACT Predicting potential drug-drug interactions (DDIs) can effectively mitigate unforeseen
interactions throughout the entire drug development process, playing a pivotal role in ensuring drug
safety. However, traditional methods are laborious and require specific expert knowledge. This paper
proposes RPDAnet, a novel molecular substructure-aware network based on Reinforced Pooling and
Deep Attention mechanism, to investigate the interactive relationships between drugs and predict the
potential DDIs. Particularly, RPDAnet leverages reinforcement learning to dynamically select informative
molecular fragments, thus enhancing its generalization capacity without relying on prior knowledge.
Subsequently, RPDAnet develops Communicative Message Massing Neural Network (CMPNN) to enhance
the representation of molecular structures by reinforcing message interactions between nodes and edges
through a communicative kernel. Finally, RPDAnet aggregates the interactions between substructures of
drugs to predict the DDI between a pair of drugs. The experimental results on two real-world datasets
demonstrate that our proposed RPDAnet outperforms the state-of-the-art methods with more than 5%
performance gains in DDI prediction.

INDEX TERMS Drug-drug interactions, reinforcement learning, deep attention neural networks, learning
latent representations, graph algorithms.

I. INTRODUCTION
Drug-drug interactions (DDIs) frequently arise when one
drug induces a pharmacokinetic (PK) or pharmacodynamic
(PD) effect in the presence of another, and they are
primary factors leading to medical injuries [1], [2]. DDIs
commonly contribute to adverse drug reactions (ADRs)
and elevated healthcare expenditures, which pose substantial
threats to patients and public health [3]. For instance,
acetylsalicylic acid, more commonly known as aspirin, is a
medication employed to alleviate pain and fever stemming
from diverse etiologies. Aspirin possesses anti-inflammatory
and antipyretic properties, as well as the ability to inhibit
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platelet aggregation, making it valuable in the preven-
tion of blood clots and myocardial infarction. However,
the potential for elevated risk or increased severity of
hypertension exists, as exemplified by negative drug-drug
interactions when acetylsalicylic acid is co-administered with
1-benzylimidazole [4]. Recently, the study [5] revealed that
approximately 6.7% of hospital readmissions in the USA in
2021 were attributable to DDIs, with a fatality rate of 0.32%.

The prediction of potential DDIs not only diminishes
unexpected drug interactions but also reduces the expense
associated with drug development, thereby facilitating the
optimization of the drug design process. Consequently, inves-
tigating DDI holds significance in both drug development
and clinical practice, particularly concerning co-administered
medications. To further economize and enable the analysis of
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extensive interaction datasets, automated techniques for DDI
identification are imperative.

The identification of drug-drug interactions (DDIs) is
typically conducted in pharmaceutical research and clinical
settings through extensive experimental testing, encompass-
ing in vitro experiments and clinical trials. However, the
extensive manual analysis involved in studying DDIs is
both time-consuming and laborious, even when employing
high-throughput methods [6]. In recent years, computational
methods (in silico) have emerged as a cost-effective, efficient,
and rapid alternative to tackle this challenge. By harnessing
existing knowledge of known DDIs, these computational
methods can predict potential interactions, thereby alleviating
the necessity for exhaustive experimental testing.

We have witnessed the emergence of diverse computa-
tional models for predicting drug-drug interactions (DDIs).
These models aim to mitigate the costs associated with
pharmaceutical research by providing feasible outcomes for
biological experiments. Li et al. [7] proposed the pharma-
cokinetics (PK) model, one of the pioneering computational
approaches, to predict the DDIs. Afterward, Vilar et al.
employed drug similarities computed from 2D and 3Dmolec-
ular structures, interaction profiles, and their combinations
to predict potential drug pairs [8], [9], [10]. Moreover,
Sridhar et al. [11] devised a DDI prediction framework
based on probabilistic programming and drug similarities,
enabling the identification of drug pairs with a heightened
probability of interaction. Although similarity-basedmethods
have exhibited commendable performance, they encounter
challenges in investigating complex interactive relationships
due to their inability to capture high-order connective
features. To address this limitation, Rohani and Eslahchi [12]
proposed a neural network-based approach that incorporates
non-linear similarity fusion, enabling deep learning of
high-dimensional drug features and extending the model’s
capacity from local to a global perspectives. In addition,
the MRMF model [13] based on manifold regularization
matrix factorization is presented, which employs manifold
regularization to embed multiple drug features and utilizes
matrix factorization techniques for predicting potential DDIs.
The MRMF takes advantage of the inherent structure within
drug data by incorporating manifold regularization, thereby
providing an enhanced framework for DDI prediction.

Recently, molecule structure-based methods for predicting
DDIs have gained significant popularity, these approaches
rely on analyzing medicinal chemistry knowledge [14],
drugs are composed of various functional groups and
chemical substructures to explore pharmacokinetic and
pharmacodynamic properties and predict potential DDIs.
Molecular structure-based methods [15], [16], [17], [18],
[19], [20] treat drugs as independent entities and predict
DDIs solely based on drug pairs, without the need for
external biomedical knowledge. These methods focus on
local chemical structures (substructures) rather than the entire
molecular structure, as DDIs primarily arise from chemical

reactions among these substructures [16], [21]. Molecular
structure-based methods assume that the learned information
about chemical substructures can be generalized to different
drugs with similar substructures [15], [20]. For instance,
MR-GNN [19] utilized graph neural networks (GNNs) to
extract multi-scale representations of chemical substructures
from molecular graphs. CASTER [15] employed a chemical
sequential pattern mining algorithm to generate recurring
chemical substructures as representations of drugs. This is
followed by an auto-encodingmodule and dictionary learning
to enhance the model’s generalizability and interpretability.
SSI-DDI [18], MHCADDI [17], and CMPNN-CS [20]
incorporated the co-attentionmechanism between the learned
substructures of drug pairs, allowing for communication
between the drugs. In CMPNN-CS, bonds are viewed as gates
that control the flow of messages passing through the GNN,
effectively representing substructures in a self-supervised
manner.

However, the aforementioned methods present the follow-
ing challenges: (1) Firstly, these methods ignore the passing
messages from bonds to atoms, which limits the ability
to efficiently capture complementary information between
atoms and bonds. (2) Secondly, current approaches treat the
molecule fragments as equally important, but the fact is that
each fragment contributes differently to the properties of the
molecule. (3) Thirdly, current approaches primarily focus on
predicting drug-drug interactions (DDIs) at a macroscopic
level, neglecting the prediction of DDIs at the molecular
substructure level.

To address the above challenges, we propose RPDAnet,
a novel DDIs prediction framework based on reinforced
pooling and deep attention mechanism, which can effectively
model molecular fragments and accurately predict potential
DDIs. The main contributions of this work are summarized
as follows:

• We propose a novel graph communication neural
network to interactively update edge and node rep-
resentations of drugs, which can effectively capture
high-quality molecular fragment representations.

• We present a reinforcement pooling mechanism (RPM)
to adaptively screen most related neighboring nodes for
target nodes through a reinforcement learning process,
which helps PPDAnet to aggregate more informative
molecular fragments to obtain a more precise molecular
representation.

• We develop a deep attention neural network (DANN) to
acquire comprehensive insights into the interactive rela-
tionships between drugs, enabling accurate prediction
of DDIs through weighted aggregation of interaction
scores between substructures.

• We conduct extensive experiments on real-world
datasets to evaluate the performance of RPDAnet,
experimental results demonstrate that the RPDAnet
outperforms the state-of-the-art methods in DDIs
prediction.
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II. RELATED WORK
This section provides a comprehensive overview of previous
research in the field of DDI prediction, with particular
emphasis on two pivotal aspects: (1) drug representation, and
(2) the DDI prediction methodologies.

A. DRUG REPRESENTATION
The majority of existing methods for DDI prediction
employ molecular fingerprints [22], [23], [24] or other
drug profiles, including side effects [22], [23], binding tar-
gets [24], transporters, enzymes, pathways, and combinations
thereof [23], [25], [26] to predict potential DDIs. Molecular
fingerprints [27], [28] are binary vectors that indicate the
presence (i.e., 1) or absence (i.e., 0) of specific chemical
substructures. Similarly, other profiles are also represented as
binary vectors, denoting the presence or absence of particular
characteristics such as side effects or binding targets. Certain
approaches [8], [13], [29], [30], [31], [32] further preprocess
the drug representation by using similarity vectors, which
quantify the similarity between a drug and others within the
aforementioned representation spaces using measures like
cosine similarity or Jaccard similarity. This assumption is
predicated on the premise that drugs with similar or dissimilar
profiles demonstrate corresponding biological activities [8].
However, these representations exhibit inherent limitations
due to these approaches being manually crafted and con-
strained by expert knowledge, which restricts their ability to
uncover newly emerged DDI information, especially when
dealing with unknown drugs. Moreover, the availability of
some features may be limited during the early stages of drug
development, thereby impeding the applicability of methods
reliant on such features.

In recent years, there has been an increasing application of
graph neural networks (GNNs) [33], [34], [35], [36], which
are deep learning models designed specifically for graph-
structured data. These models have shown promising per-
formance in various tasks related to chemical molecules and
DDIs [37], [38], [39], [40]. However, the majority of existing
approaches primarily focus on acquiring representations of
drugs as a whole entity, ignoring the crucial interactive
relationships within DDIs, specifically the functional groups
and chemical substructures that constitute the drug molecule.
Although some recent methods [41], [42] have been proposed
to address the involvement of substructures in DDIs, they
treat the hidden representations of nodes (referred to as patch
representations) at each GNN layer as substructure repre-
sentations of drugs. Consequently, this approach generates
substructures with regular shapes whose sizes are determined
by the receptive field of the GNN layer, resulting in their
generalization ability being compromised. Different from the
existing methods, we propose a novel framework to extract
substructures from molecular graphs, enabling the direct
learning of substructures with diverse sizes and shapes within
the molecule.

The existing DDI prediction methods can be classified
into three main categories: machine learning-based methods,

deep learning-based methods, and GNN-based methods [43].
Machine learning-based methods utilize natural language
processing techniques to extract annotated DDIs from diverse
biomedical literature sources, including medical reports,
electronic medical records [44], scientific literature [45],
and insurance claim databases. For instance, Liu et al. [46]
employed large-scale text mining and statistical inference
techniques to capture latent semantics and enhance prediction
performance. Although such methods are effective in iden-
tifying approved DDIs, they are unable to detect unlabeled
or potential DDIs before drug combination treatment. Deep
learning-based methods typically train deep neural networks
to end-to-end extract drug properties features, such as
substructures, pathways, targets, and structural similarity
profiles, to predict the potential DDIs. Particularly, Deep-
CCI [47] employs convolutional neural networks (CNNs) and
fully connected layers to extract hidden representations from
SMILES encoding, thereby effectively predicting drug-drug
interactions by assembling various neural units. However,
a major limitation of these methods is that they require a
large number of parameters to guarantee the performance
of the model, greatly reducing the interpretability of the
models. In contrast, GNN-based methods [48], [49], [50]
represent biomedical data as heterogeneous graphs and
employ various graph-specific approaches, such as graph
auto-encoders [32], matrix factorization [23], and label
propagation [22], to analyze drug-drug interconnections on
the graphs. By incorporating external biomedical knowledge,
GNN-based methods enhance prediction performance. How-
ever, their performance has not been fully exploited as they
only leverage chemical structure information but ignore the
fine-grained interactive relationships between drugs.

III. PROPOSED RPDAnet FRAMEWORK
The presented RPDAnet framework, as depicted in Figure 1,
comprises three primary modules. More specifically, the
feature encoding learning module employs the CMPNN
encoder to acquire molecular representations, which are
enhanced through the reinforcement of message interactions
between nodes and edges via a communicative kernel. The
reinforcement pooling module employs the RPM to select
informative subgraphs, enhancing the model’s generalization
capacity without relying on prior knowledge. Finally, the
DDIs prediction module employs a DAN network to accu-
rately predict Drug-Drug Interactions (DDIs).

A. MODULE FEATURE ENCODING LEARNING MODULE
Firstly, we rely on RDKit to draw functional groups from
SMILES of drug molecules. Then, a functional group can
be seen in a small molecular graph. In this study, a small
molecular graph is denoted as a graph G = (V ,R), where
V refers to the set of nodes, and R denotes the set of
bidirectional edges. For each node v, xv represents its initial
features, while for each edge r(u, v), xr(u,v) represents the
initial features. Notably, we extract distinct initial features
for atoms and bonds within the original molecular graph G.
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FIGURE 1. Overview of RPDAnet.

Here, we develop a CMPNN network as the graph encoder,
which enhances graph representation by reinforcing message
interactions between edges and nodes.

Firstly, to update the node hidden states, each node v ∈ V
aggregates representations of its incoming edges rather than
its neighboring nodes in G. The intermediate message vector
is obtained as follows:

mk (v) = AGGREGATE
(
{hk−1(r(u,v)), ∀u ∈ Nv}

)
=

∑
u∈N (v)

hk−1(ru,v) ⊙ pooling(
∑
u

hk−1(ru,v)), (1)

where k represents the current layer, r(u, v) denotes the edge
between nodes u and v, while the pooling operator is a max
pooling function, and ⊙ indicates an element-wise multi-
plication operator. We employ the max pooling technique
to emphasize edges with the most significant information
intensity, i.e., a node’s hidden state predominantly relies
on the most influential message from its incoming edges.
Subsequently, the node’s current hidden state hk−1(v) is
concatenated with the message vector mk (v) and passed
through a communicative function, which facilitates the
update of the node’s hidden state hk (v):

hk (v) = COMMUNICATE
(
mk (v), hk−1(v)

)
= σ

(
W k

· CONCAT
(
hk−1(v),mk (v)

))
, (2)

where the hidden state hk (v) serves as a pivotal message
transfer station, responsible for receiving incomingmessages,
and subsequently integrating and transmitting them to the
next station. sigma is an activation function, and CONCAT

represents a concatenation operation. To achieve this, a spe-
cific communication function is employed, which entails
feeding both the node and edge features into a Multi-Layer
Perceptron (MLP) followed by a rectified linear unit (ReLU)
activation.

Secondly, the message of the edge r(v,m) is derived by
subtracting its inverse edge information from the hidden state
hk (v):

mk (r(v,w)) = hk (v) − hk−1(r(w,v)), (3)

where r(w,v) represents the inverse edge of r(v,w). To
update the edge hidden states, RPNAnet inputs the edge
intermediate message mk (r(v,m)) into a fully connected layer,
then incorporating them into the initial edge feature xr(u,v).
Subsequently, a ReLU activation function is applied to the
output layer, which serves as the intermediate message vector
for the subsequent iteration. This process can be concisely
represented as follows:

hk (r(v,w)) = σ
(
xr(u,v) +W · mk (r(v,w))

)
, (4)

Then, conducting k iterations to aggregate the first k −

1 layers hidden feature vectors:

m(v) = AGGREGATE({hK (r(u, v)), ∀u ∈ N (v)}), (5)

where the final node representation h(v) of the graph is
derived by communicating the information from incoming
edges, the current node representation, and the initial node
feature:

h(v) = COMMUNICATE
(
m(v), hK (v), xv

)
, (6)
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Finally, we employ a readout operator to obtain the
functional group representation:

hG =

∑
v∈V

GRU(h(v)), (7)

where GRU [42] is the gated recurrent network.

B. REINFORCEMENT POOLING MODULE
DDIs primarily arise from interactions between functional
groups. Therefore, we utilize the RPDAnet to model DDIs,
which can highlight significant functional groups while
downplaying the minor ones in DDI prediction tasks.

We propose a reinforced pooling mechanism (RPM) based
on reinforcement learning to select significant functional
groups in DDIs. Particularly, RPM introduces a top-k
sampling tactic with an adaptive pooling ratio k ∈ (0, 1]
to select more informative nodes. RPM employs a trainable
vector, denoted as p, which projects all functional group
features into 1D footprints {vaili|gi ∈ G}. Here, vail
represents the amount of information preserved from a
functional group gi when projected onto the direction of p.
Subsequently, we derive the importance values of functional
groups vail and rank the groups in descending order based on
these values. To obtain a subset of relevant functional groups
for the current batch, we select the top n′

= [k ·n] groups and
exclude all other non-relevant functional groups. During the
training phase, the computation of vail for functional group
gi on p is expressed as follows:

vali =
zip
||p||

, idx = rank
(
{vali}, n′

)
, (8)

where ({vali, n′
} represents the operation of functional group

ranking, the resulting idx from ({vali}, n′) represents the
indices corresponding to the selected functional groups. The
parameter k is dynamically updated at the end of each epoch
via reinforcement learning iterations.

Due to the pooling ratio k in tok − k sampling is not
directly involved in the optimization of the objective function,
thus it cannot be tuned by the backpropagation algorithm.
To overcome this limitation, RPM employs a reinforcement
learning (RL) algorithm to autonomously explore the optimal
k value within the range of (0, 1], instead of treating it as
a hyper-parameter subject to fine-tuning. RPM models the
procedure of k updating as a finite Markov decision process
(MDP) that includes states, actions, transitions, rewards, and
termination, which are formulated as follows:

• State. At epoch e, the state se is denoted by the indices
of the selected functional groups idx (i.e., Eq 8), the index
labeling process is shown in Eq 9 :

se = idxe. (9)

•Action. The RL agent updates the value of k according to
each action ae, which is determined by the reward function.
The action a is defined as either adding or subtracting a fixed
value ϵ, where ϵ ∈ [0, 1].

• Reward. RPM introduces a discrete reward function,
reward(se, ae), associated with each action ae at state se,
which guides the k to increase or decrease ϵ based on the
accuracy loss between epoch e and epoch e− 1 :

reward(se, ae)


+1, if acce > acce−1
0, if acce = acce−1

−1, if acce < acce−1

. (10)

• Transition. Once the k value has been updated based on
the reward function (i.e., Eq 9), RPM employs the top − k
sampling to select a new set of functional groups in the next
epoch.

•Termination. The reinforcement learning process of RPM
will terminate if the variation of k across ten consecutive
epochs does not exceed a certain threshold ϵ, meaning
that the optimal threshold value k has been found and the
top− k informative subgraphs can be selected. The terminal
condition is mathematically expressed as follows :

Range({ke−10, · · ·, ke}) ≤ ϵ. (11)

Here, RPM leverages Q-learning [51] as the learning
strategy to train the Markov Decision Process (MDP).
Q-learning is an off-policy reinforcement learning algorithm
that aims at identifying the optimal action to be taken in the
current state. The objective is achieved by approximating the
Bellman optimality equation, which can be formulated as
follows:

Q∗(se, ae) = reward(se, ae) + γ · maxa′Q∗(se+1, a′), (12)

Herein, γ ∈ [0, 1] signifies the discount factor applied to
future rewards. To train our policy, we employ a ε-greedy
approach to obtain the exploration probability as follows :

π (ae|se;Q∗) =

{
random action, w.p.ε
argmax Q∗(se, a), otherwise

. (13)

Consequently, the RL agent employs an exploration
strategy to find an optimal action at each epoch according to
Eq 13.

C. DDIs PREDICTION MODULE
Taking drug dx and drug dy as an example, we first utilize
RPM to select the top − k important functional groups,
and the selected functional groups contained in drug dx are
represented as Vx , in drug dy is represented as Vy. As shown
in Figure 2, given a DDI tuple (dx , r, dy), the DDI prediction
is established based on the joint probability of the tuple.

˜P(dx , r, dy) = σ
( |Vx |∑

i

|Vy|∑
j

γijĥ(i)
(x)T

Mr ĥ(j)
(y))

, (14)

where σ (·) represents the Sigmoid function. ĥ(i)
(x)

and ĥ(j)
(y)

represent linear transformations of the substructure h(i)(x) and
h(j)(y), respectively.

ĥ(i)
(x)

= W(x) · h(i)(x), i = 1, . . . , |Vx |, (15)

ĥ(j)
(y)

= W(y) · h(j)(y), i = 1, . . . , |Vy|, (16)
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FIGURE 2. Functional group-based deep attention neural network.

where W(x) ∈ Rb×b and W(y) ∈ Rb×b are learnable
transformation matrices.

• The cross-functional group interaction weight between
functional groups h(i)(x) of drug dx and h(j)(y) of dy is denoted
as γij ∈ [0, 1], it is formulated as follows:

γij = softmax
(
MLPγ

(
h(i)(x)||h(j)(y)

))
, i = 1, . . . , |Vx |

j = 1, . . . , |Vy|. (17)

D. DDI PREDICTION
• The learnable representation matrix Mr ∈ Rb×b corre-
sponds to the interaction type of r . To reduce the number
of parameters, we impose a constraint on it that ensures its
diagonal matrix:

Mr = diag(mr ), (18)

where diag(·) represents the diagonal matrix, while mr ∈ Rb

is a learnable vector that pertains to the specific type of
interaction r .
Finally, the final objective function of RPDAnet can be

expressed as follows:

L = −

∑
Pi,j log(P̃i,j) + (1 − Pi,j) log(1 − P̃i,j), (19)

wherePi,j is real DDI tuple and P̃i,j is the predicted drug tuple.

IV. EXPERIMENTAL ANALYSIS
A. DATASETS AND SETTINGS
In this section, we conduct extensive experiments on
real-world datasets to evaluate the performance of our
proposed RPDAnet. The experimental datasets encompass
DrugBank and Twosides, with their respective details pre-
sented below:
DrugBank: The dataset was sourced from FDA/Health

Canada drug labels, comprising 191,808 DDI tuples involv-
ing 1,706 distinct drugs. Each drug is represented in SMILES
notation, and their molecular graphical representations were
generated using the RDKit python library [14]. Within this
dataset, there are 86 defined interaction types that elucidate
the influence of one drug on the metabolism of another.
Notably, each DDI tuple in this dataset represents a unique
interaction between a pair of drugs, ensuring no duplication
with different interactions for the same drug combination.

Twosides: The dataset utilized was proposed by [52] and
obtained after filtering the original TWO SIDES side effects
data [53]. It comprises 4,649,441 DDI triplets involving
645 drugs, with a total of 1,317 distinct interaction types.
Notably, unlike the DrugBank dataset, these interactions
primarily pertain to phenotypic effects rather than metabolic
interactions. In this context, the interactions are characterized
as adverse effects, such as headaches or throat pain.
Following the approach in [52], the dataset was further
preprocessed to remove interaction types occurring in less
than 500 DDI tuples, ensuring that only commonly occurring
types were considered. As a result, a dataset comprising
963 interaction types and 4,576,287 DDI tuples is obtained.

For the two public datasets, we select drug data and corre-
sponding SMILES information from the DrugBank dataset
and select DDI information from the Twosides dataset.
RPDAnet is a GNN-based DDI prediction framework,
we need to construct graph G to model the interdependent
relationship among drugs. RPDAnet takes the instances of
drugs as nodes within graph G, and utilizes the adjacent
matrices A to depict their connections (i.e., edges). For
example, if there is a DDI between drui and druj, the
element of Ai,j is set to 1; otherwise, it is set to 0. The
graph G is constructed by continuously injecting nodes and
edges. We finally constructed the DDIs graph with 548 drugs
and 64 DDIs where each DDI having no less than 150,000
interactions. For the constructed DDIs graph, we randomly
select 80% nodes as training data to train our model, 10%
nodes as validation data to fine-tune our model, and the rest
of the nodes as a test set to test our model.

B. BASELINES
We conducted a comprehensive comparison of our model
against state-of-the-art methods to verify the effectiveness of
RPDAnet. The baseline methods include:

• MHCADDI [53]: MHCADDI employs a co-attention
mechanism to effectively integrate joint drug-drug
information while conducting representation learning
for individual drugs.

• GAT-DDI [54]: GAT-DDI serves as the baseline model
in our implementation, utilizing graph attention net-
works (GAT) to generate drug representations directly
utilized for DDI prediction.
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TABLE 1. Confusion matrix for prediction results.

• MR-GNN [42]: MR-GNN adopts a strategy where
the representations obtained at each graph convolution
layer of nodes capture substructures of varying sizes
for each drug. These captured representations are then
collectively fed into a recurrent neural network to
generate a joint representation for a drug pair, facilitating
DDI prediction.

• SSI-DDI [18]: SSI-DDI considers the hidden features of
each node as substructures and subsequently calculates
the interactions between these substructures to derive the
ultimate DDI prediction.

• MDF-SA-DDI [55]: MDF-SA-DDI explores various
drug combinations by merging two drugs in four distinct
manners. Subsequently, the combined drug feature
representation is fed into four distinct drug fusion
networks, including a Siamese network, a convolutional
neural network, and two auto-encoders. The latent
feature fusion is achieved using transformer blocks.

• DDIMDL [26]: DDIMDL involves the creation of deep
neural network-based sub-models utilizing four distinct
drug features: chemical substructures, targets, enzymes,
and pathways. Subsequently, a joint deep neural network
(DNN) framework is employed to integrate these
sub-models and acquire comprehensive cross-modality
representations of drug pairs. These representations are
then utilized to predict drug-drug interaction (DDI)
events.

• Lee’s approach [56]: Lee utilizes autoencoders and a
deep feed-forward network, both trained on structural
similarity profiles, Gene Ontology term similarity
profiles, and target gene similarity profiles of established
drug pairs. This methodology aims to predict the phar-
macological effects of drug-drug interactions (DDIs).

• DeepDDI [57]: DeepDDI comprises two main compo-
nents: the structural similarity profile (SSP) generation
pipeline and the deep neural network (DNN). In this
approach, the two SSPs associated with each input drug
structure pair are merged and then input into the DNN to
predict the specific interaction type between the drugs.

C. EVALUATION METRICS
In this section, we adopt three keymetrics including AUROC,
AUPRC, and F1 score to evaluate the performance of
RPDAnet. Table 1 shows the confusion matrix for prediction
results, which are the basic elements that makeup AUROC,
AUPRC, and F1 score.

(1) Recall measures the proportion of actual positive cases
that were correctly identified by a classification model. It is
important when the cost of false negatives (missed positive
cases) is high, and we want to minimize the number of false

negatives:

Recall =
TP

TP + FN
. (20)

(2) Accuracy is the ratio of correctly predicted data points
(both true positives and true negatives) to the total number
of data points in the dataset. It is a general metric that is
useful when the dataset is balanced (roughly equal number
of positive and negative cases):

Accuracy =
TP + TN

TP + FN + FP + TN
. (21)

(3) Precision measures the proportion of true positive cases
among all the positive predictions made by a classification
model. Precision is important when the cost of false positives
(incorrectly classified positive cases) is high, and we want to
minimize the number of false positives:

Precision =
TP

TP + FP
. (22)

(4) The ROC curve is plotted on a coordinate system
that is constructed using the false positive rate (FPR) and
the true positive rate (TPR). The area under this curve,
known as AUROC, serves as a performance metric for the
model. A larger AUROC value indicates a better recognition
performance. The definitions of TPR and FPR are as
follows:

TPR =
TP

TP + FN
, (23)

FPR =
FP

FP + TN
. (24)

(5) The Precision-Recall Curve (PRC) is constructed by
plotting the recall rate (i.e., Recall) against the precision
rate (i.e., Precision) in a coordinate system. The area under
the PRC curve (AUPRC) quantifies the performance and is
utilized as a metric to assess the classifier’s effectiveness.
F1 score is a metric that takes into account both Precision
and Recall simultaneously. Its definition can be expressed as
follows:

F1 =
2 × Precision × Recall
Precision + Recall

. (25)

D. EXPERIMENTAL RESULTS
Table 2 and Table 3 display the prediction results of RPDAnet
alongside those of the baseline methods. Remarkably,
RPDAnet outperforms all the baseline models, exhibiting
the most favorable performance. Specifically, RPDAnet
demonstrates at least a 5% improvement in AUROC, a 7%
enhancement in AUPRC, and a notable 6% increase in F1
score when compared to the baseline models.

To summarize, among the baseline methods, DeepDDI
utilizing a single similarity feature and DNN exhibits
the poorest performance. However, DDIMDL and Lee’s
method show their strengths in AUPRC and F1 scores. The
commonality between these two approaches lies in their
utilization of four distinct drug similarities as input features
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TABLE 2. Performance on the Drugbank dataset.

TABLE 3. Performance on the twosides dataset.

FIGURE 3. Comparative experimental results of different encoders.

for the predictor. MDF-SA-DDI creates a multi-structure
neural network to refine the similarity features used by
DDIMDL and employs the self-attention mechanism to
combine the processed features. In contrast to drug similarity,
our proposed RPDAnet introduces heterogeneous graphs to
capture drug interaction features from extensive biomedical
data. Furthermore, the captured information regarding both
the graph structure and sequence structure from the inherent
chemical makeup of the drug, thereby ensuring comprehen-
sive representations of the drugs. Based on the characteristics
of these various features, we have developed three deep
neural network channels dedicated to processing the raw
features. As a result, our method significantly surpasses other
advanced approaches and demonstrates enhanced predictive
performance.

TABLE 4. Experimental results for the effectiveness of RPM.

FIGURE 4. Comparative results for the effectiveness of RPM.

E. ABLATION EXPERIMENT
In this section, we conduct comprehensive ablation experi-
ments to explore the impact of our three innovations onmodel
performance.

First, to verify the effectiveness of CMPNN, we con-
duct comparative experiments on encoders. Specifically,
we replaced the encoders with GAT, GCN, GMPNN,MPNN,
and conducted comparative experiments on these models
containing different encoders. As shown in Figure 3. the
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TABLE 5. Experimental results for the functional group-based DANN.

FIGURE 5. Comparative results for the effectiveness of DANN.

TABLE 6. Case study on the DDI prediction results of RPNAnet.

experimental results prove that the quality of embedding
is improved because CMPNN strengthens the interaction
process between bonds and atoms, which is an important
factor in determining RPDAnet outperforms the state-of-the-
art models.

Then, we investigate the effectiveness of RPM on
RPDAnet. We conducted comparative experiments on
RPDAnet with andwithout the RPMmodule. The experimen-
tal results are shown in Table 4 on DrugBank and Twosides
datasets. Figure 4 shows the comparison results with and
without RPM on the DrugBank dataset. Experimental results
demonstrate that the RPM module improves model general-
ization and predictive performance by adaptively selecting
more informative functional group subgraphs.

Finally, we explore the significance of functional
group-based DANN on RPNAnet. We compare the proposed
RPDAnet with its variant without the DANN module
on DrugBank and Twosides datasets. As demonstrated in
Table 5 and Figure 5, the experimental results prove that the
functional group-based DANN plays a key role in predicting
DDIs due to it is capable of considering the microscopic
interactions between functional groups.

V. CASE STUDY
In this section, we further validate the predictive efficacy of
our proposed framework for drug-drug interaction (DDI) by
conducting case studies in real-world scenarios. Particularly,
we randomly selected five pairs of predicted drug-drug
interactions (DDIs) generated by our proposed RPNAnet
model. Table 6 presents the predicted results alongside the
corresponding evidence from previous studies [58], [59],

FIGURE 6. Key substructures of headache-causing drug combinations.
The most important substructures are shown in blue.

[60], [61], [62]. Upon analysis, we found that all five pairs of
DDI predictions were consistent with the evidence reported
in these works. For example, Stage et al. reported that the
combination of Pyrimethamine and Aliskiren competitively
inhibited MATE1 and MATE2-K, leading to the occurrence
of Sarcoma as a side effect [58]. Banakh et al. confirmed
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that the interaction between Pyrimethamine and Tolcapone
resulted in the production of catechol-O-methyltransferase,
causing Breast disorder [59]. Parving et al. demonstrated
through clinical experiments that Muscle inflamma-
tion can be induced by combining Atorvastatin with
Amlodipine [60]. The presented evidence showcases the
promising and practical predictive performance of our
proposed RPNAnet framework in real-world DDI prediction
tasks.

VI. VISUALIZATION STUDY
The visualization results of our model are presented in
Figure 6, where the contributions of substructures are
depicted as a heat map with blue fill on the molecular
graph [65]. It can be observed that the drug amodiaquine,
nitazoxanide, arbidol, and lopinavir all have potential side
effects related to headaches, which is consistent with findings
reported in a previous study [65]. Furthermore, when com-
bined with different drugs, the key substructures of amodi-
aquine drugs remain essentially unchanged and consistently
contain phenylacetate ethyl ester (‘‘C6H5CH2COOCH3’’)
or its structural components. The visualization results have
effectively demonstrated the promising interpretability of our
model and proved its effectiveness in real-world application
scenarios.

VII. CONCLUSION
This paper proposes RPDAnet, a novel DDIs prediction
framework based on reinforced pooling and deep attention
mechanisms. Particularly, RPDAnet introduces reinforce-
ment learning to dynamically select informative molecular
fragments. RPDAnet then develops a CMPNN module to
obtain more robust functional group embedding and infer
the potential DDIs. We empirically evaluate the effectiveness
of RPDAnet on two real-world datasets. The experimental
results prove that our proposed RPDAnet framework exhibits
superior performance in DDI prediction tasks.

In future work, we aim to enhance reinforcement learning
by incorporating two-person cooperative games with interval
uncertainty, thereby effectively selecting more informative
functional groups [61]. In addition, we will introduce
more advanced optimization algorithms to fine-tune optimal
parameters to further improve model performance [66], [67].
Meanwhile, the relevant technologies of image processing
can also be introduced to assist the model to achieve optimal
performance [62]. Research works [68], [69] also provide
new ideas for our future work.
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