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ABSTRACT Smart grid power networks are essential for addressing the global energy crisis and combating
climate change. In the past few decades, information and communication infrastructure have greatly
improved. As a result, studying the characteristics of smart grids has become important. To accurately
represent the connectivity of different components in power networks, we need precise models. In this study,
we introduce a new growth model called PowerX. This model is designed to capture the characteristics of
real-world power networks. PowerX is a growth model that is designed to capture the characteristics of
real-world power networks by incorporating both random and ordered elements. Specifically, it is designed to
accurately capture power networks’ degree distribution and clustering coefficient. To assess the effectiveness
of PowerX, we compared it with existing growth models such as Watts Strogatz Small World model,
Henneberg’s model, and Modified Henneberg’s model, using the US Western States Power Grid dataset
consisting of 4789 nodes and 5571 edges. Our results show that PowerX precisely captures the degree
distribution of the real dataset, and its clustering coefficient is close to the actual dataset, outperforming the
other comparable models. In addition, we used Gephi to demonstrate the features of theWestern States power
grid, including identifying the most important node of the network, community structure, and the strongest
and weakest nodes. This research provides valuable insights into the characteristics of power networks and
demonstrates the effectiveness of PowerX in accurately modeling them. The datasets and codes are publicly
available for further research at: github.com/irfan2inform/powerX.

INDEX TERMS Complex networks, Henneberg’s model, graph modeling, power networks, power systems,
smart grids.

I. INTRODUCTION
Smart grids for power distribution are among the most
vital networks in society. Over time, they have developed
into complex systems that involve numerous nodes, edges,
and communities linking different grid components. These
components encompass a range of elements such as electrical,
mechanical, and communication nodes, various consumers,
generation, and transmission pathways, as well as structural
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components and complex engineering designs [1]. The
interrelated nature of the various components of the modern
grid can be efficiently modeled using graph theory and
complex networks [2], [3], [4].
While the smart grid facilitates consumers and produc-

ers simultaneously, its reliability, stability, robustness, and
optimized operation have become challenging due to the
enormous interconnections at various points. A modern
power grid is a complex network of multiple components
cooperating to generate, transmit, and distribute electricity
to customers, as shown in Fig. 1. Some of the key
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components of a modern power grid are described as
follows:

A. POWER PLANTS
Power plants are facilities designed to generate electricity by
harnessing various energy sources, such as solar, wind, water,
or fossil fuels. There exist multiple types of power plants,
including coal-fired, natural gas-fired, hydroelectric power
plants, and renewable energy plants such as solar and wind
farms.

B. TRANSMISSION LINES
Transmission lines are like the lifeline of the power grid,
responsible for delivering electricity from power plants
to substations. These high-voltage wires, often supported
by sturdy towers or poles, are typically constructed using
materials such as steel or aluminum. The electricity that flows
through them packs a punch, with voltages ranging from
115,000 to 765,000 volts.

C. SUBSTATIONS
Substations serve as critical facilities in the power grid,
tasked with transforming the high-voltage electricity carried
by transmission lines into lower-voltage electricity that
can be safely and efficiently distributed to homes and
businesses. To accomplish this transformation, substations
rely on transformers - devices specially designed to alter the
voltage of the electricity passing through them. In this way,
substations are essential in ensuring that power is delivered to
customers at a voltage level that is both safe and appropriate
for their needs.

D. DISTRIBUTION LINES
Distribution lines are wires that carry electricity from
substations to homes and businesses. They aremade of copper
or aluminum and are held up by poles or buried underground.
The electricity on these lines is usually less powerful than on
transmission lines and is between 4,000 and 35,000 volts.

E. TRANSFORMERS
A transformer is an electrical device that transfers energy
from one circuit to another using electromagnetic induction.
It consists of two or more coils of wire wrapped around a
magnetic core. They transmit and distribute electrical energy
efficiently and have other important applications in electronic
devices.

F. METERING AND BILLING EQUIPMENT
Metering and billing equipment measures and bills energy
consumption, consisting of meters, communication devices,
and software that monitor, record, and analyze energy data.
Smart meters and advanced infrastructure allow real-time
monitoring and remote data collection, promoting accuracy,
energy conservation, and waste reduction. This data is used
to generate customer bills and provide feedback on energy
usage patterns.

G. CONTROL AND COMMUNICATION SYSTEMS
Control and communication systems are the brains of the
power grid, ensuring that electricity flows smoothly and
safely. These systems are equipped with sensors, control
devices, and communication networks that enable operators
to monitor the grid’s performance in real-time and make
adjustments as needed. With these sophisticated systems, the
power grid can operate efficiently, and potential problems can
be detected and addressed before they become major issues.

The modern smart grid revolutionizes energy transfers
from point A to point B. A well-known architecture divides it
broadly into four sub-systems: generation, transmission, and
distribution for the fourth system, i.e., consumption, as shown
in Fig. 2.

Millions of people worldwide have been affected by
faulty lines, equipment, and maintenance of smart grids [6].
The complex structure of the power grid makes it difficult
to identify the source of most faults. In a centralized
power grid, a single station’s failure to provide power can
cause a domino effect of power outages throughout the
system [7], [8]. As a result, modern power grids are evolving
towards decentralization and intelligence by implementing
structural, monitoring, and topological modifications to
prevent cascading failures [9], [10].
Various studies have investigated power grids in different

locations, revealing a range of topological structures not
captured by existing models. Inaccurate models can lead
to inefficient and unreliable power grid operation, with
potentially severe consequences for both the environment and
society. It is crucial to develop models that can accurately
capture the structure and dynamics of power grids in different
locations, allowing for more effective planning, management,
and control of these critical systems [10]. Watts Strogatz
showed the characteristic path length and clustering in a
power grid similar to the small-world network model [11],
[12]. Other studies have shown the structure of the power grid
to be scale-free (power-law) [13], [14] or exponential [15].
However, fully understanding the topological structure
remains a relevant research question [16].
The disconnection of a node in power networks is

considered a failure because the electricity flow is inter-
rupted, unlike epidemics network [17], where the failure
is considered to be the individual death or causing of the
disease. The Power grid network relies on the impedance
values of the nodes and electric circuit laws, which define
the load and response of the network under different
conditions [18]. Complex network analysis is applied for the
structural vulnerability assessment, cascading failures, and
grid synchronization for effective operation and expansion of
the modern power grid. Many models are being proposed to
predict the topological structure and dynamic behavior of the
power grid, but the effectiveness of these models is still an
open question [19], [20].

A better understanding of the topological characteristics
of power smart grids is needed to locate the pattern of
failures, better organize the nodes, and intelligently distribute
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FIGURE 1. Smart grid network with its seven major components.

FIGURE 2. Smart grid architecture presenting power systems, power flow, and information flow [5].

the load among different stations. In this work, a novel
model named PowerX is proposed to capture the power grid’s
characteristics by merging randomness and order. Applied to
real data from the US Western States Power Grid, the results
show that PowerX captures the power grid’s characteristics
better than benchmark models in terms of degree distribution,
clustering coefficient, and other parameters [16].

II. PROBLEM FORMULATION AND PROPOSED MODEL
Real networks are neither totally random nor deterministic.
Some extent of randomness is found in every data but yet
they are beautifully structured when observed carefully [21].
Many real-world networks exhibit a mixture of randomness
and structure, making themmore complex and challenging to
model accurately. Randomness can arise from various factors,
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such as noise, errors, and individual preferences or behaviors,
while structure can arise from functional constraints, physical
constraints, or evolutionary processes. For example, the
number of petals in a flower appears to be random, yet they
follow a Fibonacci numbers pattern. The small world network
represents most of the daily life real networks such as social
networks, citation networks, and the 6-degree separation of
people in the US experiment performed by Milgram [22].
Fig. 3 shows how a small world network lies between random
and regular networks.

The Barabasi-Albert [23] model is a widely used genera-
tive model for complex networks in the scientific community.
This model generates a scale-free network by sequentially
adding new nodes to the network and connecting them to
existing nodes with a probability proportional to the degree
of the existing node. Here, the degree of a node, represented
by k, is defined as the number of connections to other nodes in
the network. The probabilityP(i) that a new nodewill connect
to an existing node i is given as follows:

P(i) =
kα
i∑
j k

α
j

(1)

where ki is the degree of node i, and the summation is over all
existing nodes in the network. The parameter α is a constant
that controls the network’s degree distribution. This simple
yet powerful model can generate a wide range of scale-
free networks, capturing the key features of many real-world
complex networks such as the Internet, social networks, and
biological networks.

The present work is motivated by the dual nature of real-
world data, which exhibits both randomness and structured
patterns. To capture these characteristics, we propose a novel
algorithm that combines the Erdos-Renyi random graph
model (which incorporates randomness, albeit with a slightly
modified connection process), the Barabasi model (which
implements preferential attachment), and Henneberg’s model
(which generates a high clustering coefficient). This new
algorithm, named PowerX, aims to provide a more accurate
representation of real-world power grid networks [24].

A. MAJOR CONTRIBUTIONS
Following are the major contributions of this work:

• This paper presents PowerX, a unique and innovative
model designed to accurately depict the connections
and groupings in real-world power networks. PowerX
skillfully blends crucial elements from three renowned
models, specifically the Erdos-Renyi random graph
model, the Barabasi-Albert model, and Henneberg’s
model. This combination makes PowerX particularly
well-suited for power grid applications.

• To thoroughly evaluate PowerX’s effectiveness, an exten-
sive comparison is carried out with other widely-used
models, such as the Watts-Strogatz Small World model,
Henneberg’s model, and modified Henneberg’s model.
The US Western States Power Grid dataset serves as the
foundation for this comparison. The results show that

FIGURE 3. Rewiring of a network with probability 0 to 1 by applying the
WS Small World Model. The regular network transforms to a random
network by increasing the probability from 0 to 1.

PowerX surpasses these other models in capturing the
real dataset’s characteristics, highlighting its potential
for a more accurate representation of power networks.

• The paper not only offers valuable insights into the
intrinsic characteristics of power networks but also
convincingly demonstrates the superior performance
of PowerX in modeling these complex systems.
An advanced network analysis tool called Gephi is
employed to further analyze the power grid dataset. This
tool enables the identification of the most critical parts
of the network, the delineation of community structures,
and the discernment of the strongest and weakest nodes.

Next, we describe and present the proposedmodel in detail.

B. REAL NETWORK DATASET
The proposedmodel was applied to a real-world dataset of the
US Western States Power Grid, which includes 4789 nodes
and 5571 edges, serving approximately 72 million people.
The power station network spans from Alberta in the north to
Mexico in the south and from California in the west to Texas
andMontana. The network is undirected and unweighted, and
we used it to evaluate the performance of our algorithm [25].
According to Watts Strogatz, the network has an average
degree of 2.669, and its characteristic path length is 18.989,
which classifies it as a small world network. A detailed
network visualization can be found in Section VII using
Gephi software [26].

C. MODEL DESCRIPTION
The proposed powerX model, entails a three step process
whereby incoming nodes are able to effectively foster growth
within the network, as shown in the Fig. 5.
Let W be the set of incoming words. We can partition W

into two subsets, Weven and Wodd , where Weven contains the
words that entered the system at even-numbered positions
and Wodd contains the words that entered at odd-numbered
positions.

Nodd = ni: where i is odd and ni represents the tag i+4, for
i = 1, 2, 3, . . .

Neven = ni: where i is even and ni represents the tag i+5,
for i = 1, 2, 3, . . .

In this way, Nodd contains nodes representing tags 5, 7, 9,
and so on, while Neven contains nodes representing tags 6, 8,
10, and so on.
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FIGURE 4. Characteristics of the Western States Power Grid network. (a) Degree distribution of the overall network. (b) Log plot of the degree distribution.
(c) complementary Cumulative Distribution Function (cCDF). (d) Topological structure of the network constructed using Gephi by the Force Atlas Layout.

Step 0: Initialize a network, denoted by G0, with four
nodes arranged in a triangular structure as illustrated in Fig. 5.

Step 1: [Odd nodes] Add half of the incoming nodes
randomly to the network. This is motivated by the observa-
tion that real-world networks exhibit random connections.
To model this characteristic, we introduce randomness in our
model by selecting half of the incoming nodes randomly.

Step 2: [Even nodes] Attach the remaining incoming
nodes to two nodes in Gt−1 using preferential attachment,
which is defined by the following equation:

P(ni) =
ki∑

j∈Gt−1
kj

(2)

where P(ni) is the probability of selecting node ni, ki is the
degree of node ni, and

∑
j∈Gt−1

kj is the sum of degrees of all
nodes in Gt−1.
Step 3: If the two nodes selected in Step 2 are not

connected to each other, connect them with a probability p.
We refer to this edge as the third Henneberg’s edge, as it
operates on the same principle as in Henneberg’s model but
with the added probability p.

Algorithm 1 generates a complex network with a structure
that includes both randomness and preferential attachment,
and it is possible to control the degree distribution of the
network by adjusting the value of the parameter α and
probability p.
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FIGURE 5. Proposed model for power grid networks, powerX. Addition of
Odd and Even nodes are shown in STEP 1 and STEP 2. Step 3 shows the
interconnection of the third henneberg’s node with probability p.

III. SIMULATIONS AND RESULTS
The proposed model is designed as a growing model, where
every new incoming node contributes to an increase in the
number of edges. The incoming nodes are segregated into
odd and even nodes. To ensure the similarity with the real
dataset of the US Western States Power Grid, we halt the
simulation when the number of nodes in the network reaches
4789. However, as a consequence, the number of edges
in the simulated network exceeds that of the real dataset.
We conducted 10 simulation runs, and the results consistently
showed a similar degree distribution curve, as demonstrated
in Fig. 6.

A. THE ADAPTIVE THIRD HENNEBERG’S EDGE
In Fig. 5, STEP 3 of the proposed model depicts the addition
of the third Henneberg’s edge with a probability p. The
addition of the third Henneberg’s edge follows two possible
scenarios:

• If the two nodes are already connected, then no action is
taken.

• If the two nodes are not connected, then they are
connected with a probability p. A probability of p=0
implies that the nodes are not connected, while a
probability of p=1 means that the nodes are connected.
For probabilities of p between 0 and 1, the decision to
connect or not depends on the specific value of p.

Algorithm 1 Generation of Complex Network
1: Initialize a small initial network of four nodes connected

in a triangular fashion
2: for each new ‘‘odd’’ node to be added to the network do
3: Choose a random existing node, ni, from the current

network, Gt , to connect the new node, nt+1, to:
4: Add the edge (ni, nt+1) to the network Gt+1.
5: end for
6: for each new even node to be added to the network do
7: Choose two existing nodes, ni and nj, from Gt to

connect the new node, nt+1, to using the preferential
attachment probability:

P(ni) =
kα
i∑

j∈Gt k
α
j

(3)

where ki is the degree of node ni, α is a parameter that
controls the preferential attachment strength.

8: Add the edges (ni, nt+1) and (nj, nt+1) to Gt+1.
9: end for
10: for each new ‘‘even’’ node added to the network do
11: if the nodes chosen in Step 3 are not connected then
12: Connect them with probability p by adding the edge

(ni, nj) to Gt+1.
13: end if
14: end for
15: return The generated complex network Gt+1

The following sections demonstrate the simulation results of
our proposed model for various probabilities of connecting
the two nodes using the third Henneberg’s edge.

B. DEGREEE DISTRIBUTION
Fig. 7 presents the degree distribution curves and the
average degree distribution of both the real network and
the proposed model, with probabilities 0, 0.2, 0.4, 0.6, 0.8,
and 1.0 of the third Henneberg’s edge. Our observations
indicate that when p = 0, the average degree distribution of
the proposed model is closer to the real data. However, the
average degree distribution increases as p increases, which
is attributable to the growing nature of the proposed model.
Nevertheless, introducing a lower probability into STEP 2 of
the proposed model can control the average degree. Notably,
it is impossible to introduce the probability into STEP 1 of the
proposed model, as this may result in some incoming nodes
remaining disconnected from the network.

C. CLUSTERING COEFFICIENT DISTRIBUTION
The clustering coefficient distribution and average clustering
coefficient of the proposed model with different probabilities
of the third Henneberg’s edge are shown in Fig. 8, along
with the corresponding values for the real Western States
power grid network. Our analysis reveals that a probability
of 0.2 results in a clustering coefficient that closely matches
the values observed in the real dataset.
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FIGURE 6. Simulation results of the 10 different runs of the proposed
model. (a) Degree distribution of the proposed model. (b) Log plot of the
Degree Distribution (c) cCDF of the proposed model for 10 different
simulation runs.

FIGURE 7. Adaptive Degree distribution of the proposed model with
varying probabilities of the third Henneberg’s edge. The legend in the
graph shows the average degree of each network.

D. DISTANCE DISTRIBUTION
Figure 9 displays the distance distribution and average
distance of the real network and proposed model for
probabilities 0, 0.2, 0.4, 0.6, 0.8, and 1.0 of the third
Henneberg’s edge.

We observe that decreasing the probability from 1.0 to
0 results in the proposed model’s average distance becoming
closer to the real data. However, the real data’s large average
distance value could be addressed in the future by introducing
a lower probability value in STEP 2 of the proposed model.

FIGURE 8. Adaptive Clustering Coefficient of the proposed model with
varying probabilities of the third Henneberg’s edge. The legend in the
graph shows the average clustering coefficient of each network.

FIGURE 9. Adaptive Distance distribution of the proposed model with
varying probabilities of the third Henneberg’s edge. The legend in the
graph shows the average distance of each network.

E. ADAPTIVE AVERAGE VALUES
The impact of the probability p of the third Henneberg’s edge
on several network parameters, including the average degree,
maximum degree, average clustering coefficient, density,
and average path length, is evident. Fig. 10 illustrates the
variation of these parameters as the probability is increased or
decreased from 0 to 1, providing a clear visual representation
of the observed increasing/decreasing pattern. This suggests
that the probability of the third Henneberg’s edge has a
significant impact on the network topology and should be
carefully considered in network modeling and analysis.

F. COMPARISON WITH STATE-OF-THE-ART MODELS
The proposedmodel is inspired byHenneberg’smodel, which
describes the growth of connectivity among incoming nodes.
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FIGURE 10. Adaptive parameters of the proposed model by changing the
probability of the Henneberg’s edge.

FIGURE 11. Henneberg’s Model.

In the proposed model, new nodes connect to existing nodes
in a triangular fashion, as illustrated in Fig. 11.
The US Western States Power Grid, studied in Section III,

has been previously described as a small world network in
its original paper [11]. In order to make the power-law dis-
tribution more prominent, our henneberg’s modified model
incorporates preferential attachment. Specifically, in STEP
2 of our proposed model, incoming nodes are connected
to existing nodes using preferential attachment. Therefore,
we compare the proposed PowerX model with three different
networks, including the original Henneberg’s Model, the
modified Henneberg’s Model, and the Watts Strogatz Small
World Model.

IV. VISUALIZATION USING GEPHI
Gephi is a powerful open-source software tool that facilitates
the analysis and visualization of complex networks. The tool
offers an interactive platform that enables users to explore
and interpret network data in a user-friendly manner, helping
them discover patterns and insights that might be concealed
in the underlying data. Gephi offers a suite of robust features
for importing, manipulating, and visualizing network data,
such as a range of layout algorithms for organizing nodes
and edges, dynamic filtering tools for exploring different
facets of the network, and statistical measures for studying
network properties like centrality, clustering, and modularity.
With a high degree of customization, the software allows
users to enhance its capabilities with various plugins and
extensions. Gephi is an indispensable tool for researchers,
analysts, and practitioners working with complex network
data, providing an intuitive and powerful platform for

FIGURE 12. Degree Distribution of the real dataset (US Western States
Power Grid), the proposed model, Henneberg’s Model, Modified
Henneberg’s Model, and WS Small World Model.

FIGURE 13. Complementary Cumulative Distribution function (cCDF) of
the real dataset (US Western States Power Grid), the proposed model,
Henneberg’s Model, Modified Henneberg’s Model, and WS Small World
Model.

exploring and visualizing network structures and dynamics
across diverse domains and applications.

A. MODULAR STRUCTURE
The proposed model has a modular structure with a modular-
ity value of 0.918, and it forms a total of 21 communities. The
detailed results are as follows:

• Modularity: 0.918
• Modularity with resolution: 2.873
• Number of communities: 21

Given this network, we can analyze its properties and
answer questions such as:

• What is the strongest node in the network?
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FIGURE 14. Clustering Coefficient of the real dataset (US Western States
Power Grid), the proposed model, Henneberg’s Model, Modified
Henneberg’s Model, and WS Small World Model. The legend in the graph
shows the average clustering coefficient of each network.

FIGURE 15. Distance Distribution of the real dataset (US Western States
Power Grid), the proposed model, Henneberg’s Model, Modified
Henneberg’s Model, and WS Small World Model. The legend in the graph
shows the average path length of each network.

• What is the weakest node in the network?
• What is the strongest edge in the network?
• What is the weakest edge in the network?

B. STRONGEST NODE OF THE NETWORK
The coreness of a network is a metric that characterizes
the resilience of its nodes. Specifically, it quantifies the
number of nodes that must be removed or traversed to reach
a given node, providing insights into the robustness of the
network [24]. In this study, the graph’s coreness is calculated
to be 5, and the corresponding nodes belonging to the 5-core
are visualized in Fig. 17.

The strongest nodes are colored Yellow as shown. They are
12 nodes as shown in Fig. 18.

FIGURE 16. The network of Western States Power Grid drawn using Gephi
and running a community structure algorithm.

FIGURE 17. Visualization of the US Power Grid Network showing the
strongest nodes.

C. WEAKEST NODE OF THE NETWORK
In a network, the weakest points are usually 1-core nodes,
known for their low connectivity. Each of these nodes has just
one connection to another node in the network. As a result,
they don’t play a significant role in the overall network since
they don’t act as bridges or help with communication between
other nodes. Their impact on the network’s overall unity and
function is quite limited.

The main issue with 1-core nodes is their risk of
disconnection or isolation. With only one connection, losing
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FIGURE 18. strongest nodes with their charactestics.

or breaking that connection can lead to complete separation
from the rest of the network. These weak nodes are more
likely to cause disruptions, negatively affecting the network’s
overall strength. Recognizing and strengthening these weak
nodes, when possible, can be an important step in improving
the stability and performance of a network, especially when
the nodes represent essential components or resources.

D. MOST IMPORTANT NODE OF THE NETWORK
Betweenness centrality is a key metric in network analysis,
employed to quantify the prominence of a node within a
network based on the shortest paths between all pairs of
nodes. This measure specifically evaluates the frequency at
which a node appears on these paths, thereby providing
insights into the node’s influence over the network’s overall
connectivity. Nodes exhibiting high betweenness centrality
are considered vital, as they often serve as communication
bridges or network connectors, effectively controlling the
flow of information or resources across the network.

Calculating the betweenness centrality for a node involves
determining the sum of the ratio of the shortest paths
between all pairs of nodes that traverse the node in question.
This calculation facilitates the identification of crucial
intermediary nodes or brokers, which are typically situated
in strategically advantageous positions within the network.
Consequently, such nodes are able to regulate access to
information and resources, potentially manipulating other
nodes’ connectivity. In real-world applications, betweenness
centrality has proven effective in various contexts, including
social networks, transportation networks, communication
networks, and biological networks, by highlighting key nodes
or individuals in each scenario.

The most important node, indicated in red in Fig. 19, has
the highest betweenness centrality score of 3518477.

FIGURE 19. Visualization of the US Power Grid Network showing the
most important node of the network.

V. FINAL ANALYSIS
The largest node in a network may serve as the backbone,
but it is also vulnerable to attacks, making the security of
the entire network more critical. Therefore, understanding
the characteristics of the network is essential to preventing
significant losses, such as fatal breakdowns of the smart grid.
In this study, the WS model indicates that the US Western
States power grid possesses a small-world network property,
evidenced by its low characteristic path length. However,
the proposed model has a lower characteristic path length
of 6.8, suggesting that it will be more efficient in terms of
network communication. The degree distribution of the real
power grid remains a topic of debate, with some suggesting
it follows a power-law distribution, exponential distribution,
or other types. Additionally, different power grids exhibit
distinct topological structures, such as scale-free (power-
law) or exponential, depending on factors such as power
distribution, Ohm’s law, Kirchhoff’s laws, among others,
contributing to the complexity of the power grid network.

Our proposed model has accurately captured the degree
distribution of the USWestern States Power Station network,
enabling the study of synthetic networks for future analyses.
The clustering coefficient is a critical parameter that varies
across different networks, providing insights into essential
features such as robustness, safety, and vulnerability.We have
made our clustering coefficient adaptable, with values rang-
ing from 0.000616 to 0.3036, depending on the probability
of Henneberg’s edge. The closest clustering coefficient to
the real data of the Western States Power Grid, 0.0801,
is achieved at a probability of 0.2, with a clustering coefficient
of 0.0710.

The Western States power grid network exhibits a
scale-free structure, with high-degree nodes (hubs) having
a disproportionately significant influence. However, this
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structure makes the network vulnerable to targeted attacks,
as evidenced by the highest degree node having only one
neighbor edge out of its 18 total edges.

Gephi facilitates visualization of networks, simplifying
and accelerating their study. The most important node, with
the highest degree, is easily identifiable in the graph produced
by Gephi.

VI. CONCLUSION
The power smart grid network is a highly complex system
that has evolved over many years and significantly impacts
human life in terms of safety, communication, transportation,
and more. Any unknown fault in the power grid can have a
disastrous effect on these vital processes and result in chaos.
In the past, most power grid failures have caused cascading
effects, leading to power outages over large areas. To address
these challenges, we have developed a novel network model,
powerX, that precisely describes the power grid network.
By simulating our model on real data from the US Western
States Power Station, we have perfectly matched the actual
data regarding degree distribution and clustering coefficient.
Our proposedmodel presents a promising approach for future
research on power grid network analysis, contributing to
developing more effective approaches to ensure the reliability
and security of power grid networks.

VII. FUTURE WORK
Some potential future directions of this work could include
exploring further applications of the powerX network model
to investigate the vulnerability and robustness of power grid
networks. Additionally, the average path length difference
between the proposed model and real data is quite high,
so future work could focus on tuning this parameter to better
match real-world data. One potential approach to improving
the model would be introducing a probability into STEP
1 and STEP 2, although this may lead to the problem
of unconnected nodes. One solution would be to continue
adding new nodes to the proposed model until the required
number of nodes are connected. It would also be interesting to
investigate the effects of targeted attacks on the network, and
the role of highly connected nodes (i.e., hubs) in maintaining
the network’s stability. Finally, incorporating real-time data
streams into the powerX model could enhance its predictive
capabilities, enabling more accurate predictions of potential
faults and fast responses to prevent outages.

CODE AVAILABILITY
MATLAB code files used to simulate the proposed model
and for visualization are publicly available at github.
https://github.com/irfan2inform/powerX
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