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ABSTRACT This paper proposes a novel algorithm to accurately calculate the coordinates of homoclinic
points observed in discrete-time dynamical systems. The proposed method is based on the particle swarm
optimization method. Compared with the current methods, the proposed methodology has the advantages
of not requiring the careful selection of the initial conditions and not requiring information related to
the derivative of the objective function. It is shown that the proposed method can successfully obtain the
homoclinic points of a system, even if the system parameters are close to those that describe the homoclinic
bifurcation sets of the system; this is achieved via the construction of an efficient objective function that
depends on the Euclidean distance between the points in each manifold. We apply the developed method to
two- and three-dimensional discrete-time dynamical systems and demonstrate the validity of the algorithm
via the numerical work. The reliability of the proposed algorithm was achieved by evaluating a metric based
on the success rate of the method.

INDEX TERMS Particle swarm optimization, homoclinic points, homoclinic tangency, discrete dynamical
systems, global bifurcation.

I. INTRODUCTION
Open questions remain regarding many mechanisms in the
natural world across numerous research fields. Mathematical
models, including nonlinear systems, are widely used to
simulate and analyze such mechanisms. These mathematical
models are applied within a huge variety of fields, but
they are often similar in their construction as they are
frequently based on ordinary differential equations (ODEs)
or maps. For example, the Lorenz system is a model
used to investigate atmospheric convection; this model is
described by a nonlinear system of threeODEs [1]. Izhikevich
introduced a model that accurately describes the functioning
of neurons; this model includes a system of ODEs and a
discrete map that represents neural firing [2]. Chua developed
a simple electronic circuit that exhibits chaotic behavior;
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this model is composed of three ODEs that contain a non-
smooth function [3]. Such nonlinear systems frequently
exhibit exciting phenomena, including multistability, limit
cycles, self-oscillations, bifurcations, and chaos. Chaos has
been an active topic of research since its discovery in the
late 20th century. Recent work has focused on its underlying
mechanisms [4], [5] and has led to the development of
technologies that utilize its essential characteristics, such as
initial value sensitivity or the existence of dense periodic
points; examples of technologies that utilize chaos include
image encryption via chaos cryptography [6], modeling new
dynamical systems including chaotic systems [7], [8], and
synchronization via chaotic neural networks in networked
control systems [9].

Smale derived a sufficient criterion to demonstrate the
existence of chaos in a system [10]. Smale demonstrated that
a diffeomorphism topologically conjugates to the horseshoe
map if the discrete dynamical system defined by the
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diffeomorphism has a saddle point and its stable and
unstable manifolds contain transversal intersections, which
are referred to as homoclinic points. Since the horseshoe map
leads to chaotic dynamics, the existence of the transversal
homoclinic points indicates the existence of chaotic behavior
in the system. In other words, we can confirm the existence of
chaos in a nonlinear system by demonstrating that the system
contains homoclinic points. Homoclinic points emerge (and
disappear) at the specific parameter value at which the
stable and unstable manifolds are tangent to each other; this
geometric relationship referred to as homoclinic tangency.
This phenomenon is considered to be within a class of global
bifurcations in discrete-time dynamical systems referred to as
homoclinic bifurcations.

To find the homoclinic points or the homoclinic bifurcation
parameters of a given system, it is normally necessary
to derive the mathematical conditions, called objective
functions, for the existence of the homoclinic points and
obtain their roots via numerical methods. Numerous methods
to approach this problem have been developed, including
those proposed in [11], [12], [13], and [14]. The conventional
methods used to find the roots of the objective functions
require the derivative of the objective functions; Newton’s
method is widely used in such problems. Key features of
algorithms based on Newton’s method include:

1) The manual selection of suitable initial values.
2) The calculation of the derivatives of the objective

function.
3) Rapid convergence due to its single-point search

approach.

Such methods work well and exhibit a good rate of
convergence when given suitable initial conditions. However,
these methods also have disadvantages, for example, it can
be difficult to accurately calculate the derivatives of the
objective functions, and the success of such methods is
highly dependent on the selection of the initial conditions.
In a chaotic situation, the selection of the initial conditions
is a difficult problem because the value of the objective
function is sensitive to the initial conditions. Even in
three-dimensional (3D) systems, previous work [15] has
approached the homoclinic point problem by assuming a two-
dimensional (2D) plane as a stable manifold despite it is
actually a 3D surface.

Techniques other than Newton’s method can also be used
to find the roots of the objective function in problems related
to homoclinic points. In the works [16], [17], a method based
on the particle swarm optimization (PSO) [18] was proposed;
this method was referred to as the nested-layer particle swarm
optimization (NLPSO) algorithm; this algorithm can be used
to derive the local bifurcation set. The PSO technique does not
require the careful selection of initial values or the derivative
of the objective function; the algorithm does not require the
stability of the periodic solutions to derive the local bifur-
cation parameters, including the period-doubling, saddle-
node, and Neimark-Sacker bifurcations [19]. In the case of

bifurcations that are not classified as local bifurcations, a
similar approach to that used in the NLPSO algorithm can be
implemented; such an NLPSO-based algorithm can be used
to investigate the properties of border-collision bifurcations
[20]. However, to date, no study has been conducted to
identify a suitable algorithm for use on systems that exhibit
homoclinic bifurcations.

A method to obtain the homoclinic points of 2D discrete
dynamical systems has initially been considered in our
previous works [21], [22]. The proposed method was also
based on the PSO algorithm and utilized two PSO algorithms,
which were evaluated alternately on the stable and unstable
manifolds. However, the previously proposed method cannot
obtain the homoclinic points when the parameters describing
the system are closer to those of the homoclinic bifurcation
sets, i.e., the method cannot be used when the stable
and unstable manifolds are asymptotically tangent at the
homoclinic points. Advantages of the method proposed here
include:

1) Eliminating the manual selection of the initial values
via the use of a random candidate initialization.

2) No information related to the derivatives of the
objective function is required; this renders our novel
method suitable for applications related to complex
system.

3) The use of a multi-candidate solution strategy, enhanc-
ing the robustness and range of the search space.

In this paper, we propose an innovative algorithm, based on
the underlying concepts of the PSO algorithm, which can
be used to calculate the exact coordinates of the homoclinic
points; the method proposed here overcomes the aforemen-
tioned inadequacy of the previously developed algorithm.
This work represents an important step in the development of
an efficient method for obtaining the homoclinic bifurcation
parameters as the proposed method can be used for parameter
values that are close to the bifurcation sets. Furthermore,
the method can be used to investigate higher-dimensional
systems as the objective function is defined in relation to the
Euclidean distance between the points in the manifolds.

The rest of this article is organized as follows: Section II
demonstrates the advantages of the PSO and outlines the basis
of the algorithm. Section III defines a discrete dynamical
system, demonstrates that the system contains both stable
and unstable manifolds, and derives the conditions for the
existence of homoclinic points. Section IV proposes amethod
to obtain the homoclinic points using a PSO algorithm.
We define a new search space and a new objective function
that satisfy the previously obtained conditional expressions.
Section V presents the results of numerical experiments
obtained using the proposed method to investigate the
behavior of the 2D and 3D discrete-time dynamical systems
and verifies the accuracy of the method. Finally, Section VI
presents the conclusions obtained from this work, highlights
the importance of this method, and proposes potential
directions for further related works.
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II. PARTICLE SWARM OPTIMIZATION
The PSO algorithm is a metaheuristic optimization method
that models swarm intelligence, such as that exhibited
by flocks of birds and schools of fish. PSO generates
multiple particles that have both a defined velocity and
position within the search space; the particles represent
the candidate solutions of the optimization problem. The
particles are permitted to move around the search space in
search of the optimal solution; the particles are permitted
to share information with each other. The PSO algorithm
does not require carefully selected initial values or the
derivatives of the objective function; both of these features are
necessary when using Newton’s method. The PSO method
accepts changes to the candidate solution in directions that
lead to worse solutions as it does not have information
related to which directions represent worse directions. The
characteristics of the PSO algorithm mean that it can work
well in the case of chaotic dynamical systems. The algorithm
used in PSO is described below. L particles move in the D-
dimensional search space, RD; these particles search for the
minimum value of the objective function F : RD

→ R. The
optimization problem to solve here is defined as follows:

minimize
z

F(z), (1)

where z = ⟨z1, z2, · · · , zD⟩ ∈ RD is a D-variable
vector, which represents the position of a particle. In the
implementation of the PSO algorithm, we use the termination
criterion,C , and we impose a maximum number of iterations,
T , i.e., the calculation terminates when the inequality F(z) ≤
C is satisfied or the number of iterations undertaken is equal
to T . The velocity and position of each particle are defined
by

ui(t) =
〈
ui1(t), u

i
2(t), · · · , u

i
j(t), · · · , u

i
D(t)

〉
, (2)

zi(t) =
〈
zi1(t), z

i
2(t), · · · , z

i
j(t), · · · , z

i
D(t)

〉
, (3)

respectively, where t ∈ N represents the discrete time, which
corresponds to the number of time iterations, i = 1, . . . ,L
is the identifier for each particle, and j = 1, . . . ,D is the
identifier for each dimension. Each particle is given an initial
velocity of 0, i.e., ui(t) = 0 for all i, and a random initial
position in RD. The velocity and position are updated via the
following rules

uij(t + 1) = wuij(t)+ c1r1
[
pij(t)− z

i
j(t)

]
+ c2r2

[
gj(t)− zij(t)

]
,

zij(t + 1) = zij(t)+ u
i
j(t + 1), (4)

where pi(t) =
〈
pi1(t), . . . , p

i
j(t), . . . , p

i
D(t)

〉
∈ RD represents

the vector satisfying theminimum value of the objective func-
tion in the search history of the i-th particle at time t , which is
referred to as pbest, and g(t) =

〈
g1(t), . . . , gj(t), gD(t)

〉
∈ RD

is the vector satisfying the minimum value of the objective
function in the search history of all particles at time t , which

is referred to as gbest, w is the inertial weight, c1 and c2 are
the acceleration coefficients, and r1 and r2 are appropriate
random numbers within the range 0 to 1. The values of pbest
and gbest are updated immediately after calculating (4). The
PSO continues updating until the termination criteria is met.
When the PSO algorithm terminates, the search result is given
by the final value of gbest.

III. HOMOCLINIC POINTS
We consider an n-dimensional discrete-time dynamical
system defined by

x(k + 1) = f λ (x (k)) , (5)

where f λ : Rn
→ Rn represents a diffeomorphism, k ∈ Z

indicates the discrete time, x(k) ∈ Rn is the state variable at
discrete time k , and λ ∈ Rr is a vector that represents the
system parameter. Here, we denote the l-th functional power
as f lλ = f λ◦f λ◦· · ·◦f λ. A point xp is said to be an l-periodic
point if xp satisfies the following criteria:

xp = f lλ(xp) and xp ̸= f qλ(xp) for q ∈ (0, l) ⊂ Z.

(6)

The Jacobian matrix of f lλ, denoted Jf lλ , at an l-periodic point
xp is given by

Jf lλ (xp) =
∂f lλ
∂x

∣∣∣∣∣
x=xp

=

l∏
q=1

∂f λ

∂x

∣∣∣∣
x=f l−qλ (xp)

. (7)

The asymptotic stability of an l-periodic point xp can be
evaluated by considering the eigenvalues of Jf lλ (xp), which
are the scalar values that satisfy the following equation:

Jf lλ (xp)v = µv, (8)

where µ ∈ {µ1, µ2, . . . , µn} represents an eigenvalue of
Jf lλ (xp), and v ∈

{
vµ1 , vµ2 , . . . , vµn

}
is the corresponding

eigenvector. In this study, we consider eigenvectors with a
unit norm, i.e., ∥v∥ = 1. It is known that the periodic point
xp is asymptotically stable if 0 < |µ| < 1 and unstable if
|µ| > 1; such periodic points are referred to as hyperbolic
periodic points. A hyperbolic periodic point can be roughly
classified into one of the following three types: a completely
stable point (if ∀µ, |µ| < 1), a completely unstable point (if
∀µ, |µ| > 1), and a saddle point (otherwise). Considering a
saddle point xp, we can classify the eigenvectors of Jf λ

(xp)
into two sets:

V s
=

{
v

∣∣∣ [
Jf lλ (xp)− µ

]
v = 0, 0 < |µ| < 1

}
, (9)

V u
=

{
v

∣∣∣ [
Jf lλ (xp)− µ

]
v = 0, 1 < |µ|

}
. (10)

Then, the linear subspaces of Rn spanned by V s and V u are
referred to as the stable and unstable subspace,

Es = span
(
V s) , (11)

Eu = span
(
V u) , (12)

respectively.
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FIGURE 1. Example of an unstable manifold α(xp) (orange curve), a stable
manifold ω(xp) (gray curve), and all homoclinic points h (blue dots). The
half-filled black point represents an l -periodic saddle point xp.

In the system defined by (5), assuming xp is a hyperbolic
l-periodic point, some trajectories of the system enter or exit
the point xp; all points on these trajectories construct a f lλ-
invariant manifold, referred to as a stable or unstable mani-
folds. If xp is a saddle point, the unstable and stable manifolds
are respectively defined by the following expressions:

α(xp) =
{
x ∈ Rn ∣∣ lim

m→∞
f−lmλ (x) = xp

}
, (13)

ω(xp) =
{
x ∈ Rn ∣∣ lim

m→∞
f lmλ (x) = xp

}
, (14)

where f−lmλ =

(
f−lλ

)m
is the m-th functional power of

f−lλ , which represents the inverse of f lλ. As is proven by
the Hartman–Grobman theorem, Eu and Es are the tangent
spaces of α(xp) and ω(xp) at xp, respectively. In other words,
the geometric structures of each manifold with respect to
xp are determined by the values of the stable and unstable
eigenvalues. LetH be a subset of Rn given by

H =
(
α(xp) ∩ ω(xp)

)
\ xp, (15)

then all the points in H are referred to as homoclinic points.
We note here that H is f lλ-invariant by definition; that is, if
there is one homoclinic point h ∈ H, the set H includes
infinitely many homoclinic points, including its image and
preimage ofh under f lmλ for any value ofm. Geometrically, the
homoclinic points represent the points where the stable and
unstable manifolds intersect. Homoclinic points are referred
to as being transversal at those points where the manifolds
are transversal. Fig. 1 shows an example of a 2D discrete
dynamical system, which exhibits a stable and an unstable
manifold of a saddle point, xp, transversally intersecting at all
homoclinic points. Each manifold is a one-dimensional curve
in this case.

In this example, the manifolds are one-dimensional (1D)
curves. Assuming the existence of a homoclinic point, h, we
can describe the homoclinic points that are present in the

TABLE 1. Variables and their symbols of discrete dynamical systems.

unstable and stable subspaces, denoted by hα and hω, as

hα = f−lMλ (h), (16)

hω = f lNλ (h), (17)

where M and N are integers that are sufficiently large for hα

and hω, respectively, to be located within the neighborhood
of xp. Eliminating h from (16) and (17),, we obtain the
expression

f lMλ (hα) = f−lNλ (hω). (18)

Equation (18) can be computed as we can evaluate (18) by
considering the map f λ and the points in the sets α(xp) and
ω(xp) around xp, hα , and hω; hα and hω are obtained by
considering xp and the vectors in Eu and Es. For example, in a
2D system, considering the 1Dmanifolds, we can manipulate
hα and hω in two distinct ways: we can scale the eigenvectors,
and we can utilize the iteration counts of mappings,M andN .
M and N can be selected freely subject to the restriction that
they are large integers.

Table 1 summarizes the variables used to parameterize the
discrete dynamical systems considered in this work.

IV. METHOD FOR CALCULATING HOMOCLINIC POINTS
VIA PSO
The homoclinic points for an l-periodic point xp are obtained
by solving (18) for hα and hω; both these solutions and the
images/preimages are homoclinic points, including h in (16)
and (17). In the conventionalmethod [12], (18) is solved using
Newton’s method. In this section, we develop a calculation
method based on the PSO to obtain the homoclinic points; we
call this method the PSOhp method. The algorithm presented
here is based on the application of the PSO; the variables,
search space, and the objective function are set such that the
PSO algorithm yields the conditions of homoclinic points.
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FIGURE 2. Geometric interpretation of the search space and objective
function considered in the PSOhp method.

First, we describe the search space and the objective
function used in the PSOhp method. Fig. 2 outlines the
geometric concept that underlies the search space and the
objective function of the PSOhp method, as it would be
applied to the example problem depicted in Fig. 1. We define
that the search spaces, i.e., the tangent spaces of themanifolds
at xp within the dotted circle shown in Fig. 2, are the stable
and unstable manifolds around xp. Let U = dimEu, S =
dimEs, Zu ⊂ RU , and Z s ⊂ RS , and we define the
coefficient vectors zα = ⟨zα1, zα2, . . . , zαU ⟩ ∈ Zu and
zω = ⟨zω1, zω2, . . . , zωS⟩ ∈ Z s; the points in α(xp) or ω(xp)
around xp are then represented by a function including a linear
combination of vαm ∈ V u or vωm ∈ V s, i.e.,

Hα : Zu→ Rn
; zα 7→ xp +

U∑
m=1

zαmvαm, (19)

Hω : Z s→ Rn
; zω 7→ xp +

S∑
m=1

zωmvωm. (20)

Equations (19) and (20) are not satisfied if the point Hα(zα)
or Hω(zω) is too far from xp because such a point is not in
α(xp) or ω(xp). In other words, given a positive ϵ ≪ 1, the
search spaces Zu and Z s can be defined as being within the
ranges 0 < ∥zα∥ < ϵ and 0 < ∥zω∥ < ϵ, respectively. Then,
there exist γα ∈ Z

u and γω ∈ Z
s that satisfy

hα = Hα(γα), (21)

hω = Hω(γω), (22)

ifH ̸= ∅.We can thus implement the PSOhp method to search
for γα and γω. Substituting hα and hω from (21) and(22)
into (18), we obtain

f lMλ ◦ Hα(γα)− f
−lN
λ ◦ Hω(γω) = 0. (23)

Thus, we can define the objective function for the PSOhp
method as

F(zhp) = ∥f lMλ ◦ Hα(zα)− f−lNλ ◦ Hω(zω)∥, (24)

FIGURE 3. Inputs and outputs of the PSOhp algorithm.

where zhp = zα ∥ zω = ⟨zα1, zα2, . . . , zαU , zω1, zω2, . . . , zωS⟩
∈ Zhp

= Zu ⊕ Z s ⊂ Rn is a vector corresponding to the
position of a particle, which is composed of the coefficient
vectors zα and zω. Following the same convention as that
used in (3), we denote the position of the i-th particle at
time t using zihp(t). The objective function defined in (24)
yields the Euclidean norm between two points (the point in
α(xp) and the point in ω(xp)). We note that the objective
function F does not evaluate the Euclidean norm between
hα and hω. Obtaining the parameters for which the objective
function is equal to zero is synonymous with the precise
determination of the homoclinic point conditions, thus the
termination criterion, C , of the PSO algorithm is a direct
measure of the accuracy of the parameters describing the
obtained homoclinic points (smaller values of C signify
higher precision) In addition, as mentioned in Section III, the
integers M and N should be large. If the value of M or N is
not great enough, either or both the homoclinic point hα or
hω satisfying (24) will not be within the neighborhood of xp.

Here, we describe the procedure used to obtain the
homoclinic point using the PSOhp method. By selecting
appropriate values for the system parameters, it is possible
to obtain the l-periodic point xp whose stable and unstable
manifolds exhibit transversal intersections. We can obtain xp
by analytically solving a set of equations or via a numerical
method, such as that developed in [23]. It is then possible
to calculate the eigenvalues and eigenvectors of Jf lλ (xp) and
separate the eigenvectors into the two subsets V u and V s

by evaluating their corresponding eigenvalues; these values
are used to define the functions Hα and Hω. Using the
objective function, F , depending on f λ, Hα , and Hω for xp,
and sufficiently large values of M and N , the PSOhp method
can be used to calculate the optimal solution.

Algorithm 1 shows the pseudocode of the PSOhp method.
We randomly initialize the position vectors zihp(0) in the
search space Zhp and set the initial velocity vectors uihp(0) =
uiα(0) ∥ u

i
ω(0) to be 0 to prevent the particles from leaving

the search space while t is small. The objective function F
is then evaluated for each iteration count t and each particle
i; the values of pbest, pihp = piα ∥ p

i
ω, and gbest, ghp =

gα ∥ gω, are updated immediately after the evaluation. The
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Algorithm 1 Pseudocode of the PSOhp Method.
In the Implementation, the Inputs Zu and Z s Can Be
Replaced by ϵ

Input: F , Zu, Z s, L, T , C
Output: ghp leading the optimal homoclinic points

around xp

t ← 0; ▷ Initialize the iterator
forall i ∈ [1,L] do ▷ Iterate through the swarm

uihp(0)← a zero vector; ▷ Initialize velocity

zihp(0)← a random vector in Zhp; ▷ Initialize
position
pihp(0)← zihp(0); ▷ Initialize pbest

ghp(0)← the best of all pbest; ▷ Initialize gbest

repeat
forall i ∈ [1,L] do ▷ Iterate through the swarm

Apply (4); ▷ Update velocity and position

if F
(
zihp(t + 1)

)
< F

(
pihp(t)

)
then ▷ If a

better zhp is found
pihp(t + 1)← zihp(t + 1); ▷ Update pbest

if F
(
pihp(t + 1)

)
< F

(
ghp(t)

)
then ▷ If a

better pihp is found

ghp(t + 1)← zihp(t + 1); ▷ Update gbest

t ← t + 1;
until t ≥ T or F(ghp(t)) < C ;

return ghp(t)

velocity and position vectors of each particle are then updated
using the recurrence relation defined in (4). We note that a
particle can take a position that is out of the search space
during the update even though such positions are not taken
as potential values for pbest or gbest. The loop that updates
the velocity and position vectors via (4) continues while
F(ghp) ≥ C and t < T , where T is the preset maximum
number of iterations. If F(ghp) < C is satisfied, the optimal
solution ghp has been obtained; this value can then be used
to calculate the homoclinic points by Hα(gα) and Hω(gω).
The homoclinic point h can then be calculated by considering
f lMλ ◦ Hα(gα) or f

−lN
λ ◦ Hω(gω). The precision with which

the coordinates of homoclinic points are computed is closely
linked to the termination criterion C ; this parameter can be
used to control the accuracy of the calculation process. Fig. 3
presents a schematic showing the variables that are given
as inputs into the PSOhp algorithm for the computation of
the homoclinic points. In this figure, ‘‘success’’ is defined
when the conditions F(ghp) < C and t < T are met, and
any other outcome is given by ‘‘failure’’. The PSOhp method
can also be used to obtain the l-periodic point xp (rather
than the homoclinic points) as the method searches for the
intersection of the unstable and stable manifolds. On the other

TABLE 2. Variables and their symbols used in the PSOhp method.

FIGURE 4. One-parameter bifurcation diagram of the Hénon map defined
by (25) for λ1 ∈ [0.85, 1.42] and λ2 = 0.30. The red lines from right to left
indicate λ1 = 1.40, λ1 = 1.11, and λ1 = 1.08.

hand, the swarm does not converge or converges to xp if
the system is such that H = ∅. In contrast with traditional
methods that utilize the entire state space, our approach
focuses on the stable and unstable manifolds in the vicinity of
a saddle point; this significantly reduces the sensitivity of this
method to the initial conditions compared with the traditional
methods. Furthermore, due to the derivative-free nature of
the optimization method used here (the PSO), our method is
applicable in situations where the calculation of derivatives is
either arduous or impossible.

Table 2 summarizes the variables used in the PSOhp
algorithm. In addition, we note that it is necessary tomanually
configure the parameters in (4) to ensure that the method
successfully finds the objective solution.

V. NUMERICAL EXPERIMENTS
A. HÉNON MAP
In this section, we demonstrate how the proposed method can
be applied to a typical 2D discrete-time dynamical system;
here, we consider the Hénon map [24], which is defined by a
nonlinear map f λ:

f λ : R2
→ R2

; x 7→ f λ(x) =
[
1− λ1x21 + x2

λ2x1

]
, (25)

where x = ⟨x1, x2⟩ ∈ R2 is the state variables vector and
λ = ⟨λ1, λ2⟩ ∈ R2 is the system parameters vector. The
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FIGURE 5. The chaotic attractors of the Hénon map defined by (25).

TABLE 3. The periodic points of the Hénon map with λ2 = 0.30; these values are used in the numerical work presented here. I l is used to denote the
l -periodic point considered here.

FIGURE 6. The unstable manifold (orange dots) and stable manifold (gray dots) corresponding to each periodic point (green dots) in the
Hénon map.

Hénon map is known to be chaotic for λ = ⟨1.40, 0.30⟩; for
this parameter value, there exist homoclinic points in the state
space. Fig. 4 shows the one-parameter bifurcation diagram
of the system, calculated from left to right. At the parameter
values indicated by the red lines in Fig. 4, the chaotic attractor
exists in the distinct one, two, or four region(s), which can
be seen from the right to the left of the figure. Fig. 5 shows
the chaotic attractors corresponding to the parameter values
indicated by the red lines in Fig. 4; thus, we can observe the
distinct regions of each attractor. At these parameter values,
we see that there are homoclinic points associated with 1-, 2-,
and 4-periodic saddle points.

Here, we show how the PSOhp method can be used to
obtain the homoclinic points with the parameters introduced
above. We use the periodic points specified in Table 3. Each
periodic point listed in Table 3 is identified as a saddle point,

TABLE 4. Values used in the implementation of the PSOhp method related
to the Hénon map.

possessing one unstable and one stable eigenvector; thus,
given dimensionality of the stable and unstable eigenspaces
within 2D Hénon map, we see that U = S = 1. Fig. 6
depicts the unstable and stable manifolds for each of the
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TABLE 5. Result of numerical experiments for the Hénon map.

TABLE 6. Numerically calculated images of hα and hω under the functional power of fλ and f−1
λ , respectively, for I1 of the Hénon map. f 0

λ = id is the
identity function, i.e., f 0

λ(x) = x. For the forward mapping, fλ, m ∈ [0, M] = [0, 50] ⊂ Z; for the backward mapping, f−1
λ , m ∈ [0, N] = [0, 5] ⊂ Z.

periodic points given in Table 3. We note that the manifolds
are depicted by plotting a set of distinct points (thus some
discontinuities can be observed in the curves). In Figs. 6(a)
to 6(c), we can observe homoclinic points as the transversal
intersections of the unstable and stable manifolds. We note
that the search variables zα and zω are scalars zα = zα1 and
zω = zω1, and Hα and Hω are described by

Hα(zα) = xp + zα1vα1, (26)

Hω(zω) = xp + zω1vω1. (27)

Thus, following (24), the objective function,F , can be written
as

F(zhp) =

√√√√√√
[
f lM1 ◦ Hα (zα)− f −lN1 ◦ Hω (zω)

]2
+

[
f lM2 ◦ Hα (zα)− f −lN2 ◦ Hω (zω)

]2, (28)

where f λ = ⟨f1, f2⟩. Table 4 shows the values of the
parameters used in the implementation of the PSOhp method
for this investigation, and is based on [25].
Next, we explain how to select suitable values for the

mapping numbers M and N . The mapping numbers must
be set to take large values to ensure that both hα and hω

are located within the neighborhood of xp. However, since
high sensitivity to the initial values is typical of systems that
exhibit chaotic behavior, the selection of a larger value of M
and/or N can lead to zα or zω having a large influence on the
objective function F . It is necessary to find suitable values
for M and N manually. In this study, we set the value of M

FIGURE 7. Forward images of hα and backward images of hω for I1 of the
Hénon map. The red points indicate the forward images; the black points
represent the backward images; the blue points show the homoclinic
point at which the forward and backward images arrive; the green point
is the 1-periodic point I1.

by evaluating f lMλ ◦Hα(zα) forM ≤ 50 with zα satisfying the
inequality ∥Hα(zα) − xp∥ = ϵ; we select the value of M for
which ∥f lMλ ◦ Hα(zα) − xp∥ > 100.0 is satisfied for the first
time. A similar method is followed to selectN . It is found here
thatM = 50 is suitable for use for all the unstable manifolds,
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FIGURE 8. The convergence of the swarm in the PSOhp method for I1 of the Hénon map. Each red point represents the value of fM
λ ◦ Hα

(
ziα(t)

)
for a

single particle; the black points show the values of f−N
λ ◦ Hω

(
ziω(t)

)
corresponding to each individual particle; the green points show I1; the blue dot

in (d) represents h.

N = 5 is suitable for the 1-periodic point, I1, N = 3 is
suitable for the 2-periodic point, I2, and N = 2 is suitable for
the 4-periodic point, I4. We note that the algorithm presented
here is less sensitive to the selected values of ϵ, the iteration
count, or the divergence criterion, provided that the root of
the objective function F exists and the value of F does not
diverge.

Table 5 shows the results of the numerical experiments
undertaken here; the table shows the obtained homoclinic
points, h, the optimal coefficients γα and γω, and the value of
the iterator t when the termination criteria are satisfied. The
coefficients γα and γω can be seen to have norms that are less
than ϵ(= 0.001); we note that hα and hω satisfy the criterion
that they are within the neighborhood of xp.
Table 6 shows the transitions of the images of hα and hω

for I1. It can be seen that both images of hα and hω arrive
at a single homoclinic point h. Fig. 7 shows all the images of
hα and hω in red and black points, respectively. These images
transit in α(I1) and ω(I1) and are seen to be coincident at the
point shown in blue in Fig. 7; this represents the homoclinic
point h. We note that all the red and black points shown in
Fig. 7 are homoclinic points, despite the fact that they are
not observed to be at the intersections of α(I1) and ω(I1) in
the figure. To demonstrate that these points are homoclinic
points, it would be necessary to calculate further manifolds.
Figs. 8 and 9 illustrate the swarm movement that is observed
in this implementation of the PSOhp method; it is seen that
the swarm converges to the homoclinic point indicated in
Fig. 7. The red and black points in Fig. 8 correspond to the
PSOhp particles in the state space, i.e., fMλ ◦Hα(zα) and f−Nλ ◦

Hω(zω), respectively; we note that the points are not zα and
zω themselves as they do not represent the points in the state
space. Figs. 8(a) to 8(d) show all particles in the state space
at t = 0, 200, 400, and 693, respectively. As t increases, the
swarm gradually approaches the intersections of α(I1) and
ω(I1). At t = 693, one particle of the swarm converges to a
homoclinic point and the termination criterion is met; at this
point, the PSOhp method terminates the calculation. Fig. 9
depicts Hα(ziα(t)) and Hω(ziω(t)) in the neighborhood of I1.

TABLE 7. Success rates of the proposed method applied to the periodic
points in the 2D Hénon map; here, the PSOhp method was run over
100 trials and the experiment was repeated five times; the mean success
rate is also presented.

The blue points in Fig. 9(d) show the positions of hα and hω

that correspond to gbest that is obtained when the search is
concluded; the method is seen to terminate with convergence
to a single hα in α(I1) and a single hω in ω(I1). These results
indicate that the homoclinic points satisfying (18) can be
accurately calculated using the proposed method.

Table 7 shows the success rates calculated in five
independent experiments on the same machine for I1, I2,
and I4. The reliability of the algorithm presented here was
evaluated by considering a metric based on the success rate
of the method; this metric was considered in order to take
into account the inherent randomness of the PSOhp method.
Here, we classified trials in which the termination criteria
were met as successes and other outcomes as failures. These
definitions permitted the calculation of the success rate. This
resulted in mean success rates of 29.0%, 36.0%, and 20.2%
for I1, I2, and I4, respectively. Fig. 10 shows the success rate
of the PSOhp method as a function of themaximumnumber of
iterations, T , from 100 to 100,000; all the rates are calculated
considering 500 implementations and random initial values.
It can be seen that the success rate of the method proposed
here increases as T is increased, reaching approximately 80%
for T = 100,000. To obtain a satisfactory success rate, we see
that it is necessary for T to be set to a large number. We note
that the large mapping numbers result in a wide search range.
Furthermore, we observe that there exists a countably infinite
number of homoclinic points in the state space; all these
points can be considered optimal. However, by fixing M , N ,
and the search space Zhp, the number of homoclinic points
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FIGURE 9. The convergence of the swarm in the PSOhp method around I1 (indicated by the green points) of the Hénon map. Each red point
represents the value of Hα(ziα(t)) obtained by an individual particle; the black points show the values of Hω(ziω(t)) obtained by a given particle; the
blue points in (d) represent the optimal solutions for hα and hω , which correspond to a homoclinic point; the green point represents I1.

FIGURE 10. Success rate of the PSOhp method per various values of the
maximum number of iterations T .

to which the swarm within the PSOhp method can converge
becomes finite. This suggests that the number of the optimal
homoclinic points that can be obtained by the PSOhp method
can be changed by increasing or decreasing the values of M
and N , resulting in changes in the convergence speed of the
algorithm.

We also investigate whether the PSOhp method can be
used to obtain the homoclinic points that are situated near
homoclinic tangencies. To this end, we set λ = ⟨1.16, 0.30⟩;
Fig. 11 shows the resultant unstable and stable manifolds for
the 1-periodic saddle point xp = ⟨0.67454756, 0.20236426⟩.
We use the eigenvectors vα = ⟨0.985,−0.170⟩ , vω =
⟨0.499, 0.867⟩. We can observe that α(xp) and ω(xp) are
close to being tangent at their intersections, i.e., the system
parameters are close to those that lead to a homoclinic
bifurcation. For the homoclinic bifurcation analysis, it is
also necessary to obtain the homoclinic points in such a
singular case. Table 8 shows the experimental results that
can be used in the PSOhp method near the occurrence of a
homoclinic tangency. The parameter values that were used
to calculate Table 8 are the same as those shown in Table 4;
we use the mapping numbers M = 50 and N = 5. It can
be observed from the table that the PSOhp method can be
used to calculate the homoclinic points even if the system is
in the configuration that is close to a homoclinic tangency.
We therefore hypothesize that the PSOhp method can be
extended in a manner that will permit the calculations of the
homoclinic bifurcation parameters.

FIGURE 11. Unstable and stable manifolds for a 1-periodic point〈
0.67454756, 0.20236426

〉
of the Hénon map with λ =

〈
1.16, 0.30

〉
, having

the manifolds near the homoclinic tangency.

TABLE 8. Convergence to the homoclinic point h for the 1-periodic point
xp =

〈
0.67454756, 0.20236426

〉
of the Hénon map with λ =

〈
1.16, 0.30

〉
in

a configuration close to a homoclinic tangency.

B. CUBIC 3D HÉNON MAP
Here, we utilize the PSOhp method to investigate the
properties of the cubic 3D Hénon map [26], which is a 3D
discrete-time dynamical system defined by the map f λ:

f λ : R3
→ R3,

x 7→ f λ(x) =

 x2
x3

0.5x1 + λ1x3 + λ2x2 − x32


(29)
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TABLE 9. Convergence to the homoclinic point h for the 1-periodic point xp =
〈
0.0, 0.0, 0.0

〉
of the cubic 3D Hénon map defined in (29) with

λ =
〈
−0.75, 1.5

〉
.

FIGURE 12. Chaotic attractor of the cubic 3D Hénon map defined by (29).

where x = ⟨x1, x2, x3⟩ ∈ R3 is the state variables vector
and λ = ⟨λ1, λ2⟩ ∈ R2 is the system parameters vector.
We note that the system investigated here is one of the 3D
Hénon maps [27]; the existence of chaotic attractors has been
confirmed for λ = ⟨−0.75, 1.5⟩ [26], as shown in Fig. 12.
Here, we calculate the homoclinic points corresponding to
a 1-periodic saddle point xp = ⟨0.0, 0.0, 0.0⟩. The absolute
values of two of the eigenvalues associated with xp are greater
than unity, whereas the absolute value of the remaining
eigenvalue is less than unity. Therefore, we can conclude that
xp has a 2D unstable manifold and a 1D stable manifold, i.e.,
U = 2 and S = 1. We use the eigenvectors

vα1 = ⟨−0.340, 0.517,−0.786⟩ ,

vα2 = ⟨−0.535,−0.575,−0.619⟩ ,

vω1 = ⟨−0.953, 0.291,−0.089⟩ .

Fig. 13 shows α(xp) and ω(xp) within the state space;
these parameters are indicated by orange and gray points,
respectively. Here, the search variable zhp comprises one
vector zα = ⟨zα1, zα2⟩ and one scalar zω = zω1; Hα and Hω

are described by

Hα(zα) = xp + zα1vα1 + zα2vα2, (30)

Hω(zω) = xp + zω1vω1. (31)

FIGURE 13. 2D unstable manifold (orange) and 1D stable manifold (gray)
for xp =

〈
0.0, 0.0, 0.0

〉
in the cubic 3D Hénon map and λ =

〈
−0.75, 1.5

〉
.

Based on (24), the objective function, F , can be written as

F(zhp) =

√√√√√√√√√√

[
f lM1 ◦ Hα (zα)− f −lN1 ◦ Hω (zω)

]2
+

[
f lM2 ◦ Hα (zα)− f −lN2 ◦ Hω (zω)

]2
+

[
f lM3 ◦ Hα (zα)− f −lN3 ◦ Hω (zω)

]2, (32)

where f λ = ⟨f1, f2, f3⟩. The mapping numbers M and N are
selected in the same way as in Section V-A; they are set to be
M = 50 and N = 10. The PSO parameters are set to be equal
to those shown in Table 4.
Table 9 shows the results of the numerical experiments

undertaken on the cubic 3D Hénon map: the table shows
the obtained homoclinic points, h, the optimal values of
the coefficients gα and gω, and the value of the iterator, t ,
when the simulation is terminated. We can observe that all
the values of the coefficients gα and gω have a norm of
less than unity and hα and hω are within the neighborhood
of xp. Fig. 14 shows the homoclinic point described in the
first row of Table 9 together with the unstable and stable
manifolds α(xp) and ω(xp). We note that Fig. 14(a) is shown
using the same scale as that used in Fig. 13 and the blue
point shown in this Fig. 14(a) is the obtained homoclinic
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FIGURE 14. Obtained homoclinic point, h, (indicated by the blue point) for a 1-periodic saddle point xp =
〈
0.0, 0.0, 0.0

〉
of the cubic 3D Hénon map

with λ =
〈
−0.75, 1.5

〉
. The orange points represent the points of x ∈ α(xp) calculated in this work; the gray points represent the calculated values of

x ∈ ω(xp).

TABLE 10. Success rates of the proposed method applied to the periodic
points in the 3D Hénon map; here, the PSOhp algorithm was run over
100 trials and repeated over five experiments on separate occasions; the
mean success rate is also presented.

point, h. Figs. 14(b) and 14(c) depict the same variables as
Fig. 14(a) at a different scale showing the neighborhood of
h from two different angles. The orange points can depict a
surface defined by the calculated values of α(xp), and the gray
points can be considered as points on the curve of ω(xp); the
obtained optimal solution can be seen at the intersection of the
two features shown in the figure. Therefore, we conclude that
the PSOhp method can also be used to obtain the homoclinic
points in this 3D discrete-time dynamical system. Table 10
presents the success rates for the method applied to the
3D Hénon map; a mean success rate of 90.2% was found
for the proposed method, which represents a significant
improvement on the rates presented in Section V-A for the 2D
case. We hypothesize that the difference in the performance
of the algorithm when used to study these two systems is due
to the system characteristics; in particular, the number of the
optimal homoclinic points of the objective functions differs
between the dynamical systems. This implies that the values
of M and N must be selected carefully for each individual
system. We note that the same values of these parameters
were used in the implementations presented in this work as
these values were found to be appropriate for both systems.
Based on the work presented here, no correlations can be
observed between the dimension of the system state space and
the success rate of the proposed method. On the other hand,
we note that an increase in the dimensionality of the search
may mean that the number of iterations until convergence
increases. It is confirmed here that the proposed method
is suitable to find homoclinic points in this 3D discrete-
time dynamical system without significant alterations to the
algorithm. This suggests that it is plausible that the method
can be applied to systems of higher dimensionality.

VI. CONCLUSION
In this work, an algorithm to obtain homoclinic points
was proposed based on the PSO method. An n-dimensional
discrete dynamical system, as well as its unstable and stable
manifolds and homoclinic points, was defined. We proposed
an algorithm that can be used to obtain homoclinic points,
named the PSOhp method, including a new search space
and an objective function; these elements were defined
such that they satisfy the criteria for homoclinic points to
exist. We applied the proposed method to two discrete-time
dynamical systems: the Hénon map and the cubic 3D
Hénon map. Via the implementation of this method on
these systems, we confirmed the effectiveness of this
method. It was demonstrated that the PSOhp method can
be used to obtain the homoclinic points for parameters that
describe the system that are close to those that lead to a
homoclinic tangency within the system. Unlike conventional
PSO methods that often suffer from slow convergence near
homoclinic bifurcation parameters, the proposed method
exhibited no such difficulties. The methodology utilizes the
capacity of the PSOmethod to generate random initial values,
which facilitates the computation of homoclinic points
without any prerequisites being placed on the selection of the
initial conditions used. While the proposed method involves
an increased number of iterations and objective function
computations, it removes the requirement for selecting
appropriate initial values, thereby offering a significant
advantage in applications where such selection is non-trivial
or dependent on specific expertise. The proposed method
is expected to be applicable to discrete dynamical systems
of any dimension and of any period without significant
modifications to the algorithm or the objective function. The
method was found to work well without carefully chosen
initial conditions or information regarding the derivatives
of the objective functions, e.g. Hessian tensor. Eliminating
the necessity of carefully selecting the initial values used
and obtaining information regarding the derivatives of the
objective function is advantageous in numerous practical
scenarios, such practical situations include those that involve
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computationally intensive simulations and/or when dealing
with discontinuous dynamical systems. In particular, the
proposed method is expected to be suitable for obtaining the
homoclinic points for high-dimensional dynamical systems
as it does not require any careful choice of initial values; the
previously developed algorithms have been largely unsuitable
for application on such systems. Therefore, we conclude that
the proposed method facilitates the analysis of dynamical
systems, reducing issues associated with the sensitivity of
alternative methods to initial values and the calculation of
the derivatives of the objective function; we thus believe
that the method presented here will serve as a fundamental
tool within future research. The success rates would depend
on the features of the optimization algorithms. However,
the main purpose of this study is to propose a detection
method for homoclinic points using metaheuristic derivative-
free optimization. Since most researchers, who are experts in
bifurcation analysis, are not experts in swarm intelligence, the
authors think that simpler derivative-free optimizations such
as PSO are better for bifurcation analysis in terms of usability.
In fact, our PSO-based algorithm has been successful in
deriving homoclinic points with high accuracy. On the other
hand, a higher success rate could be achieved by applying
other derivative-free algorithms with higher search capability
than PSO to the proposed method. In future works, there are
four primary issues to solve. First, future development efforts
will have the aim of extending the method presented here to
problems related to the determination of homoclinic bifurca-
tion parameters within discrete-time dynamical systems. The
goal of such a future study would be to create an algorithm
that is capable of deriving the homoclinic bifurcation sets of
a system; we note that the ideal method would not require the
careful selection of initial values or information regarding the
derivatives of the objective functions. The second extension
of this work would be related to the homoclinic points
observed in continuous-time dynamical systems. A third
area that should be investigated in future is related to the
underlying causes of the significant difference in the success
rate of the method when it is applied to 2D and 3D systems.
Fourthly, we compare the standard PSO used in this study
with other optimizers. Future work related to these four points
will undoubtedly improve the PSOhp method by making it
more general and compatible with a wider range of nonlinear
dynamical systems.
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