
Received 10 February 2024, accepted 25 February 2024, date of publication 1 March 2024, date of current version 7 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3372417

An Energy-Aware Tailored Resource
Management for Cellular-Based
Zero-Touch Deterministic
Industrial M2M Networks
SAHAYA BENI PRATHIBA 1, (Member, IEEE), KATHIROLI RAJA2,
R. V. SAIABIRAMI2, AND GUNASHREE KANNAN2
1Centre for Cyber Physical Systems, School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
2Department of Computer Technology, Anna University, Chennai 600025, India

Corresponding author: Sahaya Beni Prathiba (sahayabeni@ieee.org)

This work was supported by the Vellore Institute of Technology, Chennai, India.

ABSTRACT Zero-Touch Deterministic Industrial Machine-to-Machine (ZT-DI-M2M) serves as a
customized communication solution designed to meet the specific needs of industrial settings. Though
5G is the promising solution for ZT-DI-M2M, optimized scheduling in 5G remains challenging to design
over aspects such as network overload and congestion control, especially in the uplink transmission of ZT-
DI-M2M. Effective allocation of resources for Machine-Type Communication (MTC) devices stands out
as a pivotal hurdle within the domain of 5G networks. This challenge directly influences the longevity
of battery-operated devices and the Quality of Service (QoS) experienced by applications. This paper
aims to develop a Group-Based and Energy Aware (GBEA) resource allocation algorithm for M2M
communication in the 5G networks. The GBEA algorithm solves the resource allocation problem by
initially clustering the active nodes concerning their delays. Consequently, inter and intra-cluster resource
distribution occurs through the Gaussian Mixture Model Expectation Maximization (GMM-EM) algorithm.
The GBEA algorithm optimizes the resource allocation of M2M devices by factoring delay, energy,
proximity, and fairness into the allocation process. The simulation outcomes unveil the superiority of the
GBEA scheduling algorithm over established state-of-the-art resource allocation methods. It showcases
remarkable enhancements in throughput, delay sensitivity, and energy efficiency, boasting nearly 1.5-fold,
1.75-fold, and 6.5-fold respective improvements.

INDEX TERMS Resource allocation, M2M communication, scheduling, 5G networks, delay minimization,
energy efficiency.

I. INTRODUCTION
Advancements in self-governing Machine-to-Machine
(M2M) communication, alternatively termed as Machine
Type Communication (MTC), aligns with the definitions
outlined in the 3rd Generation Partnership Project (3GPP)
specifications [1]. It pertains to data exchange involving sin-
gle or multiple entities, independent of human intervention,
as defined by the 3GPP standards [2]. The M2M deployment
requires a suitable data transfer network to create connectivity
among M2M devices, which had previously relied on wired

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefano Scanzio .

data transfer networks and radio networks [3]. An abundant
proliferation of connected devices within the communication
network results in a substantial surge in mobile traffic.

Zero-Touch Deterministic Industrial Machine-to-Machine
(ZT-DI-M2M) is a specialized communication system tai-
lored for industrial environments [4]. It facilitates seam-
less and dependable communication among machines and
devices, prioritizing automation and precision. This system
guarantees not only effortless data exchange, denoted as
zero-touch but also exceptional predictability regarding
latency and reliability. ZT-DI-M2M finds its utmost signif-
icance within industrial domains, where instantaneous data
sharing is indispensable for functions like process control,
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automation, and real-time monitoring [5]. Its primary role is
to ensure that machine-to-machine communication not only
operates with high efficiency but also adheres rigorously to
demanding standards for minimal latency and unfaltering
reliability. 5G is the recent communication network that
supports ZT-DI-M2M. However, the 5G network infrastruc-
ture must facilitate end device expansion to meet the users’
critical and non-elastic service demands [6], [7]. In response
to this challenge, 5G networks must adeptly manage the
extensive M2M traffic originating from connected devices
and machines while ensuring uninterrupted and seamless
wireless connectivity.

Many M2M devices necessitate periodic network access
to fulfill their data transmissions, often operating at meager
data rates. Examples of critical M2M services encompass
wireless sensors, environmental monitoring, weather data
collection, and vehicular communication [8], [9], [10].
Moreover, wearable sensors designed for assessing user
health are gaining prominence. These wearable devices
actively monitor patients’ well-being and can promptly
trigger alerts in the event of a health concern [11]. In 5G
networks, such devices must be scheduled to utilize the
available network resources for processing with a lower
response time [12]. With flexible system protocols that can
be modified according to user requirements, 5G networks are
expected to accommodate massive critical communication.

In contrast to prior network generations, which pre-
dominantly tasked infrastructure with control and process-
ing duties, 5G seeks to rebalance this equation through
architectural shifts, transitioning from a cell-centric to a
device-centric paradigm [13]. Ultra-Reliable Low Latency
Communication (uRLLC), massive Machine Type Commu-
nication (mMTC), and EnhancedMobile Broadband (eMBB)
constitute the fundamental use case categories that form the
foundation for 5G networks to provide data rates surpass-
ing 10 Gbps with low-latent data transmissions, facilitates the
widespread deployment of low-power IoT devices (reaching
1 million devices per square kilometer). However, for M2M
communication, most traffic is created and transferred via the
uplink [14]. As a result, 5G communication for M2M devices
may surface issues like energy efficiency and low latency.
Recent studies focus on energy-efficient MTC devices, Qual-
ity of Service (QoS)-driven network architectures, and energy
efficiency in response to increased network activity, diverse
services, and user demands including latency, throughput,
and bandwidth. With the implementation of new low data
rate schemes and careful design of remote nodes, 5G can
be tailored to meet the needs of M2M communications,
enabling long-term battery life. The 5GM2Mcommunication
supported broad protection, data collection, and data process-
ing and made the communication protocol easy to deploy
and maintain. However, resource scheduling of such M2M
devices in 5G networks plays a major role in mission-critical
applications [15].

Efficient allocation of resources stands out as a pivotal
element within the radio resource management system of

ZT-DI-M2M, essential for guaranteeing QoS at the gNodeB
(gNB) component of the 5G framework.Within the 5G infras-
tructure, gNBs rely on QoS metrics like energy efficiency,
packet latency, and priority rankings to orchestrate packet
scheduling. Inefficient scheduling of packet transmission can
swiftly lead to access congestion, culminating in resource
shortages, inefficiencies, or superfluous allocations [16].
As a result, the essential task in ZT-DI-M2M is to develop
an effective scheduling algorithm that meets the different
QoS requirements. If resource allocation is solely guided by
the objective of efficiency, it may result in an inequitable
distribution of resources to M2M end users. Those in more
favorable conditions, such as proximity to the base station or
superior channel quality, could receive a disproportionately
larger share of services, potentially leading to an unfair
allocation. On the other hand, if the main goal was to
allocate resources fairly to users, this could result in
an inefficient outcome due to a lack of exploitation of
individuals’ circumstances. Hence, harmonizing these two
objectives is the greatest challenge; however, it is a task of
significant importance and complexity [9], [12], [16], [17],
[18], [19], [20], [21], [22]. Therefore, this work aims to
develop a resource allocation scheme that is fair and efficient
while complying with the M2M devices’ requirements in
ZT-DI-M2M environments. The following are the major
contributions of this research work.

1) A Group-Based Energy Aware (GBEA) algorithm is
proposed for effective resource scheduling for M2M
communication in the 5G environment.

2) The GBEA algorithm considers the processing time of
the M2M devices requesting resources and groups the
M2M devices for inter and intra-resource distribution.

3) GBEA optimizes the resource allocation through the
proposed Hybrid Hungarian Algorithm (HHA) by
considering parameters such as factoring delay, energy
consumption, proximity, and fairness.

4) Extensive analysis substantiates the GBEA algorithm’s
performance regarding throughput, responsiveness to
delays, and energy utilization.

The subsequent sections of this paper are organized as
follows: In Section II, we investigated recent developments
in the field. Section III outlines the envisioned operational
framework.Moving on to Section IV, we presented the details
of the GBEA algorithm and the optimization approach.
Section V is dedicated to showcasing simulation results
and delving into the achieved performance metrics. Finally,
in Section VI, we draw our conclusions.

II. RELATED WORK
Various approaches have been taken to structure the
scheduling strategy for resource allocation of M2M devices.
The authors in [23] utilize the block length coding analysis of
definite size to resolve the errors in transmitting information
and effectively maintain the network’s bandwidth and
capacity. To allocate the resources effectively, computation-
ally matching algorithms are formulated. Similarly, in [17]
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the resources are allocated for the 5G MTC environment
in uplink communication through the introduced Dynamic
Priority-Based Resource Allocation (DPBRA). This scheme
employs a two-staged dynamic priority system that acts
as a prioritized contention mechanism, considering intra
and inter-frame wait times and transmission-awaiting M2M
devices. In [12], a Sleep-Scheduling Scheme is introduced
based on Deep Reinforcement Learning, denoted as DSS.
Also, a joint resource allocation algorithm is introduced
referred to as DSS-JRAA. This approach involves activating
dormant devices in sleep mode to save energy, all the while
ensuring theymeet the computational demands. Furthermore,
an iterative algorithm is devised for optimizing the allocation
of resources for computation and communication in a joint
manner.

In [16], a Delay-aware Resource Allocation for Guar-
anteed Fairness and minimal Loss (DRAGFL) scheme
is introduced, with the primary goal of enhancing QoS
for real-time services. DRAGFL is designed to maintain
consistently low latency for delay-sensitive traffic while
simultaneously ensuring service fairness and minimizing
data loss during periods of network congestion. This is
achieved through a comprehensive optimization of the MAC
layer scheduler, executed in three distinct phases. Initially,
DRAGFL constructs a weighted matrix based on delay
metrics to facilitate the allocation of Resource Blocks
(RBs) to radio bearers. Subsequently, the scheme employs
a greedy-based mechanism to prioritize the assignment
of RBs to individual flows. Lastly, it accentuates data
rates by applying a channel-aware principle that considers
available resources and scheduled data, thus optimizing
overall network performance. The authors in [18] employ
degrees of freedom for optimal resource allocation to
the MTC. Violations over the delay threshold and the
QoS guaranteed technique effectively exploit the network’s
available bandwidth and capacity. The authors in [19] employ
a mixed-integer nonlinear programming approach, tackling
NP-hardness, and propose competitive algorithms integrated
into a reinforcement learning framework for efficient power
allocation. In the context of enhancing the determinacy of
latency in wireless networks, [21] presents a stochastic game
formulation. To optimize this complex problem effectively,
a Random Graph-based Sparse Long Short-Term Memory
(LSTM) network (RGSL) is formulated. This formulation
takes into account critical factors including the control of
transmission power, allocation of frequency spectrum, and
the selection of base stations.

Additionally, alternative strategies have emerged. In [20],
the authors introduce a Non-Orthogonal Multiple Access
(NOMA) scheme within the power domain, coupled with
user clustering, for Non-Binary Internet of Things (NB-IoT)
systems. This approach involves formulating an optimiza-
tion problem aimed at maximizing the overall network
throughput by optimizing the allocation of resources for
MTC devices and the organization of NOMA clusters while
ensuring compliance with transmission power limits and

QoS prerequisites. In [25], the authors direct their attention
to the allocation of wireless resources for multicast commu-
nication within a software-defined hybrid satellite-terrestrial
communication network. They introduce a Multicast solution
based on Service Rate Constraints (MSRC). Their proposal
centers on a hybrid communication network architecture,
incorporating satellite and terrestrial components, enhanced
with Software-Defined Networking (SDN) capabilities. The
multicast solution is designed around the constraints related
to service rates. Reference [22] presents an innovative
approach to expedite uplink grant scheduling, drawing
inspiration from the Multi-Armed Bandits (MABs) theory.
The authors devise a customized mixed QoS metric, which
incorporates factors such as data packet value, maximum
acceptable access delay, and data rate. This unique metric
serves as the basis for a reward function within a MAB
framework, which is employed to identify the optimal
Multi-Armed Bandit for scheduling at each time instance.

In [26], the authors put forward a scheme for sleep-
scheduling and combined allocation of computation and
communication resources. The primary objective is to
reduce overall system energy consumption while adhering
to task delay constraints. This scheme is designed for
application in M2M-assisted and NOMA-basedMobile Edge
Computing (MEC) networks tailored for 5G IoT scenarios.
Subsequently, a multi-DQN (Deep Q-Network) approach to
sleep scheduling is introduced, coupled with an algorithm for
jointly allocating computation and communication resources.
The overarching aim is to minimize the overall energy
consumption of the system. In [27], the authors have pre-
sented a 5G framework. This framework is adept at reserving
RBs for emergency data while formulating the resource
allocation strategy as a task focused on maximizing energy
efficiency. Subsequently, an iterative algorithm, leveraging
the Lagrange dual method, is meticulously crafted. This
algorithm is employed to explore and identify the global
optimal allocation scheme aimed at resolving the problem
at hand. Also, in [28], the authors introduce a cross-
layer approach. This approach is designed to streamline
the resource allocation process for M2M devices. It takes
into account the diverse QoS requirements of the devices
while concurrently working towards theminimization of their
energy consumption. It can be derived that QoS metrics must
be managed parallelly without prioritizing and compromising
one another.

The above studies show that energy and delay play
important roles in the devices’ ability to attain resources.
Therefore, this paper proposes a delay-sensitive and energy-
aware scheduling algorithm for providing optimized resource
allocation with minimized latency to the M2M devices in a
5G environment.

III. BACKGROUND AND PROBLEM FORMULATION
A. OVERVIEW OF 5G
In 5G networks, advanced and intelligent architectural
designs come into play. Within these designs, Radio Access
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FIGURE 1. Typical 5G core architecture [24].

Networks (RANs) are liberated from the limitations of prox-
imity to base stations or intricate infrastructure requirements.
5G paves the path for the development of dis-aggregated,
adaptable, and virtual Radio Access Networks (RANs). This
progress is facilitated through the introduction of fresh
interfaces that generate additional data access points. Thus,
5G serves as the pivotal catalyst for ZT-DI-M2M. The 3GPP
introduces a pair of fundamental architectural alternatives
for 5G deployment, stemming from LTE: Non-Standalone
(NSA) and Standalone (SA). SA architecture encompasses
a solitary Radio Access Technology (RAT), permitting the
full range of 5G enhancements tailored exclusively for the
5G New Radio (NR) SA framework. In contrast, NSA
architecture raises more significant considerations, as it
cannot accommodate all the 5G-specific services likemMTC,
URLLC, and eMBB. Standalone 5G integrates the 5G Next
Generation – Radio Access Network (NG-RAN) with the
5G Core (5GC). A multitude of new network functions is
included in 5GC, each of which performs quite specific roles
whereas 4G, a given network node will have numerous roles
to fulfill.

The network architecture of 5G Core (5GC), illustrated
in Fig. 1, is characterized by its exceptional flexibility,
modularity, and scalability [24]. It encompasses a multitude
of functions, including the capability for network slicing, and
catering to diverse and specific customer demands. Addi-
tionally, it incorporates distributed cloud computing, Net-
work Functions Virtualization (NFV), and Software-Defined
Networking (SDN).

B. RESOURCE BLOCKS IN 5G
In 5G networks, the allocation of wireless resources occurs in
both the time and frequency domains, mirroring the approach

employed in LTE networks. Fig. 2 represents the constituents
of a frame in the 5G networks. The time slot represents the
most diminutive unit for scheduling data in the time domain,
comprising a total of 14 Orthogonal Frequency Division
Multiplexing (OFDM) symbols [29]. The system bandwidth
is divided into numerous subchannels in the frequency
domain, each of which has 12 consecutive subcarriers. Every
RB corresponds to one subchannel and occupies a single
time slot, establishing the RB as the fundamental unit for
transmission scheduling. To efficiently harness the available
network resources, 5G networks furnish M2M devices with
a precisely defined quantity of resources essential for data
transmission within each millisecond (ms).

As an outcome, conflict springs up in which devices of
the same network compete for the necessary number of RBs.
When the quantity of accessible RBs falls short of the count
of active nodes seeking services, the scenario deteriorates,
leading to contention-related issues. Unlike LTE, 5G NR
allows different subcarrier spacings and a wide range of
transmission bandwidths.

C. SCHEDULING AND CHALLENGES IN M2M
Scheduling is a mechanism in which eNB determines the
entities that are to be provided with resources and the number
of resources to be provided. In 5G, scheduling is performed
based on subframes for every 1 ms and this is governed by
the scheduler. Scheduling is the main function of the MAC
layer of the protocol stack. It considers system configuration,
QoS information, and channel quality information before
scheduling. As the number of devices connected to the
eNB increases, the M2M communication over 5G networks
faces significant control signaling overhead [30]. Another
notable challenge lies in orchestrating the devices to optimize
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FIGURE 2. Frame structure of 5G networks [29].

overall system resource utilization, all the while taking
into account the distinctive QoS prerequisites of each
M2M device. Generally, M2M systems have low cost and
energy consumption requirements as well as diverse QoS
requirements. Certain M2M devices related to fields such
as emergency notifications, road safety, and medical care,
operate on very low latency necessitating applications that
demand effective and interminable connectivity.

Huge control signaling traffic, inefficient resource usage,
and difficulty in QoS-aware scheduling are some of the
challenges that M2M communication encounters. Contention
typically arises when the count of active nodes requiring
scheduling surpasses the available quantity of RBs. Fur-
ther, delay-sensitive applications require quicker allocation
systems, and precise fairness bounds/measures are difficult
to uphold. Since the 5G networks are used for both M2M
and traditional communication, network congestion arises,
resulting in queuing delays, packet loss, interference, and
other constraints that can decrease the overall throughput.
As a result, frequent network overloads occur leading to a
degradation in the network’s performance. These problems
with service quality deterioration and unjustified resource
exploitation prove the problem of resource scheduling as a
challenge to the designers. Consequently, the need for a better
methodology for scheduling M2M communication arises.

IV. PROPOSED WORK
If different devices in ZT-DI-M2M have different delay
budgets, the traditional scheduling algorithms should be
tweaked to consider the delay budgets for better coordination

among the devices. For example, when device A has a
lower delay budget of 10 ms as opposed to device B with a
delay budget of 20 ms, it necessitates the scheduling process
to prioritize device A over device B for efficient resource
allocation. Thus, the usage of delay budget as a basis for
grouping devices fits as a suitable parameter in clustering
as it would serve the delay-sensitive M2M applications
better while also eliminating the need for the devices to be
physically close. However, when the number of available
RBs is lesser than the devices requesting service, contention
arises. To handle this problem of scheduling, the proposed
GBEA algorithm optimizes the resource allocation of M2M
devices by considering its delay, energy, proximity, and
fairness aspects in the process of resource allocation thereby
being both group-based and energy-aware. The resultant set
of M2M devices will be allocated with the RBs leaving
behind the sub-optimal set and this scenario of RB shortage
is considered for the scheduling process.

To overcome the existing drawbacks and optimize the
resource allocation of M2M devices the following method-
ologies are employed in the proposed GBEA scheme:

1) Initially, clustering is performed using the Gaussian
Mixture Model Expectation Maximization (GMM-
EM) algorithm to divide the M2M devices requesting
services into ‘‘virtual groups’’.

2) Following the aggregation of M2M devices into clus-
ters, the per-cluster RB distribution is achieved using a
game theoretic approach inspired by the Shapley value
theory.
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3) The intra-cluster RB allocation is then carried out using
a combination of probability-based selection and HHA
algorithm where the devices are chosen based on their
cost functions and the RBs are assigned to those chosen
individual M2M devices respectively.

V. GBEA ALGORITHM
The scheduling algorithm assumes a pivotal role in dictating
the distribution of RBs to the MTC devices within each
Transmission Time Interval (TTI), which spans a duration
of 1 ms. In MTC, there are an enormous amount of devices
with data to be transmitted over a network. MTC devices by
virtue are characterized to send more uplink data. This results
in multiple MTC devices requesting access to transmit data
over the same network simultaneously, thereby inundating
the eNB scheduler which leads to network congestion.
To address this issue and mitigate network congestion caused
by numerous MTC devices simultaneously requesting access
to transmit data over the same network, the GBEA resource
allocation algorithm is introduced.

In [28], it becomes evident that a fundamental memetic
algorithm demonstrates efficiency primarily when the count
of active devices remains below 100. Moreover, the general
usage of the K-means algorithm for M2M communications
demands the devices be physically close to each other.
To thwart this, the devices are grouped according to their
delay budget thereby forming virtual clusters. The MTC
devices are grouped based on their delay tolerance constraints
and are not necessarily physically close to each other because
the clusters that are formed using the delay constraint tend to
be a virtual collection i.e., the MTC devices within a group
may be physically sparse. This approach reflects the divide-
and-conquer strategy while also respecting the device’s delay
sensitivity. After clustering, the per-cluster RB distribution
is executed using a game theoretic approach inspired by the
Shapley value theory. This is used to quantify the number of
RBs to be allocated to each cluster.

Finally, the intra-cluster RB distribution is executed in
two stages. Stage one comprises a probability-based selection
followed by stage two where the HHA algorithm for the RB
allocation is performed. Stage one utilizes a cost function
and selects the set of candidate nodes from the pool of nodes
present in the cluster while stage two avails those nodes and
allocates the RBs to them to minimize the delay constraint
violation. The architecture of the proposed GBEA approach
is given in Fig. 3.

A. CLUSTERING OF ACTIVE M2M DEVICES
In GBEA, the aggregation of active M2M devices is
performed using the GMM-EM algorithm [31]. The user’s
delay budget contributes to the key attribute in the process
of device aggregation, especially when the number of M2M
devices is high as it eliminates the need for the MTC devices
to be within proximity. A Gaussian Mixture Model (GMM)
employs a parametric probability density function, which is
expressed as a weighted combination of Gaussian component

densities. In GMM, the assumption is that all data points
are generated from a mixture of a finite number of Gaussian
distributions, each characterized by specific parameters such
as the mean (µ) defining the peak of the distribution, the
covariance (6) denoting the width of the distribution and a
constant (π ) labeling the fraction of data points belonging to
a class k.

The Gaussian Mixture can be described as a function
consisting of multiple Gaussians, with eachGaussian denoted
by k ∈ {1, 2, . . . ,K }, where K represents the total number
of clusters under consideration. Dataset X is defined as the
set of delay budgets of all the active M2M devices. The
probability density function of Gaussian distribution [18]
for the datapoint n in dataset X is defined as follows in
equation (1),

G (Xn|µk , 6k) =
1

6
√
2π

e
−(X−µ)2

262 (1)

The standard and powerful tool used in GMM called
the Expectation Maximization (EM) algorithm works by
fitting the K Gaussian components to the dataset X by
parameterizing theµ,6, and π of each cluster, whereK is the
total number of clusters. If there are K clusters in the dataset,
GMM-EM finds and fits these K clusters to the dataset X by
optimizing its parameters (µk , 6k , and πk ). The probability
of observing data is given by the below formula.

P (X |π, µ,6) =

N∏
n=1

[
K∑
k=1

πkG (Xn|µk , 6k)

]
(2)

The aim is to maximize equation (2) thereby maximizing
the probability of observing and fitting the data point to
its corresponding cluster. This probability function P aids
in the determination of the best fit for any datapoint X to
cluster K. The EM process follows an iterative methodology
that comprises two stages: the Expectation (E step) and
the Maximization (M step). Commencing with an initial,
randomly chosen, and sensible parameter value, the EM
procedure unfolds. In the E step, the latent variable γ (Znk )
is computed, which denotes the probability of seeing the
observation Xn in class K where Znk is the indicator denoting
if Xn belongs to a classK or not. Also,Nk is calculated, which
is the sum of γ (Znk ) over all the data points. Equations (3),
(4), and (5) denote the above-discussed variables respectively.

Znk = {1, if Xn in class K ; 0, if not} (3)

γ (Znk) = P (Znk = 1|Xn) =
πkG (Xn|µk , 6k)∑K
j=1 πjG

(
Xn|µj, 6j

) (4)

Nk =
N∑
n=1

γ (Znk) (5)

During the M step, the three parameters are updated
based on the previously calculated variables as given by the
equation (6), (7), and (8).

µk =
1

Nk
[∑N

n=1 γ (Znk)Xn
] (6)
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FIGURE 3. Group-Based and Energy Aware (GBEA) architecture.

6k =
1

Nk
[∑N

n=1 γ (Znk) (Xn − µk) (Xn − µk)
T
] (7)

πk =
Nk
N

(8)

As a result, the EM algorithm repeats the E and M steps
until it identifies the optimal parameter values, facilitating the
convergence of these parameters. This convergence aids in the
optimal fitting of M2M devices into their respective clusters.

B. INTER CLUSTER RESOURCE BLOCK DISTRIBUTION
This section presents the inter-cluster RB distribution using
a game theoretic approach. After the active M2M devices

have been clustered, the distribution of the number of RBs
for each cluster is quantified. The resource distribution game
is a solution concept in cooperative game theory. This allows
the cluster classes to play a resource distribution game
among themselves at the end of which RBs are distributed
among the cluster classes. The inter-cluster RB distribution
game is characterized by the utilization of a pair (N, ν),
where N represents the count of players, and ν serves as
the characteristic function signifying the coalition value
among these players. This game is a competition among the
virtual clusters to distribute the RBs. Within a set of players,
a coalitional game establishes the fitness or utility associated
with each player participating in the game. The game theory’s
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outcome is a set of RBs granted to each virtual group. In the
context of the coalitional game (N, ν), the allocation of
payoffs to the players is determined by the equation (9):

φi =
1
N !

∞∑
S⊆Ni

|S |! (|N |− |S |− 1)! [ν (S ∪ {i})− ν (S)] (9)

where for each player i, the marginal contribution is equal
to the term ν (S ∪ {i}) − ν (S). Here S is the coalition of the
player cluster set where players who cooperate in making
a decision are referred to as coalitions and S ⊂ C, where
C is the set of all players. This value is influenced by the
number of ways |S|! that the set S could have been constructed
before the inclusion of i, as well as the (|N |− |S |− 1)! ways
in which the remaining players could have been added. The
characteristic function for each coalition is calculated by
summing up the respective cluster sizes. Ultimately, the sum
for all the feasible sets S is computed, and the average is
determined by dividing it by N! representing the total number
of possible orderings of all players. Thus, φi represents the
number of RBs distributed to each cluster i and the resultant
is a vector φ = {φ1, φ2, φ3, . . . .., φk}, where k is the number
of players.

Algorithm 1 Per Cluster Resource Block distribution
Input: Player Cluster Set: C = {C1,C2, . . . ,CK }, Cluster

Sizes: N = {N1,N2, . . . ,NK }
Output: RBs allocated to each cluster φ = {φ1, φ2, . . . , φK }

1: for i=1,2,3,. . . ,K do
2: φi = 0
3: end for
4: Let S be the power set of C
5: for Si ∈ S do
6: v(Si) = 0
7: end for
8: for each Si ∈ S do
9: for each ele ∈ Si do
10: v(Si) = v(Si)+ Nele
11: end for
12: end for
13: for each Ci in C do
14: for each S ⊂ C do
15: if Ci ∈ S then
16: φi = φi + [(v(S)− v(S − {i})( |S |!(|C |−|S |−1)!|C |! )]
17: end if
18: end for
19: end for
20: return φ = {φ1, φ2, . . . , φK }

Thus, the clustering algorithm and inter-cluster resource
block allocation mechanism in the proposed system con-
tribute to achieving a global solution by leveraging game
theoretic principles and cooperative strategies among clus-
ters. The clustering algorithm partitions the active M2M
devices into distinct clusters based on relevant criteria such
as delay requirements, energy consumption, and proximity to
base stations. This clustering process facilitates the formation
of coalitions or virtual clusters, each representing a group
of M2M devices with common resource allocation needs.

Similarly, the inter-cluster resource block allocation involves
a cooperative game among the virtual clusters to distribute
resource blocks optimally. The characteristic function (ν)
quantifies the value of each coalition (virtual cluster) based
on the number of resource blocks allocated to them. Through
strategic decision-making and negotiation, clusters aim to
maximize their utility or payoff while considering the overall
performance of the network.

C. INTRA CLUSTER RESOURCE BLOCK DISTRIBUTION
In this section, to allocate RBs to individual M2M devices,
the intra-cluster RB distribution phase has been divided
into two subsequent stages. The first stage comprises a
probability-based selection and the second stage performs the
HHA algorithm. The virtual clusters, after being allocated
with the RBs by the inter-cluster RB distribution are fed into
the first stage of the intra-cluster RB distribution process.
After stage 1, only the selected candidate nodes are passed
onto stage two where the HHA algorithm is performed.
The undesirable ‘Node-RB’ pair assignments of stage 2 are
allocated to the unselected nodes of stage 1 to avoid RB
wastage.

1) STAGE 1: PROBABILITY BASED SELECTION
The probability-based selection aids in the elimination of
unfit nodes thereby selecting the candidate nodes for the
next stage. In probability-based selection, the cost function
is computed for every node of the respective clusters. A cost
function determines the competency of the machine node.
It plays a crucial role in the node’s selection probability (i.e.)
the probability that amachine nodewill be selected for stage 2
is based on its cost function. The proposed cost function’s
parameters include the delay tolerance value (Dm) of the mth

M2M device and the data periodicity (DPm) factor which is
the data transmission interval of the mth device.

The distance between the eNB and the mth M2M device
called the Proximity (Pm), is also factored into the calculation
of the cost function. The cost function is further dependent
on the fairness for each mth M2M device (Fm), denoted by
equation (10), and is calculated by dividing the total number
of RBs allocated so far to the mth device (Rm) by the total
number of RBs allocated to the cluster (Rt ) to which it
belongs.

Fm =
Rm
Rt

(10)

This equation quantifies the fairness for each mth M2M
device by taking the ratio of the total number of RBs allocated
to that device (Rm) to the total number of RBs allocated to
the entire cluster (Rt ). This ratio reflects the proportion of
resources assigned to a specific device relative to the overall
allocation in its cluster. Consequently, higher Fm values
signify that a machine node has received a more substantial
share of the total resources within its cluster, indicating a
fairer distribution compared to other devices in the same
cluster. The cost function takes the energy consumption factor

33620 VOLUME 12, 2024



S. B. Pathiba et al.: Energy-Aware Tailored Resource Management

(Em) into account as well where the energy consumed for each
mth device is calculated by,

Em = 1−
Ei
Et

(11)

where, Et denotes the total energy capacity of the mth device
and Ei denotes the energy consumed so far by the mth device.
Another factor called the scope factor of the mth M2M
device (Sm) is obtained as the product of the mth device’s
proximity and energy factor. The scope factor is calculated
as demonstrated by,

Sm = Pm ∗ Em (12)

The scope factor (Sm) in Equation (12), defined as the
product of the mth M2M device’s proximity (Pm) and energy
factor (Em), is indeed a term coined within the context of
the given system. The scope factor is a composite metric
that combines spatial proximity and energy considerations
for a specific M2M device. In the decision-making process,
devices with a higher scope factor are given precedence over
their counterparts with lower scope factors. The rationale
behind this lies in the fact that a higher scope factor indicates
a more favorable combination of remaining energy and
proximity, making the device a more suitable candidate for
selection when compared to other competitive devices. The
proposed cost function depends on factors such as data
periodicity, delay tolerance, proximity, and scope, which are
the product of energy and delay tolerance factors. Thus, the
cost function (Cm) for each M2M device can be computed as
follows:

Cm =
DPm

Dm ∗ Sm ∗ Fm
(13)

Equation (13) helps in finding the cost of each M2M
device. The formulation of the cost function in Equation (13)
is designed to capture and balance multiple factors that are
crucial in assessing the competency of M2M devices for
the subsequent stage of the GBEA system. The choice of
this specific form arises from a consideration of the key
parameters influencing the GBEA system’s performance.
By incorporating data periodicity (DPm), delay tolerance
(Dm), scope factor (Sm), and fairness (Fm), the cost function
attempts to evaluate the suitability of each M2M device
comprehensively. The multiplication of these factors in the
denominator of the equation reflects the interdependence
and combined influence of delay tolerance, spatial scope,
and fairness on the overall competency assessment. This
formulation allows for a weighted consideration of factors,
ensuring that devices with lower delay tolerance, limited
spatial scope, and unfair resource allocations receive higher
cost function values, signifying lower competency.

Following this, a constant called Cmax is calculated, which
is the sum of all the cost functions of a particular cluster.
Each device’s cost function is then normalized by dividing
it by Cmax to get the net cost function value which will be
used for the probability-based selection. A random number

between (0,1) is generated and each node is selected using
range matching.

The probability of a particular node getting selected is
proportional to its cost function value. The number of
candidate nodes selected from a cluster is equal to the number
of RBs allocated to cluster K (φK ). This is to avoid the
situation of unbalanced assignment in the HHA algorithm
that is performed in the next stage.

Algorithm 2 Probability Based Selection
Input: Cluster Nodes: I = {I1, I2, . . . , IN }
Output: Selected Optimal Nodes: O = {O1,O2, . . . ,OφK }

1: for i = 1, 2, 3, . . . ,N do
2: Costfunctioni =

DPi
Di∗Si∗Fi

3: end for
4: Let Cmax = 0
5: for i = 1, 2, 3, . . . ,N do
6: Cmax = Cmax + Costfunctioni
7: end for
8: for i = 1, 2, 3, . . . ,N do
9: Costfunctioni =

Costfunctioni
Cmax

∗ 100
10: end for
11: for i = 1, 2, 3, . . . , φ do
12: Prob← rand(0, 1)
13: for k = 1, 2, 3 . . .N do
14: j = k − 1
15: if Costfunctionj < Prob ≤ Costfunctionk then
16: Oi = k
17: end if
18: end for
19: end for
20: return O = {O1,O2 . . .OφK }

In Algorithm 2, the cost function (Costfunctioni) is
calculated for each cluster node (Ii) using the formula
Costfunctioni =

DPi
Di∗Si∗Fi

where DPi is the delay penalty, Di
is the delay, Si is the scaling factor, and Fi is a factor related
to the cluster’s performance. The cost function is inversely
proportional to the delay, implying that lower delays result
in higher values of the cost function. The delay tolerance
or budget (Dm) is not explicitly used in the cost function
calculation, but the inverse relationship implies that nodes
with delays closer to or within the delay budget will have
higher cost function values.

The Probability based selection algorithm also uses a
random probability (Prob) in the range [0, 1] for probabilistic
node selection. However, the cost function values are
normalized. The purpose of this normalization is to create a
relative scale for comparison such that a node with a higher
cost function value is more likely to be selected. Thus, the
term probability implies the likelihood of selection based
on the comparison of cost function values (Costfunctionj <

Prob ≤ Costfunctionk ).
While the delay budget (Dm) is not directly integrated into

the cost function calculation, the inverse relationship suggests
that nodes with delays within the budget will have higher
cost function values. This, in turn, influences the probabilistic
selection of optimal nodes, indirectly incorporating the delay
budget constraint into the algorithm. The probabilistic nature
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of the selection allows for flexibility within the specified
delay budget range [5 ms - 300 ms].

2) STAGE 2: HYBRID HUNGARIAN ALGORITHM
The HHA algorithm is a combinatorial optimization tech-
nique that efficiently addresses the assignment problem
within a polynomial time frame. This algorithm eliminates
the need for the brute force method which evaluates all the
n! ways of assignment in an attempt to solve the problem
with a minimum delay constraint violation. However, it might
end up with two cases namely the balanced assignment and
the unbalanced assignment. In a balanced assignment, the
number of candidates is the same as the number of resources.
While in the unbalanced assignment, they are not equal.
The HHA algorithm uses a matrix representation and for a
balanced assignment, a square matrix is obtained.

In the case of an unbalanced assignment, it is converted to a
square matrix (balanced assignment) by adding dummy rows
or columns. However, in stage 1, the number of candidate
nodes is chosen to be equal to the number of RBs allocated
to that particular cluster, and the balanced assignment is
calculated. In the proposed HHA algorithm, the Cost Matrix
[CM] is calculated first where each row depicts a time interval
of 1 ms and each column represents an individual M2M
device. The value ‘1’ is assigned to a cell if it satisfies the
delay constraint of the node else, the cell is assigned a value
of ‘100’ indicating that it has violated the delay constraint of
the node.

The ‘Node-RB’ assignments are represented as an Assign-
ment Matrix [AM] and since we try to minimize the
assignment cost, any node that has been allocated with the
value ‘100’ is considered an undesirable assignment. These
less desirable assignments are not discarded; instead, they are
allocated to the nodes that were not selected in stage 1, taking
into account their delay constraints. The HHA algorithm
operates in two distinct parts: Part 1 involves row and column
reduction, while Part 2 focuses on optimization. In Part 1, the
algorithm conducts row and column reduction by subtracting
the minimum value of each row and column from all the
entries within that respective row and column.

Consecutively in part 2, the aim is to try and figure out
if all the nodes have been allocated with RBs. This is done
by row/column scanning followed by row/column deletion.
Once unique ‘Node-RB’ pairs for all the nodes are procured,
an optimized solution is reached. Finally, the undesirable
assignments (if any) are mapped to an unselected node of
stage 1 to its delay constraint. In summary, each M2M device
that was fed into stage two is allocated with an RB to
minimize the delay constraint violation and if any undesirable
assignment is to arise, the RB wastage is also counteracted.

VI. SIMULATION RESULTS AND ANALYSIS
The performance of the proposed GBEA algorithm is
simulated in Network Simulator 2 (NS2) and the simu-
lation parameters are summarized in Table 1. We eval-
uated the GBEA’s performance and compared it with

Algorithm 3 Hybrid Hungarian Algorithm
Input: Selected Nodes: I = {I1, I2, . . . , Iφ}

Number of RBs Allocated: φ
Output: Optimal Set of M2M Nodes

1: Let Assignment = {∅}
2: for i = 1, 2, 3, . . . , φ do
3: for j = 1, 2, 3, . . . , φ do
4: if Delayj ≥ i then
5: Costmatrixij = 1
6: else
7: Costmatrixij = 100
8: end if
9: end for

10: end for
11: Assignment ← HybridHungarian(Costmatrix)
12: for i = 1, 2, 3, . . . , φ do
13: if Assignmenti = 100 then
14: Assignmenti ← Unselected Node ∋ delay budget ≥ i
15: end if
16: end for
17: return Assignment

TABLE 1. Simulation parameters.

Round Robin (RR), Proportional Fair (PF), Memetic, and
Memetic + MaxSpace (MS) algorithms [28] considering
an uplink scenario. Also, GBEA has been compared
to DRAGFL [16], DPBRA [17], DSS-JRAA [12], and
RGSL [21] approaches.

In the simulation setup, there is a single gNB serving
multiple randomly positioned M2M devices within its
coverage area. The simulation focuses on a contention
scenario where there are more M2M devices requesting RBs
than the available RBs. Thus, the GBEA performs clustering,
and inter and intra-RB distribution to select the optimal set
of M2M devices. The algorithm’s performance is assessed
across various metrics as the number of active devices is
systematically increased.

A. PERFORMANCE ANALYSIS OF GBEA WITH POPULAR
AND CONVENTIONAL ALGORITHMS
For comparing the performance of GBEA, we consider six
different metrics such as the percentage of packet loss,
mean throughput, percentage of satisfied nodes, percentage
of unsatisfied nodes, fairness, and energy consumption. The
PF, RR, Memetic, and Memetic + MS [28] and GBEA
algorithms are judged based on the above-mentioned metrics.
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Figure 4 shows the percentage of packet loss among the
different algorithms compared where the packet loss rate
is the measure of packets that have been lost in the way,
in essence, the packets that have not reached the destination.
The packet loss ratio is calculated as the ratio of packets lost to
the total packets generated. In the figure, it is observed that the
GBEA algorithm’s packet loss is low until 200 devices and
slowly rises after. Quantitatively, the percentage reduction
in packet loss by GBEA over the PF algorithm is more
than 5% at the 250 devices’ mark. It indicates that the
GBEA algorithm can handle packet losses better than the PF
algorithm when the number of devices gets higher.

FIGURE 4. Percentage of packet loss analysis of GBEA with popular and
conventional algorithms.

Fig. 5 depicts the mean overall energy consumption for
the considered scheduling algorithms. Energy consumption
is one of the crucial factors for M2M communication as it
directly influences their lifetimes. It can be observed from the
figure that with the increase in the total number of devices,
the overall energy consumption across all the scheduling
algorithms increases. This is because as the number of
devices increases, the eNB is inundated with requests. How-
ever, a nearly 6.5-fold decrease in the energy consumption
by the GBEA algorithm over the RR and PF algorithms
at the 250 devices’ mark can be observed, advocating the
GBEA algorithm to be the most energy-efficient among the
compared algorithms.

Fig. 6 shows the fairness index variations across different
scheduling algorithms in terms of the number of M2M
devices. Fairness is the measure of how fairly the devices
have been bestowed with their turn at data transmission
by the equitable allocation of RBs to the devices. The PF
algorithm despite its weakness in energy consumption and
mean throughput, outwitted the existing algorithms in terms
of fairness with its value ranging between 0.4 and 0.8.
Furthermore, the GBEA algorithm due to the intra-cluster
RB distribution phase performed better with values approxi-
mately in the range of 0.4 to 0.6 demonstrating an edge over
the two memetic algorithms and the RR.

FIGURE 5. Energy consumptions analysis of GBEA with popular and
conventional algorithms.

FIGURE 6. Fairness analysis of GBEA with popular and conventional
algorithms.

Fig. 7 depicts the percentage of unsatisfied nodes to
delays, which is the measure of the number of nodes whose
delay limit has been violated. This metric reflects each
algorithm’s trait in considering the delay deadlines of the
M2M devices. The PF algorithm performed with the value
almost reaching 20% followed by the RR algorithm which
ranged between 0 and 5%. Whereas, the GBEA algorithm
exhibited a progressive performance with its value almost
remaining near zero constantly.

Fig. 8 compares the mean throughput variation where
the throughput is the amount of data transmitted from a
source to a destination in a specified amount of time. As the
number of devices increases, it can be observed that the
throughput decreases across all the algorithms yet the GBEA
algorithm shows a significant throughput improvement when
compared with the existing algorithms with its value reaching
a maximum of 25kbps even when the number of devices is
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FIGURE 7. Percentage of unsatisfied nodes analysis of GBEA with popular
and conventional algorithms.

FIGURE 8. Throughput analysis of GBEA with popular and conventional
algorithms.

low. The graph proves GBEA to be more efficient than the
compared algorithms.

The performance in terms of the percentage of satisfied
nodes across all the scheduling algorithms is illustrated in
Fig. 8 and the metric evaluates the fraction of M2M nodes
that were served with the RBs. As it can be perceived from
the figure, even in dense situations, the performance of the
GBEA was acceptable with its value approximately ranging
from 10% to 55%, outplaying the other alternatives. It can
also be seen that the GBEA algorithm performed a cut above
the others even when the number of M2M devices was large
such as when |M2M| = 100.

B. PERFORMANCE ANALYSIS OF GBEA WITH RECENT
ALGORITHMS IN THE LITERATURE
To evaluate GBEA against recent algorithms, we assess
its performance using metrics including the number of
successful communications as the number of requested MTC

FIGURE 9. Percentage of satisfied nodes analysis of GBEA with popular
and conventional algorithms.

FIGURE 10. Successful communication analysis of GBEA with recent
algorithms in the literature.

devices increases, resource partition percentage over time
(ms), energy efficiency relative to the number of MTC
devices, fairness index among MTC devices, and throughput
concerning the number of MTC devices. This analysis is con-
ducted for comparison with DRAGFL, DPBRA algorithm,
DSS-JRAA algorithm, and RGSL algorithm.

Fig. 10 analyses the number of successful communications
of the nodes in contrast with the number of resource
allocation requests that have been received. As the number
of requests increases, it can be observed that the number
of successful communications decreases gradually but the
GBEA algorithm shows the best performance compared
to the DPBRA algorithm followed by DSS-JRAA, RGSL,
and DRAGFL with GBEA’s success rate (nodes succeeding
communication) being the highest at 50 or above and
DRAGFL below 20.

Fig. 11 analyses the resource partition rate to time.
Resource partition rate can be defined as the efficiency of
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FIGURE 11. Resource partition rate analysis of GBEA with recent
algorithms in the literature.

FIGURE 12. Energy Efficiency analysis of GBEA with recent algorithms in
the literature.

an algorithm to allocate a sustainable number of resources
for the requested resource allocations fairly over time. As the
time increases it can be observed that DSS-JRAA, RGSL,
and DPBRA algorithms maintain a stable rate except for
DRAGFL which has a significant rate decline with a rate
below 60 ms. The graph proves GBEA to outperform the
existing algorithms with the highest resource partition rate
being 90 ms and above throughout.

Fig. 12 analyses the energy consumption concerning the
number of nodes. It can be observed that there is an
overall gradual decline in the energy consumption for each
algorithm. As the number of nodes increases, it can be
observed that RGSL has the highest energy consumption
followed by DSS-JRAA, DPBRA, and DRAGFL. It is
noticeable that GBEA outperforms the existing algorithms
with the lowest energy consumption.

Fig. 13 analyses the energy consumption concerning the
number of nodes. It can be observed that there is an

FIGURE 13. Fairness index analysis of GBEA with recent algorithms in the
literature.

overall gradual decline in the energy consumption for each
algorithm. As the number of nodes increases the RGSL has
the highest energy consumption followed by DSS-JRAA,
DPBRA, and DRAGFL. Thus, it is envisioned that GBEA
outperforms the existing algorithms with the lowest energy
consumption.

Fig. 14 analyses the overall throughput and the service
portability of the algorithms. Service portability refers to the
ability of a node to retain existing communications without
impairment of quality, reliability, or convenience. It can be
observed that DSS-JRAA and DPBRA have the lowest rate
correspondingly. GBEA outperforms the existing algorithms
for both throughput and service portability at a rate of 95%
and above followed by DRAGFL and RGSL.

Overall, the comparative analysis of the GBEA algorithm
with the traditional and recent resource scheduling algorithms
proves the improved performance of GBEA, resulting in an
optimal resource scheduling algorithm for M2M devices in
5G-supported ZT-DI-M2M environments.

C. ANALYSIS OF CONVERGENCE AND OPTIMALITY OF
THE PROPOSED ALGORITHMS
1) SHAPLEY VALUE ALGORITHM
The Shapley value algorithm converges when it reaches a
stable allocation of resource blocks (RBs) among cluster
nodes. The stability is achieved when no cluster has an
incentive to change its RB allocation, meaning the Shapley
values have been computed in a way that satisfies fairness
and cooperation among clusters.

The algorithm follows the Shapley value concept, which
considers all possible permutations of clusters and calculates
the marginal contribution of each cluster to the overall
coalition. Convergence is reached when these marginal
contributions settle into a stable distribution.

The optimality of the Shapley value algorithm is based
on its properties, including fairness and efficiency. The
Shapley value provides a unique and fair distribution of RBs
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FIGURE 14. Throughput and service probability of GBEA and existing
algorithms.

among clusters, ensuring that each cluster receives a share
proportional to its contribution to the overall system. This
allocation is considered optimal in terms of fairness.

2) PROBABILITY-BASED SELECTION
The probability-based selection algorithm converges when a
specific number of nodes from each cluster are chosen for
the next stage of the Hungarian algorithm. The convergence
condition is set based on the initial RB allocation determined
by the Shapley value. Once the required number of nodes is
selected, the algorithm proceeds to the next stage.

Optimality in this context is linked to the cost function
used for node selection. The cost function considers factors
such as delay, size, and frequency, aiming to optimize the
selection of nodes that collectively contribute to the overall
system’s efficiency. The normalization step ensures that
the probabilities sum to 1, providing a valid probability
distribution.

3) HYBRID HUNGARIAN ALGORITHM
The convergence of the Hybrid Hungarian Algorithm occurs
when all nodes are assigned an RB. The algorithm is
executed in stages, with the first stage involving the selected
nodes from the probability-based selection. The subsequent
stages use the Hungarian algorithm to assign RBs optimally,
considering delay constraints. The convergence is achieved
when RBs are assigned to all selected nodes.

Optimality in the Hybrid Hungarian Algorithm is mea-
sured by its ability to assign RBs optimally, considering the
cost matrix that incorporates delay constraints. The algorithm
ensures that RBs are allocated efficiently while adhering to
the delay budgets of the selected nodes. The final assignment,
considering both selected and unselected nodes to avoid
RB wastage, contributes to the overall optimality of RB
distribution.

4) OVERALL OPTIMALITY
The overall optimality of the entire system is achieved
through the combination of these algorithms. The Shapley

value ensures fairness in the initial distribution of RBs among
clusters. The probability-based selection optimizes the node
selection process within clusters based on the cost function.
Finally, the Hybrid Hungarian Algorithm refines the RB
assignments, considering delay constraints and achieving an
optimal overall allocation.

VII. CONCLUSION
This paper proposes the GBEA scheme for ZT-DI-M2M
communications, which is an efficient resource allocation
algorithm that is both group-based and energy-conscious. The
GBEA algorithm comprises three consecutive steps namely
the virtual clustering using the GMM-EM algorithm, inter-
cluster RB distribution inspired by Shapley value theory, and
intra-cluster RB distribution with probability-based selection
and the HHA algorithm. The proposed scheme has been
incorporated into the NS2 platform, and its performance
has been evaluated in a practical scenario. The simulation
findings show that the proposed GBEA scheduling algorithm
outperforms the other existing resource allocation algorithms
in terms of throughput, delay sensitivity, and energy con-
sumption, with 1.5, 1.75, and 6.5 fold, improvements respec-
tively. After analyzing the results, the proposed resource
allocation scheme demonstrates progressive performance
when compared to the state-of-the-art techniques. In future
work, an extension of this research could involve implement-
ing GBEA in real-time environments with strict time intervals
(TTIs) for resource allocation decisions and optimizing the
algorithm’s efficiency, particularly in large-scale networks,
for faster execution and reduced computational load.
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