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ABSTRACT The significance of clustering algorithms lies in their ability to distinguish problems and devise
customized solutions. In the broader context of clustering, fuzzy clustering is one of the crucial aspects.
In response to the real-world clustering problems, this research suggests a new fuzzy cluster scheme of
data under the linear diophantine fuzzy set(LDFS) framework. More precisely, LDF clustering is initiated
with the aid of the correlation coefficient(CC) and weighted correlation coefficient(WCC) for LDFS. Due
to their ability to quantify the degree of similarity between two elements, CC are valuable in clustering
problems. The LDF- clustering algorithm comprises a well-integrated algorithm for managing uncertainty
and CC among LDFS. Also, our approach to LDF clustering is compared to existing fuzzy clustering studies
to assess its effectiveness. Since LDFS broadens the score space, the experimental evaluation of our proposed
scheme enables Decision makers(DM) to freely select their score values. The theme of this study is to
impart the commencement of LDF-clustering analysis and attempt to apply CC to the clustering problem.
An interpretative example provides the analysis of the logistic efficiency of food products by employing an
LDF-clustering algorithm.

INDEX TERMS LDFS, clustering algorithm, correlation coefficient, logistics, food products, optimization,
decision making, algorithms.

I. INTRODUCTION
Clustering involves combining a set of objects into clusters
that are associated with data characteristics, where the objects
in clustered objects are more alike than those in other clusters.
It is among the most commonly employed tools for analyzing
data. Computational intelligence and pattern recognition
research both heavily rely on clustering techniques. The
applications of cluster analysis have been applied to various
fields including pattern recognition, data mining, information
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retrieval, medicine, biology, and finance. Due to the vast
amount of data that these fields handle, the techniques
employed must be efficient in the usage of memory of
the entire data set. The creation of specialized solutions to
problems relies heavily on clustering algorithmic techniques.
By clustering data, patterns, and order are made apparent by
dividing it into related components.

Unlike classification, which involves class prediction on
unlabeled data following supervised learning on pre-labeled
data, clustering deals with unsupervised learning of unlabeled
data. As a result, clustering algorithms can be used safely
on a data set without much knowledge of it. The definition
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of a cluster can include both crisp and fuzzy features,
with the former being defined as having definite boundaries
and the latter being unclear. The process of clustering
involves merging observed objects into clusters that satisfy
the fundamental criteria listed below.

1. Objects that are part of the same group are considered
similar. There are only homogeneous clusters.

2. Each cluster should be distinct from the others in such
a way that the objects within each cluster are distinct from
the objects found within the other clusters. Different clusters
have heterogeneous compositions.

The variations among many fundamental items are
frequently hazy in the actual world. When categorizing
something, there will inevitably be a degree of uncertainty,
which gives rise to fuzzy clustering analysis. Within the
broader context of clustering, fuzzy clustering plays a very
significant function. In 1965, Zadeh [53] created the fuzzy
set(FS) theory. It is a group of objects with diverse levels
of membership. Membership score(MS) is fuzzy numbers
mappings that represent real values from 0 to 1 inclusive.
Fuzzy clustering is a highly practical technology for data
analysis. The field is still relatively new and expanding in
numerous directions, with innovative and sophisticated new
ideas, methodologies, and applications [32]. Later, in 1986,
Atanassov [3] updated the FS and introduced an intuitionistic
FS(IFS). These newer sets designate their participants to two
distinct roles, membership and nonmembership score(NMS).
Due to the fuzzy values used in these mappings, the sum of
these mappings cannot be greater than 1I.

FIGURE 1. Codomain of IFS.

Numerous different clustering algorithms have been devel-
oped using IF data. The Pythagorean FS (PFS) was created
by Yager [49], which makes it possible to reduce the IFS
restrictions by retaining the sum of the squares of both scores
within the unit intervalI. Later, Yager [50] developed q-rung
orthopair fuzy set(q-ROFS) as a generalization PFS, which
relaxes the restrictions of PFS by the constraint that the sumof
the qth power of MS and NMS belongs to unit intervalI. But,
certain constraints prevent decision-makers from selecting
their own score. To alleviate these limitations, LDFS was
designed.

The CC is a term that is used in statistical problems
to describe the level of association between entities. One

FIGURE 2. Codomain of PFS.

of the most often used metrics is correlation, which is
also a crucial factor in procedures such as decision-
making, pattern recognition, data analysis, and classification.
Clustering problems can be tackled with the use of correlation
coefficients, which indicate the level of similarity between
two elements. In fuzzy sets, correlation measures outperform
similarity measurements because they can determine the
direction and strength of linkages in addition to determining
the degree of resemblance. In addition to similarity metrics,
correlations bring the advantage of both positive and negative
relationships, offering a more complex interpretation of
links across fuzzy sets. Correlation measures are better at
recognizing broad patterns and trends within fuzzy sets
because they can take covariance and variability into account.
This leads to a more thorough study. Correlation measures
provide a more comprehensive description of fuzzy set
interactions by considering both similarity and dissimilarity
factors. All things considered, their adaptability makes
them the go-to option for a thorough study of fuzzy set
relationships. A few CC were launched for various functional
areas such as FS, IFS, PFS, and q-ROFS. However, due to
their bounds limitations, they don’t contain some kind of
information. This motivates us to investigate the CC for LDFS
since LDFS is the key aspect in eliminating the bounds onMS
and NMS(I).

FIGURE 3. Codomain of q-ROFS.
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FIGURE 4. Codomain of LDFS.

A. LITERATURE REVIEW
Bonizzoni et al. [10] researched correlation clustering and
consensus clustering. Akram et al. [4], [27] has accomplished
some remarkable work and has suggested various clustering
algorithms. According to Yang and Lin [51], they introduced
type-2 FS similarity measures, which were used in cluster-
ing. The correlation coefficients of the hesitant FSs were
established by Chen et al. [14] and applied to clustering
analysis. The IFS clustering algorithm was explained by
Xu et al. [47]. Chaudhuri [13] evaluated a probabilistic
C means clustering algorithm under an IF environment.
Lin et al. [28] suggests a novel distance measure that is based
on the continuous optimal aggregation operator to address
interval intuitionistic fuzzy clustering issues. Riaz et al.,
developed specialized fuzzy soft-max aggregation operators
based on linear Diophantine sets for the development of an
efficient algorithm for green supply chain issues [6].
Pearsons [36] has created a CC that finds application

in various statistical analyses, including data analysis and
classification patterns, clustering, medical diagnosis, and
decision-making. The ineffectiveness of conventional corre-
lation in managing data related to fuzzy scenarios has been
acknowledged. To address these problems, several authors
have broadened the definition of statistical correlation to
fuzzy correlation. Chiang et al. [11] utilized mathematical
statistics to determine the correlation coefficient between
fuzzy data. Many Researchers have attempted to evaluate the
impact of correlation between fuzzy sets [33], [52].
In 1991, Gerstenkorn andManko [19] conducted the initial

investigation into the CC of intuitionistic fuzzy sets. Bustince
and Burillo [8] instigated the concept of a CC between the
interval-valued intuitionistic fuzzy set(IVIFS). The CC and
measure for IFSs in probabilistic spaces were investigated by
Hong et Al. [20]. Many authors later researched and created
correlations in various trends and other areas. Correlation
studies carried out in the 1990s revealed that the coefficients
of correlation are positioned between [0, 1]. There is a large
number of CC introduced and analyzed between the interval
0 and 1 for the extensions of fuzzy sets. Later in the 21st
century, scholars have been developing new methods for
generating correlation coefficients for fuzzy sets within the

range [−1, 1] and it is reflected in the latest findings of some
studies.

The CC between the IVIFSs are constructed by Nguyen
and build a clustering analysis. Qu et al. [38] introduced a
new clustering algorithm that utilizes CC for complex picture
fuzzy sets to classify products by features. Park et al. [37]
demonstrated the use of CC of IVIFS in MCDM. Garg [18]
created a new CC among PFSs to assist individuals in making
decisions. Ganie et al. [17] defined the PiFS correlation
coordinators and applied them in medical diagnosis. Du
[15] created the CC for the q-ROFS. Li and his team [30]
utilized a clustering analysis, as an illustration, to showcase
the superiority of the proposed method by examining two δ-
CC for q-rung orthopair fuzzy conditions. Abbas et Al. [1]
explores the clustering technique for q-ROF 2-tuple linguistic
sets based on CC. Through the use of counter-examples,
Lin et [29] examines the inadequacies of the current CC and
suggests a new directional correlation rate, as well as its
weighted version for PFSs. Bashir [9] derived some improved
CC for q-ROFS and suggested a cluster analysis in automobile
classification.

Furthermore, the literature-based CC still exhibits certain
restrictions on IFS, PFS, and q-ROFS. Hence, several
academics in various systematic fields were interested in the
practical benefits of LDFS, leading to the creation of several
significant papers. Iampam et al. [21] explored it using
different methods of Einstein aggregation for Multi-Criteria
Decision Making(MCDM) problems, while Ayub et al. [5]
determined the development of LDF relations and algebraic
traits later on. In addition to describing the cosine similarity
measure and its applications, Kamac [26] developed the
highly complex LDFS. Riaz et al. [42] broadened the scope
of the LDFS by including soft rough sets and their potential
utilization in material handling equipment. Riaz et al. [41]
created aggregation operators(AOs) that prioritized linear
Diophantine fuzzy numbers (LDFNs) and utilized them to
select third-party logistic service providers. Farid et al. [16]
suggested the use of Einstein’s prioritized linear Diophantine
fuzzy AOs with applications. Frank AOs for linear Dio-
phantine fuzzy numbers with interval values were recently
developed by Riaz et al. [39]. By utilizing IVLDF data,
Petchimuthu et al. [35] attempted to solve the supplier
selection problem with its own AOs. Jeevitha et al. [25]
discussed the problem of climate crisis by utilizing LDF
DEMATEL approach. Subsequently, some enhancements of
LDFS were addressed and discussed the application in the
field of digital transformation [24], agri-drone [22], tender
selection [23] medical diagnosis [46] Saeed et al. used hybrid
fuzzy hypersoft structures for optimization and efficient
decision-making purposes [43], [44], [45].

B. CONTRIBUTION OF THIS STUDY
The advancement in theory and the empirical use of clustering
algorithms, LDFS, and CC led us to investigate these ideas.

The research seeks to propose innovative DM approaches
that utilize correlation coefficients in practical scenarios,
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with the aim of establishing practical applications of these
coefficient factors in FS theory. As a result, the fundamental
components of this proposed clustering algorithm are estab-
lished, such as the information energy of each LDFS, their
relationship to each other, and the correlation between two
LDFS. Following this, the equivalence matrix and matrix
of CC are explained, and the associated composition of the
correlation matrix is determined. The rules for λ-cutting
classification are also discussed. The proposed definitions
have a lot of intriguing properties and valuable outcomes.
Additionally, the LDFS correlation coefficients are used to
design the clustering algorithm. The presented algorithm is
compared to the other methods discussed in the literature to
verify the efficacy and suitability of LDF-Clustering.

In bringing out an innovative approach within the context
of linear diophantine fuzzy sets (LDFS), this study signifi-
cantly advances the field of clustering algorithms. In order
to tackle real-world clustering problems, fuzzy clustering
is essential. In this work, we present a novel fuzzy cluster
scheme that makes use of the CC for LDFS. Adding CC
to the LDF clustering algorithm improves its capacity to
control uncertainty and measure how similar elements are
to one another during the clustering process. Because of the
enlarged score space of LDFS, the LDF-clustering algorithm
described in this study not only offers a well-integrated
solution to clustering problems but also gives decision-
makers the freedom to choose score values.

The suggested LDF-clustering algorithm’s applicability
and efficacy are practically demonstrated through the inter-
pretative example that centers on the logistic efficiency study
of food products. This application demonstrates how the
algorithm may be used to classify and examine logistics
information pertaining to food items, offering valuable
insights that can guide decision-making procedures. In the
context of supply chain and logistics management, the
larger consequence is that the suggested strategy helps to
optimize logistical operations, which may result in increased
effectiveness, lower costs, and better resource allocation.
Overall, the study fills a practical need by providing a
specialized tool for improving logistics efficiency through
data-driven analysis and decision-making, in addition to
furthering the subject of clustering algorithms. By using a
range of features, LDF-Clustering is a versatile technology
that can be used to build adaptable and flexible clusters, which
will increase the logistic efficiency of food goods. This tactic
enablesmore customised and effective logisticalmanagement
of food goods, which raises customer satisfaction and
efficiency.

Thus, this work lays the groundwork for the use of CC
in clustering issue-solving and advances the field of LDF-
clustering analysis.

C. HIGHLIGHTS AND EMPHASIS OF THIS STUDY
1. LDFS uses the reference parameter technique, which is
becoming more and more used for in-depth analyses in
various applications. This approach, which offers a broader

space than existing sets, tries to address shortcomings in
previous methods and provide a useful data selection.

2. The most obvious finding to emerge from this study is
to extend the theory and applications of LDFS in terms of
clustering analysis.

3. Another finding that stands out in this study is the
formulation of CC for LDFS, which is employed for LDF-
clustering.

4. An analysis of the literature review indicates that the
present study is one of the pioneering effects in establishing
the clustering algorithm in the LDFS environment. And this
paper highlights this breakthrough.

5. The four different CC for LDFS has been identified in
this work. The logistic effectiveness of food products has
been analyzed with these CC.
6. The comparative analysis with prior research has

demonstrated and it exhibits the efficacy of this study.
7. The experimental section concludes with evaluations

that highlight the precedence of the proposed method and the
shortcomings of the foregoing methods.

D. RESEARCH GAP AND MOTIVATION
The lack of consideration for non-membership values in
the literature that currently exists on fuzzy clustering is
highlighted as the specific limitation that regulates the
research gap. Non-membership values, which indicate the
degree of dissimilarity or exclusion from a cluster, are
important in fuzzy clustering. This gap is filled by the
research, which gives decision-makers the freedom to select
non-membership values based on personal preferences by
incorporating non-membership grades into the suggested
theory. This distinctive feature sets the suggested LDFS
clustering algorithm apart from traditional fuzzy clustering
techniques by improving its adaptability and applicability.

E. STRUCTURE OF THIS MANUSCRIPT
Section II comprises the basic definitions of existing research.
The formulation of CC and WCC for LDFS has been
assigned in Section III along with its characteristic theorems.
In Section IV, the LDF-clustering algorithm is described
and an example is analyzed. Also, it contains comparative
analysis, shortcomings of prior research, precedence of the
proposedmethod, and sensitive analysis. SectionV concludes
this study.

II. BACKGROUND OF THE STUDY
Some of the basic ideas underpinning existing systems
are outlined in this section. P, the Universal set is used
throughout the study.
Definition 1: A FS 1 on P is interpreted as

1 = {(ki, µ(ki)) : ∀ki ∈ P}

where, µ(ki) ∈ [0, 1] constituted as a MS for the member ki
in P.
Definition 2: An IFS B on P is interpreted as

B = {(ki, µ(ki), ν(ki)) : ∀ki ∈ P}
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where, µ(ki), ν(ki) ∈ [0, 1] constituted as a MS and NMS
contigent to the constraint 0 ≤ µ(ki) + ν(ki) ≤ 1 for all the
members ki in P.
Definition 3: An LDFS L on P is interpreted as

L = {(ki, ⟨µ(ki), ν(ki)⟩, ⟨α(ki), β(ki)⟩) : ∀ki ∈ P}

where, µ(ki), ν(ki), α(ki), β(ki) ∈ [0, 1] constituted as a
MS and NMS and their reference parameters respectively.
Also, they are contigent to the constraint 0 ≤ α(ki)µ(ki) +

β(ki)ν(ki) ≤ 1 and 0 ≤ α(ki)+β(ki) ≤ 1 for all the members
ki in P.

III. CORRELATION COEFFICIENT FOR LINEAR
DIOPHANTINE FUZZY SET
This section comprises four different CC for LDFS. Some of
its theorems are utilized to explore its basic characteristics.
Definition 4: LetS1 = {(ki, ⟨µS1 (ki), νS1 (ki)⟩, ⟨αS1 (ki),

βS1 (ki)⟩) : ki ∈ P},S2 = {(ki, ⟨µS2 (ki), νS2 (ki)⟩, ⟨αS2 (ki),
βS2 (ki)⟩) : ki ∈ P} be two LDFS over the set P =

{k1, k2, k3, . . . , ky}. Then the informational energies of
S1, S2 are interpreted as

T(S1) =

y∑
i=1

(
(µS1 (ki))

2
+ (νS1 (ki))

2
+ (αS1 (ki))

2

+ (βS1 (ki))
2)

T(S2) =

y∑
i=1

(
(µS2 (ki))

2
+ (νS2 (ki))

2
+ (αS2 (ki))

2

+ (βS2 (ki))
2)

Definition 5: Let S1 and S2 be two LDFS. Then the
correlation between S1 and S2 is interpreted as

C(S1, S2) =


y∑

i=1

(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki)+

αS1 (ki)αS2 (ki) + βS1 (ki)βS2 (ki))


Remark:
(i)C(S1, S1) = T(S1)
(ii)C(S1, S2) = C(S2, S1).
Definition 6: Let S1 and S2 be two LDFS over the set

P = {k1, k2, k3, . . . , ky}. Then the correlation coefficent(CC)
of S1, S2 is interpreted as

Y(S1, S2) =
C(S1, S2)

(T(S1).T(S2))
1
2

Example 1: Let A = { (k1, ⟨0.7, 0.4⟩, ⟨0.8, 0.1⟩),
(k2, ⟨0.5, 0.7⟩, ⟨0.6, 0.3⟩), (k3, ⟨0.8, 0.4⟩, ⟨0.6, 0.4⟩) }, B =

{ (k1, ⟨0.6, 0.4⟩, ⟨0.5, 0.3⟩), (k2, ⟨0.7, 0.5⟩, ⟨0.8, 0.2⟩), (k3,

⟨0.7, 0.6⟩, ⟨0.6, 0.3⟩)} be two LDFS.
Then the informational energies of A and B is calculated

as:

T(A) = 0.72 + 0.42 + 0.82 + 0.12 + 0.52 + 0.72 + 0.62

+ 0.32 + 0.82 + 0.42 + 0.62 + 0.42

= 3.81
T(B) = 0.62 + 0.42 + 0.52 + 0.32 + 0.72 + 0.52 + 0.82

+ 0.22 + 0.72 + 0.62 + 0.62 + 0.32

= 3.58

And the correlation between A and B is calculated as:

C(A, B)

= (0.7)(0.6) + (0.4)(0.4) + (0.8)(0.5) + (0.1)(0.3)

+ (0.5)(0.7) + (0.7)(0.5) + (0.6)(0.8) + (0.3)(0.2)

+ (0.8)(0.7) + (0.4)(0.6) + (0.6)(0.6) + (0.4)(0.3)

= 3.53

Y(S1, S2)

=
C(S1, S2)

(T(S1).T(S2))
1
2

=
3.53

((3.81)(3.58))
1
2

=
3.53
3.67

= 0.9619
Theorem 1: LetS1,S2 be two LDFS andY(S1, S2) be

the C C of S1 and S2. Then
(C1) 0 ≤ Y(S1, S2) ≤ 1
(C2) Y(S1, S2) = Y(S2, S1)
(C3) Y(S1, S2) = 1 if S1 = S2

Proof: (C1) Since µS1 (ki), νS1 (ki), αS1 (ki), βS1 (ki),
µS2 (ki),νS2 (ki), αS2 (ki), βS2 (ki) ∈ [0, 1] for all ki ∈ P,
we have C(S1, S2) ≥ 0, T(S1) ≥ 0, T(S2) ≥ 0, hence we
have that

Y(S1, S2) ≥ 0

Next, to prove that Y(S1, S2) ≤ 1,

Y(S1, S2)

=
C(S1, S2)

(T(S1).T(S2))
1
2

=

{∑y
i=1(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki)

+ αS1 (ki)αS2 (ki) + βS1(ki)βS2 (ki))

}
(T(S1).T(S2))

1
2

=

{∑y
i=1(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki)

+ αS1 (ki)αS2 (ki) + βS1(ki)βS2 (ki))

}
{∑y

i=1((µS1 (ki))
2
+ (νS1 (ki))

2
+ (αS1 (ki))

2

+(βS1 (ki))
2)

∑y
i=1((µS2 (ki))

2
+

(νS2 (ki))2 + (αS2 (ki))2 + (βS2 (ki))2)

} 1
2

Also, we have

C(S1, S2)

=



µS1 (k1)µS2 (k1) + νS1 (k1)νS2 (k1)+

αS1 (k1)αS2 (k1) + βS1 (k1)βS2 (k1)

µS1 (k2)µS2 (k2) + νS1 (k2)νS2 (k2)+

αS1 (k2)αS2 (k2) + βS1 (k2)βS2 (k2)

+ . . . +

µS1 (ky)µS2 (ky) + νS1 (ky)νS2 (ky)+

αS1 (ky)αS2 (ky) + βS1 (ky)βS2 (ky)


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C(S1, S2)2

=



µS1 (k1)µS2 (k1) + νS1 (k1)νS2 (k1)+

αS1 (k1)αS2 (k1) + βS1 (k1)βS2 (k1)

µS1 (k2)µS2 (k2) + νS1 (k2)νS2 (k2)+

αS1 (k2)αS2 (k2) + βS1 (k2)βS2 (k2)

+ . . . +

µS1 (ky)µS2 (ky) + νS1 (ky)νS2 (ky)+

αS1 (ky)αS2 (ky) + βS1 (ky)βS2 (ky)



2

Using cauchy schwatrz inequality, (
∑
uivi)2 ≤

∑
u2i

∑
v2i ,

we have

C(S1, S2)2 ≤



(µS1 (k1))
2
+ (νS1 (k1))

2
+ (αS1 (k1))

2
+

(βS1 (k1))
2
+ (µS1 (k2))

2
+ . . . +

(µS1 (ky))
2
+ (νS1 (ky))

2
+ (αS1 (ky))

2
+

(βS1 (ky))
2
}{(µS2 (k1))

2
+ (νS1 (k1))

2
+

(αS1 (k1))
2
+ (βS1 (k1))

2
+ (µS1 (k2))

2

+ . . . + (µS1 (ky))
2
+ (νS1 (ky))

2
+

(αS1 (ky))
2
+ (βS1 (ky))

2
}



=



{ y∑
i=1

(
(µS1 (ki))

2
+ (νS1 (ki))

2
+

(αS1 (ki))
2
+ (βS1 (ki))

2)}
{ y∑

i=1

(
(µS2 (ki))

2
+ (νS2 (ki))

2
+

(αS2 (ki))
2
+ (βS2 (ki))

2)}


= T(S1)T(S2)

C(S1, S2) ≤ (T(S1).T(S2))
1
2

Hence, Y(S1, S2) ≤ 1.
(C2) The proof is straight forward.
(C3) If S1 = S2, then

Y(S1, S2) =
C(S1, S2)

√
T(S1).T(S2)

=
C(S1, S1)

√
T(S1).T(S1)

=
T(S1)
T(S1)

Definition 7: Let wi = {w1, w2, . . . ,wy} be the weight
vector for the elements in the universe set such that

∑
i wi =

0 for all wi > 0. Let S1 and S2 be two LDFS over the
set P = {k1, k2, k3, . . . , ky}. Then the weighted correlation
coefficient(WCC) of S1, S2 is interpreted as

Yw(S1, S2) =
C(S1, S2)

(T(S1).T(S2))
1
2

The expression can be written as shown in the equation at the
bottom of the next page.

Theorem 2: Let S1, S2 be two LDFS and Yw(S1, S2)
be the W C C of S1 and S2. Then
(C1) 0 ≤ Yw(S1, S2) ≤ 1
(C2) Yw(S1, S2) = Y(S2, S1)
(C3) Yw(S1, S2) = 1 if S1 = S2

Proof: (C1) Since µS1 (ki),νS1 (ki),αS1 (ki),βS1 (ki),
µS2 (ki), νS2 (ki),αS2 (ki),βS2 (ki) ∈ [0, 1] for all ki ∈ P,
we have C(S1, S2) ≥ 0, T(S1) ≥ 0, T(S2) ≥ 0, hence we
have that

Yw(S1, S2) ≥ 0

Next, to prove that Yw(S1, S2) ≤ 1,

Yw(S1, S2)

=
C(S1, S2)

(T(S1).T(S2))
1
2

=

{∑y
i=1 wi(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki)+

αS1 (ki)αS2 (ki) + βS1 (ki)βS2 (ki))

}
{∑y

i=1 wi((µS1 (ki))
2
+ (νS1 (ki))

2
+ αS1 (ki))

2

+(βS1 (ki))
2)

∑y
i=1 wi((µS2 (ki))

2
+

(νS2 (ki))2 + (αS2 (ki))2 + (βS2 (ki))2)

} 1
2

Also, we have, as shown in the equation at the bottom of the
next page.

Using cauchy schwatrz inequality, (
∑
uivi)2 ≤

∑
u2i

∑
v2i ,

we have

C(S1, S2)2

≤



[(
√

w1µS1 (k1))
2
+ (

√
w1νS1 (k1))

2
+

(
√

w1αS1 (k1))
2
+ (

√
w1βS1 (k1))

2
+

(
√

w2µS1 (k2))
2
+ . . . + +(

√
wyαS1 (ky))

2
+

(
√

wyβS1 (ky))
2][(

√
w1µS2 (k1))

2
+

(
√

w1νS1 (k1))
2
+ (

√
w1αS1 (k1))

2
+

(
√

w1βS1 (k1))
2
+ (

√
w2µS1 (k2))

2

+ . . . + (
√

wyαS1 (ky))
2
+ (

√
wyβS1 (ky))

2]



≤



{ y∑
i=1

wi

(
(µS1 (ki))

2
+ (νS1 (ki))

2
+

(αS1 (ki))
2
+ (βS1 (ki))

2)}
×{ y∑

i=1

wi

(
(µS2 (ki))

2
+ (νS2 (ki))

2
+

(αS2 (ki))
2
+ (βS2 (ki))

2)}


= T(S1)T(S2)

C(S1, S2)

≤ (T(S1).T(S2))
1
2

Hence, Yw(S1, S2) ≤ 1.
(C2) The proof is straight forward.
(C3) If S1 = S2, then

Yw(S1, S2) =
C(S1, S2)

√
T(S1).T(S2)
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=
C(S1, S1)

√
T(S1).T(S1)

=
T(S1)
T(S1)

Definition 8: Let S1 and S2 be two LDFS over the
set P = {k1, k2, k3, . . . , ky}. Then the correlation
coefficent(C C ) of S1, S2 is interpreted as

Y′(S1, S2) =
C(S1, S2)

max(T(S1), T(S2))
Theorem 3: LetS1,S2 be twoLDFS andY′(S1, S2) be

the C C of S1 and S2. Then
(C1) 0 ≤ Y′(S1, S2) ≤ 1
(C2) Y′(S1, S2) = Y′(S2, S1)
(C3) Y′(S1, S2) = 1 if S1 = S2

Proof: (C1) Since µS1 (ki), νS1 (ki), αS1 (ki), βS1 (ki),
µS2 (ki),νS2 (ki), αS2 (ki), βS2 (ki) ∈ [0, 1] for all ki ∈ P,
we have C(S1, S2) ≥ 0, T(S1) ≥ 0, T(S2) ≥ 0, hence we
have that

Y′(S1, S2) ≥ 0

Next, to prove that Y′(S1, S2) ≤ 1,

Y′(S1, S2)

=

{∑y
i=1(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki)

+ αS1 (ki)αS2 (ki) + βS1(ki)βS2 (ki))

}
max(T(S1), T(S2))

Also, from the previous theorem we have

C(S1, S2) ≤ max(T(S1), T(S2))

H⇒ Y′(S1, S2) ≤ 1.

(C2) The proof is straight forward.
(C3) If S1 = S2, then

Y′(S1, S2) =
C(S1, S2)

max{T(S1), T(S2)}

=
C(S1, S1)

max{T(S1), T(S1)}

=
T(S1)
T(S1)

Definition 9: Let S1 and S2 be two LDFS over the set
P = {k1, k2, k3, . . . , ky}. Then the weighted correlation
coefficent(C C ) of S1, S2 is interpreted as shown in the
equation at the bottom of the next page.
Theorem 4: Let S1, S2 be two LDFS and Y′

w(S1, S2)
be the C C of S1 and S2. Then
(C1) 0 ≤ Y′

w(S1, S2) ≤ 1
(C2) Y′

w(S1, S2) = Y′(S2, S1)
(C3) Y′

w(S1, S2) = 1 if S1 = S2

Proof: Similar to the previous one.

IV. LDF-CLUSTERING ALGORITHM
In this section, the LDF-clustering algorithm is established
by employing the definitions of CC, Correlation matrix,
and Equivalance matrix. An illustration of the logistic
efficiency of food products is experimented with to represent
the applicability and reliability of the suggested clustering
algorithm.
Definition 10: LetSr be the set of LDFS and C = (ζij)r×r

be a correlation matrix(C M ), where ζij = Y(S1, S2) and
it satisfies,

1) 0 ≤ ζij ≤ 1, i, j = 1, 2 . . . , r .
2) ζij = 1, when i = j, i = 1, 2, . . . , r .
3) ζij = ζji, i, j = 1, 2 . . . , r .

Yw(S1, S2) =


∑y

i=1 wi(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki) + αS1 (ki)αS2 (ki) + βS1 (ki)βS2 (ki)){∑y
i=1 wi((µS1 (ki))

2
+ (νS1 (ki))

2
+ (αS1 (ki))

2
+ (βS1 (ki))

2)∑y
i=1 wi((µS2 (ki))

2
+ (νS2 (ki))

2
+ (αS2 (ki))

2
+ (βS2 (ki))

2)

} 1
2



C(S1, S2) =



√
w1µS1 (k1)

√
w1µS2 (k1) +

√
w1νS1 (k1)

√
w1νS2 (k1)+

√
w1αS1 (k1)

√
w1αS2 (k1) +

√
w1βS1 (k1)

√
w1βS2 (k1)

√
w2µS1 (k2)

√
w2µS2 (k2) +

√
w2νS1 (k2)

√
w2νS2 (k2)+

√
w2αS1 (k2)

√
w2αS2 (k2) +

√
w2βS1 (k2)

√
w2βS2 (k2)

+ . . . +√
wyαS1 (ky)

√
wyαS2 (ky) +

√
wyβS1 (ky)

√
wyβS2 (ky)



C(S1, S2)2 =



√
w1µS1 (k1)

√
w1µS2 (k1) +

√
w1νS1 (k1)

√
w1νS2 (k1)+

√
w1αS1 (k1)

√
w1αS2 (k1) +

√
w1βS1 (k1)

√
w1βS2 (k1)

√
w2µS1 (k2)

√
w2µS2 (k2) +

√
w2νS1 (k2)

√
w2νS2 (k2)+

√
w2αS1 (k2)

√
w2αS2 (k2) +

√
w2βS1 (k2)

√
w2βS2 (k2)

+ . . . +√
wyαS1 (ky)

√
wyαS2 (ky) +

√
wyβS1 (ky)

√
wyβS2 (ky)



2
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Definition 11: Let C = (ζij)r×r be the C M , if C2 = C ⊙

C = (ζ̄ij)r×r then C2 is called a composition matrix of C,
where ζ̄ij = maxk{minζik , ζkj}, i, j = 1, 2, . . . , r
Theorem 5: Let C = (ζij)r×r be the C M , then the

composition matrix C2 = C ⊙ C = (ζ̄ij)r×r is a C M .
Theorem 6: Let C = (ζij)r×r be theC M , then for any non-

negative integers a1, a2 the composition matrix Ca1+a2 =

Ca1 ⊙ Ca2 is still a correlation matrix.
Definition 12: Let C = (ζij)r×r be the C M , then C is said

to be equivalent correlation matrix if

C2 ⊆ C H⇒ maxk{minζik , ζkj} ≤ ζij
Definition 13: Let C = (ζij)r×r be the C M then after the

finite terms of compositions: C → C2 → C4 → C8 →

. . . C2k → there must exist a positive integer k such that
C2k = C2(k+1)

and C2k is also an equivalent correlation
matrix.
Definition 14: Let C = (ζij)r×r be an equivalent

correlation matrix. Then we call Cλ = (λζij)r×r , the
λ - cutting matrix of C where,

λζij =

{
0 if ζij ≤ λ

1 if ζij ≥ λ

and λ is the confidence level with λ ∈ [0, 1].

A. MATHEMATICAL MODELLING
To illustrate LDF-clustering’s usefulness in high-dimensional
situations and uncertainty handling, this subsection presents
the main lines of research on algorithmic and computational
augmentations of LDF-clustering.

Step 1:LetSr be the set ofLDFS inP = {k1, k2, . . . , ky}.
Using the formula, CC betweenLDFS can be determined and
then put it as correlation matrix C = (ζij)r×r

C =


ζ11 ζ12 . . . ζ1r
ζ21 ζ22 . . . ζ2r
...

...
...

...

ζr1 ζr2 . . . ζrr


where ζij = Y(Si, Sj)
Step 2: Check whether C = (ζij)r×r is an equivalent

matrix. If it does not, then determine the corresponding C M
C2k which satisfies C2k = C2k+1

.
Step 3: For an assurance level λ, we construct λ- clustering

matrix Cλ(using the definition). If all the elements of ith line
are same as the corresponding elements of jth column in Cλ.
Then the LDFS S1 and S2 are of the same type. We can
allocate all Si by using this principle. The systematic work-
flow of our proposed method is demonstrated in figure 5.

FIGURE 5. Work-Flow of proposed LDF-clustering.

B. AN EVALUATION OF LOGISTICS EFFICIENCY OF FOOD
PRODUCTS
Logistic efficiency: The ratio of logistics output to input
is used to define its efficiency. Utilizing fewer resources
to provide quicker and better logistics output is the aim
of logistical efficiency. The application of pertinent per-
formance indicators, standards, and methodologies, as well
as the evaluation system created by pertinent institutions,
and the collection of assessment findings are all considered
to be components of the definition of logistics efficiency
evaluation. Logistics efficiency evaluation is described as
assessing the effectiveness and effects of prior activities by
gathering, processing, categorizing, analyzing, entering, and
publishing pertinent data, making proper judgments, and
acting appropriately.

Considering the set S ={Fresh Quality(Q̄1), The
Price(Q̄2), Appearance(Q̄3), Taste(Q̄4), Place of Origin(Q̄5),
Brand(Q̄6)} of criteria that determine the logistic efficiency
of food products(Shown in figure 6).

1) DESCRIPTION OF PARAMETERS
1) Fresh Quality: It shows the level of freshness and

general food product quality.
2) Cost: It reflects the price of the food item.
3) bf Appearance: It explains the food product’s physical

features.
4) bf Taste: It captures the characteristics of the food

product’s flavour and taste.
5) Place of Origin: It shows the location of the food

product’s production or sourcing.

Y′
w(S1, S2) =

C(S1, S2)
max(T(S1), T(S2))

Y′
w(S1, S2) =


∑y

i=1 wi(µS1 (ki)µS2 (ki) + νS1 (ki)νS2 (ki) + αS1 (ki)αS2 (ki) + βS1 (ki)βS2 (ki))

max
{∑y

i=1 wi((µS1 (ki))
2
+ (νS1 (ki))

2
+ (αS1 (ki))

2
+ (βS1 (ki))

2),∑y
i=1 wi((µS2 (ki))

2
+ (νS2 (ki))

2
+ (αS2 (ki))

2
+ (βS2 (ki))

2)

}

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FIGURE 6. Criteria for food products.

TABLE 1. LDF values for each attributes.

Let {a1, a2, a3} be three set of decision-makers.
Step 1:To begin this process, LDF values has been

assinged to each of the criteria and it is shown in the table 1.
Step 2:Next, the Correlation matrix C is computed with the
help of the definitions. And then, the equivalance matrix is
determined at after certain number of steps.

C =


1 0.9559 0.9798 0.9491 0.9753 0.9600

0.9559 1 0.9808 0.9556 0.9715 0.9515
0.9798 0.9808 1 0.9616 0.9908 0.9721
0.9491 0.9556 0.9616 1 0.9766 0.9829
0.9753 0.9715 0.9908 0.9766 1 0.9683
0.9600 0.9515 0.9721 0.9829 0.9683 1


C2 = C ⊙ C

C2 =


1 0.9798 0.9798 0.9753 0.9798 0.9721

0.9798 1 0.9808 0.9766 0.9808 0.9721
0.9798 0.9808 1 0.9766 0.9908 0.9721
0.9753 0.9766 0.9766 1 0.9766 0.9829
0.9798 0.9808 0.9908 0.9766 1 0.9766
0.9721 0.9721 0.9721 0.9829 0.9766 1



TABLE 2. Assurance level of λ for CC.

C4 =


1 0.9798 0.9798 0.9766 0.9798 0.9766

0.9798 1 0.9808 0.9766 0.9808 0.9766
0.9798 0.9808 1 0.9766 0.9908 0.9766
0.9766 0.9766 0.9766 1 0.9766 0.9829
0.9798 0.9808 0.9908 0.9766 1 0.9766
0.9766 0.9766 0.9766 0.9829 0.9766 1



C8 =


1 0.9798 0.9798 0.9766 0.9798 0.9766

0.9798 1 0.9808 0.9766 0.9808 0.9766
0.9798 0.9808 1 0.9766 0.9908 0.9766
0.9766 0.9766 0.9766 1 0.9766 0.9829
0.9798 0.9808 0.9908 0.9766 1 0.9766
0.9766 0.9766 0.9766 0.9829 0.9766 1


Step 3:Since, C8 = C4, C4 is a equivalence matrix.
Step 4:The λ-cutting matrix is formed to determine the

classifications 2 Let w = {0.3, 0.5, 0.2} be the weight
for three decision-makers {a1, a2, a3}. Same computational
work flow is carried out by utilizingWCC and obatined the
cluster as follows.
Step 2:

C =


1 0.9413 0.9759 0.9539 0.9733 0.9673

0.9413 1 0.9803 0.9463 0.9642 0.9483
0.9759 0.9803 1 0.9646 0.9903 0.9778
0.9539 0.9463 0.9649 1 0.9823 0.9798
0.9733 0.9642 0.9903 0.9823 1 0.9792
0.9673 0.9483 0.9798 0.9798 0.9792 1


Step: 3

C2 =


1 0.9759 0.9759 0.9733 0.9759 0.9759

0.9759 1 0.9803 0.9649 0.9803 0.9778
0.9759 0.9803 1 0.9823 0.9903 0.9778
0.9733 0.9649 0.9823 1 0.9823 0.9778
0.9759 0.9803 0.9903 0.9823 1 0.9798
0.9759 0.9778 0.9778 0.9778 0.9798 1



C4 =


1 0.9759 0.9759 0.9759 0.9759 0.9759

0.9759 1 0.9803 0.9803 0.9803 0.9798
0.9759 0.9803 1 0.9823 0.9903 0.9798
0.9759 0.9803 0.9823 1 0.9823 0.9798
0.9759 0.9803 0.9903 0.9823 1 0.9798
0.9759 0.9798 0.9798 0.9798 0.9798 1



C8 =


1 0.9759 0.9759 0.9759 0.9759 0.9759

0.9759 1 0.9803 0.9803 0.9803 0.9798
0.9759 0.9803 1 0.9823 0.9903 0.9798
0.9759 0.9803 0.9823 1 0.9823 0.9798
0.9759 0.9803 0.9903 0.9823 1 0.9798
0.9759 0.9798 0.9798 0.9798 0.9798 1


Step 4:Since, C8 = C4, C4 is a equivalence matrix.
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TABLE 3. Assurance level of λ for WCC.

C. COMPARATIVE ANALYSIS
The closer inspection of table 4 shows the comparison
among the various clustering algorithms. The deficiencies
of previous cluster analysis are clearly mentioned. Some
of the data have bounds on their grade values, making
them unrepresentable by previously developed theories. This
amply demonstrates the superiority of our suggested method.
Our proposed approach has unique contributions that we will
highlight, including its capacity to handle uncertainty, the
weighted correlation coefficient and correlation coefficient
for LDFS that it incorporates, and the flexibility it provides
to decision-makers in terms of score value selection because
of the expanded score space. Hence, our proposed approach
can be used in any type of complex situation. The table
also shows how our suggested algorithm is superior to
others.

D. SHORTCOMINGS OF PRIOR APPROACH AND
PRECEDENCE OF CURRENT APPROACH
Shortcomings:

1) The inability of fuzzy sets to describe non-membership
scores limits their ability to simulate numerous real-life
scenarios.

2) Even with dual scores, some problems cannot be
modeled in IFS and PFS. The strong restrictions of the
characteristic function force the DM to restrict their
choice values.

3) While q-ROFS does allow for some flexibility in
their characteristic function, the DM is restricted to
particular domains.

4) Inadequately CC of foregoing structures (IFS, PFS, and
q-ROFS) has bounds on their domain, these constraints
render them incompatible with some information that
is required for certain problems within MCDM.

Precedence:
1) The premise of LDFS is the generalization of structures

like IFS, PFS, and q-ROFS, which denotes that it can
handle all types of information.

2) Because they model four different functions, including
membership, non-membership, and reference param-
eters, they are superior to all existing theories when
viewed as a structure.

3) In the aforementioned environment, setting some
functions to zero still resolves the given issue.

4) The proposed CC also serves as a generalization of the
CC for FS, IFS, PFS, and q-ROFS. This enables the
resolution of problems in other frameworks.

E. SENSITIVITY ANALYSIS
We perform sensitivity analysis on the current section by
adjusting various weights to ensure the stability of the new
approach. This means that we can adjust the weight values of
any two criteria without changing the other criteria’s values.
There are three potential cases when three criteria are present:
a1 − a2; a1 − a3; a2 − a3.
Case (i): a1 − a2. Consider w = {0.5, 0.3, 0.2}.
Step 1: Construct the Correlation matrix C by employing

the needed definitions.

C =


1 0.9559 0.9788 0.9382 0.9694 0.9666

0.9559 1 0.9828 0.9577 0.9751 0.9623
0.9788 0.9828 1 0.9581 0.9895 0.8190
0.9382 0.9577 0.9581 1 0.9800 0.9798
0.9694 0.9751 0.9895 0.9800 1 0.9785
0.9666 0.9623 0.8190 0.9793 0.9785 1


Step 2: Then the respective equivalence matrix is computed.

C2 =


1 0.9788 0.9788 0.9694 0.9788 0.9788

0.9788 1 0.9828 0.9751 0.9828 0.9751
0.9788 0.9828 1 0.9800 0.9895 0.9785
0.9694 0.9751 0.9800 1 0.9800 0.9793
0.9788 0.9828 0.9895 0.9800 1 0.9793
0.9788 0.9751 0.9785 0.9793 0.9793 1



C4 =


1 0.9788 0.9788 0.9788 0.9788 0.9788

0.9788 1 0.9828 0.9800 0.9828 0.9793
0.9788 0.9828 1 0.9800 0.9895 0.9793
0.9788 0.9800 0.9800 1 0.9800 0.9793
0.9788 0.9828 0.9895 0.9800 1 0.9793
0.9788 0.9793 0.9793 0.9793 0.9793 1



C8 =


1 0.9788 0.9788 0.9788 0.9788 0.9788

0.9788 1 0.9828 0.9800 0.9828 0.9793
0.9788 0.9828 1 0.9800 0.9895 0.9793
0.9788 0.9800 0.9800 1 0.9800 0.9793
0.9788 0.9828 0.9895 0.9800 1 0.9793
0.9788 0.9793 0.9793 0.9793 0.9793 1


Step 3:Since, C8 = C4, C4 is a equivalence matrix.
Step 4:The λ-cutting matrix is formed to determine the

classifications (Refer Table:5)
Case (ii): a1 − a3, Comsider w = {0.2, 0.5, 0.3}
Step 1: the Correlation matrix C is computed.

C =


1 0.9431 0.9771 0.9605 0.9772 0.9623

0.9431 1 0.9793 0.9460 0.9229 0.9412
0.9771 0.9793 1 0.9672 0.9911 0.9723
0.9605 0.9460 0.9672 1 0.9798 0.9882
0.9772 0.9229 0.9911 0.9798 1 0.9715
0.9623 0.9421 0.9723 0.9882 0.9715 1



C2 =


1 0.9771 0.9771 0.9772 0.9772 0.9723

0.9771 1 0.9793 0.9672 0.9793 0.9723
0.9772 0.9793 1 0.9798 0.9911 0.9723
0.9772 0.9672 0.9798 1 0.9798 0.9882
0.9772 0.9793 0.9911 0.9798 1 0.9798
0.9723 0.9723 0.9723 0.9882 0.9798 1


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TABLE 4. An examination of preceding algorithms for clustering.

TABLE 5. Case:1 Cluster Analysis.

TABLE 6. Case:2 Cluster Analysis.

C4 =


1 0.9772 0.9771 0.9772 0.9772 0.9772

0.9771 1 0.9793 0.9793 0.9793 0.9793
0.9772 0.9793 1 0.9798 0.9911 0.9798
0.9772 0.9672 0.9798 1 0.9798 0.9882
0.9772 0.9793 0.9911 0.9798 1 0.9798
0.9772 0.9793 0.9798 0.9882 0.9798 1



C8 =


1 0.9772 0.9771 0.9772 0.9772 0.9772

0.9771 1 0.9793 0.9793 0.9793 0.9793
0.9772 0.9793 1 0.9798 0.9911 0.9798
0.9772 0.9672 0.9798 1 0.9798 0.9882
0.9772 0.9793 0.9911 0.9798 1 0.9798
0.9772 0.9793 0.9798 0.9882 0.9798 1


Step 3:Since, C8 = C4, C4 is a equivalence matrix.

Step 4:The λ-cutting matrix is formed to determine the
classifications (Refer Table:6)

Case (iii): a2 − a3, Consider w = {0.3, 0.2, 0.5}
Step 1: the Correlation matrix C is generated.

C =


1 0.9691 0.9837 0.9492 0.9793 0.9510

0.9691 1 0.9808 0.9633 0.9769 0.9504
0.9837 0.9808 1 0.9605 0.9917 0.9645
0.9492 0.9633 0.9605 1 0.9712 0.9815
0.9793 0.9769 0.9917 0.9712 1 0.9555
0.9510 0.9504 0.9645 0.9815 0.9555 1


Step 2: Enumerate the equivalence matrix.

C2 =


1 0.9808 0.9831 0.9712 0.9831 0.9645

0.9808 1 0.9808 0.9712 0.9808 0.9645
0.9831 0.9808 1 0.9712 0.9917 0.9645
0.9712 0.9712 0.9712 1 0.9712 0.9815
0.9831 0.9808 0.9917 0.9712 1 0.9712
0.9645 0.9645 0.9645 0.9815 0.9712 1



C4 =


1 0.9808 0.9831 0.9712 0.9831 0.9712

0.9808 1 0.9808 0.9712 0.9808 0.9712
0.9831 0.9808 1 0.9712 0.9917 0.9712
0.9712 0.9712 0.9712 1 0.9712 0.9815
0.9831 0.9808 0.9917 0.9712 1 0.9712
0.9645 0.9712 0.9712 0.9815 0.9712 1



C8 =


1 0.9808 0.9831 0.9712 0.9831 0.9712

0.9808 1 0.9808 0.9712 0.9808 0.9712
0.9831 0.9808 1 0.9712 0.9917 0.9712
0.9712 0.9712 0.9712 1 0.9712 0.9815
0.9831 0.9808 0.9917 0.9712 1 0.9712
0.9645 0.9712 0.9712 0.9815 0.9712 1


Step 3:Since, C8 = C4, C4 is a equivalence matrix.
Step 4:The λ-cutting matrix is formed to determine the

classifications (Refer Table:7)
The results of Case 1, 2, 3 as shown in the table 5,6,7

respectively, evident that all the criteria are of same group
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TABLE 7. Case:3 Cluster Analysis.

for the values 0 ≤ λ ≤ 0.9788, 0 ≤ λ ≤ 0.9772, and 0
≤ λ ≤ 0.9712. This makes it clear that the upper limits of
the intervals are rather near to one another, showing that the
presented procedure is stable with regard to changes in the
weights of the DM.

F. LIMITATIONS AND CHALLENGES
1) Computational Complexity: As the number of data

points and clusters rises, fuzzy clustering techniques
may become computationally complex. Their scalabil-
ity for big datasets could be limited as a result.

2) Lack of Standardisation: Fuzzy clustering lacks a
standardized assessment framework, which makes it
difficult to compare different algorithms, in contrast
to other classic clustering techniques that have well-
established standards and benchmarks.

V. CONCLUSION
This study set out to develop a new approach to advance the
field of fuzzy clustering in the context of linear diophantine
fuzzy sets (LDFS) information. Concurrently, it investigated
the influence of CC in the LDF-Clustering Algorithm. The
findings of this study are given in two contexts using WCC
and CC. These contexts were applied, and two unique clusters
were formed that shed light on the logistical effectiveness
of food products. The comparative analysis carried out in
this work emphasizes the importance of the LDF-clustering
algorithm we have presented. This study adds to the current
discussion on fuzzy clustering by comparing its performance
to other approaches. It also highlights the usefulness and
efficiency of the suggested algorithm in clarifying patterns
and relationships found in logistic efficiency data. Thus,
the study’s findings support the LDF-Clustering algorithm’s
encouraging potential as a useful tool for improving logistics
comprehension and management in the context of food
product analysis.

Future research is advised to explore the application of
decision-making methods, namely TOPSIS, MARCOS, and
CODAS, in the particular setting of linear diophantine fuzzy
(LDF) environments. Researchers would probably investigate
modifications and adaptations that are consistent with the
intrinsic properties of LDF data in order to determine the
effectiveness of these techniques in LDF settings. The goal
of this further research is to improve the suitability of
these decision-making strategies in situations where linear
diophantine fuzzy environments pose particular difficulties,

hence advancing the general comprehension and use of these
approaches in real-world environments.
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