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ABSTRACT Bombus ignitus plays a vital role as a pollinator insect in greenhouse horticulture in Japan,
China, and Korea. The activity of worker bees diminishes over time, prompting the replacement of the
entire hive with new bees. However, considering the cost of hives, it is imperative to pinpoint the optimal
replacement timing, balancing the decline in bee activity and the expenses associated with hive renewal.
In pursuit of this goal, Calculating the ideal timing for replacement using activity data is preferable. Currently,
Farmers often rely on visual monitoring and empirical judgments to decide when to replace hives due to
the unavailability of activity data. Addressing this gap, Our study focuses on accurately quantifying the
arrivals and departures of Bombus ignitus males and workers from hives, using these metrics as reliable
indicators of bee activity. For this purpose, we propose a method for accurately tracking Bombus ignitus. Our
proposed method combines specialized tracking techniques for honeybees, drawn from existing research,
with commonly used tracking methods for pedestrians and automobiles. The evaluation of our method
using test data showcases superior tracking precision with reduced errors, providing a more accurate tally
of arrivals and departures compared to existing approaches. Furthermore, when applied on actual farms, our
method revealed a significant decrease in worker bee arrivals and departures as the expected replacement
time, based on farmers’ experience, drew nearer. This promising result suggests that our approach facilitates
data-informed decision-making. As a result, our findings pave the way for significantly enhanced efficiency
and precisely timed hive replacements, supported by compelling evidence, thus shaping the future landscape
of beekeeping practices.

INDEX TERMS Bee tracking, computer vision, machine vision, pollination management, smart agriculture.

I. INTRODUCTION
Pollinator insects are used to pollinate crops in greenhouse
horticulture. From an environmental protection standpoint,
bumblebees indigenous to specific regions are employed
for this purpose in many parts of the world [1]. In Japan,
China, and Korea [2], [3], the indigenous Bombus ignitus
(B. ignitus), a bumblebee species, is utilized for polli-
nation [1], [4], [5], [6]. Crop pollination in greenhouse
horticulture is facilitated by installing hives containing B.
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ignitus. Hive replacement is determined based on the activity
of worker bees, which play a vital role in pollination.
However, this activity diminishes over time according to the
hive’s lifecycle. As the end of the lifecycle nears, there is a
known shift where the number of worker bees decreases while
that of male bees increases. This highlights the importance of
monitoring the activity of both worker and male bees when
deciding when to replace the hives. On actual farms, due to
the expense of hives, replacements are usually made based on
farmers’ empirical judgments. They consider both the decline
in activity and the costs associated with replacement. The first
method involves confirming activity levels by observing bite
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marks that result from B. ignitus worker bees biting during
pollination. When bite marks become scarce, it indicates
insufficient worker bee activity and suggests that it is time for
hive replacement. However, this approach leads to reduced
worker activity until the new hives arrive, as there is a
delay in their delivery. Consequently, this method can result
in inadequate crop pollination and economic losses. The
second method involves directly opening the hive to assess
the life cycles of worker and male bees. While this method
is reliable, conducting individual hive checks on large farms
with multiple hives is labor-intensive. Relying solely on
empirical judgments based on farmers’ visual observations
does not guarantee optimal hive replacement timing and
it’s challenging for new farmers with limited experience.
Making data-driven decisions becomes indispensable to
ensure hive replacement occurs at the right time. However,
the first step involves accurately quantifying the activity of
B. ignitus males and worker bees. In order to count bee
activity in terms of arrivals at and departures from the hive,
tracking methods can be used on the video acquired from
a camera attached to the hive. However, existing methods
don’t accurately track B. ignitus, resulting in inaccurate
counts.

The main objective of this paper is to accurately count
the number of arrivals and departures of B. ignitus males
and worker bees at the hive as a measure of their activity.
We propose a tracking method for B. ignitus to achieve
accurate counting of arrivals and departures that draws from
existing techniques specialized for honeybee, pedestrian, and
automobile tracking. The contributions of this study are
outlined below.

• To achieve precise counting of arrivals and departures,
taking into account the unique behavioral traits of B.
ignitus, we proposed a tracking technique tailored to
the species. This method draws inspiration from both
bee-specific tracking approaches and tracking methods
applicable to non-bee subjects.

• The complete procedure for counting the arrivals and
departures of B. ignitus male and worker bees at the
hive, employing a video-based tracking methodology,
is illustrated below.

• To compare with farmers’ experiential decisions regard-
ing hive replacement timing, we strategically posi-
tioned cameras on farms to meticulously record the
arrivals and departures of B. ignitus bees at the
hive.

Based on the results of this study, it is expected that this
research could reduce the labor required for pollination
management on expansive farms and facilitate effective
pollination management for novice farmers.

II. RELATED WORKS
A. BEE ACTIVITY MANAGEMENT
Numerous studies have been conducted to analyze bee
behavior based on data collected from various sensors.

For example, researchers have employed Radio Frequency
Identification (RFID) tags attached to bees to conduct
individualized behavior analysis using radio waves [7].
However, affixing tags to each bee as they reproduce and
new bees emerge proves challenging for farmers to manage
effectively. Additionally, investigations have been undertaken
using sound data obtained from microphones. Heise et al. [8]
utilized frequency and waveform characteristics of bumble-
bee wing sounds to classify hive arrivals and departures based
on audio cues. Nevertheless, using microphones to measure
bee activity encounters challenges in distinguishing between
wing sounds of multiple individuals and background noises,
making it difficult to accurately count the simultaneous
arrivals and departures of multiple bees.

Conversely, studies utilizing video data have also been
carried out [9], [10], [11]. Magnier et al. [12] proposed
a method to extract the movement of bees flying over
a white background from camera footage, enabling the
counting of their arrivals and departures to and from the
hive. Ratnayake et al. [13] visualized honeybee flower
visits and foraging time by analyzing flower positions and
bee movements in camera videos. These studies utilize
videos to measure both bees’ visual characteristics and
intricate movements. However, while these methodologies
can manage the activity of B. ignitus, no efforts have been
made to separate the activity of male and worker bees.
Separately managing the activity of male and worker bees is
crucial for estimating the optimal time to replace the hive of
B. ignitus. In this study, videos are employed to individually
quantify the activity of B. ignitus males and workers.

B. MULTIPLE OBJECT TRACKING
Multiple Object Tracking (MOT) involves tracing numerous
objects within a video, commonly employing the tracking-
by-detection approach, which hinges on the Bounding Box
(BBox) derived from Object Detection [14], [15], [16], [17].
Numerous tracking techniques utilize the prediction of BBox
through the Kalman Filter [18] in advance, subsequently
determining object movement trajectories by associating
themwith themost similar detected BBox. Beyond evaluating
solely the BBox similarity, tracking methods have also
evolved to incorporate Re-Identification, considering both
the BBox and the similarity of appearance features in
the captured objects [19], [20], [21], [22], [23]. Notably,
BYTE [21], a ByteTrack association approach accounting for
BBox confidence scores, excels in accurate object tracking,
even in scenes with occlusion where multiple objects overlap.
Conversely, Joint Detection and Embedding (JDE), which
combines object detection and appearance feature calculation
for tracking, has also emerged distinctly from tracking-by-
detection. However, applying Re-Identification and JDE for
tracking bees is difficult because classified male and worker
bees have the same visual appearance in B. ignitus. These
tracking methods have been primarily studied using datasets
centered around pedestrians and automobiles.
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Various studies have been conducted on bee tracking.
Given the considerable variability in bee movements during
tracking [13], a straightforward constant velocity model is
used instead of Kalman Filter to predict bee center coor-
dinates in advance [9], [11], [12], [13]. Noteworthy among
these methods, Yang and Collins [9] devised an approach
to decompose the BBox of individual bees in instances of
false detections, where two bees were erroneously included
in a single BBox, ensuring accurate tracking of multiple
bees. The development of diverse object tracking method-
ologies [24], [25] has catalyzed research into measuring
events transpiring within videos [12], [13], [26], [27]. In this
study, a tracking approach is employed to accurately count
the arrivals at and departures from the hive for B. ignitus,
which effectively counts bees entering and leaving the hive.
The occurrence of ID switches, indicating bee swaps in
tracking, introduces significant counting errors due to one
tracking result encompassing the movement trajectories of
more than two bees. Consequently, we propose a method
grounded in a variety of tracking techniques targeting bees,
pedestrians, and automobiles. This method seeks to main-
tain a low ID-switch occurrence while achieving accurate
tracking.

C. CHALLENGES OF TRACKING B. IGNITUS
Three issues inherent in conventional methods must be
addressed to achieve an accurate count of bees arriving at and
departing from the hive.

The first concern pertains to the fact that the method
for calculating similarity in association is not bee-specific.
The predominant metrics used include Intersection Over
Union (IoU) [21], [28], utilized in pedestrian and vehicle
tracking, and pixel distance [9], [13] for bee tracking. IoU
is advantageous for linking identical entities as it accounts
for the size and shape of two BBoxes. However, if no
overlap exists between the BBoxes, the IoU yields a score
of zero, regardless of their proximity. Pixel distance, used
to measure the distance between the center coordinates of
the bees on a frame, avoids a complete score of zero, even
without BBox overlap. Yet, when distinct individuals are
close, they are erroneously linked since BBox size and
shape are not considered. Moreover, neither IoU nor pixel
distance is suitable for accurately tracking bees, especially
when multiple bees alter their direction rapidly. Therefore,
to rectify this, we adopted a similarity metric in this
study that can express the distance between BBoxes even
without overlap and can also account for BBox size and
shape.

The second challenge involves handling false detections
where two bees are mistakenly enclosed within a single
BBox due to their crossing paths, making it impossible to
separate them based solely on detection scores. In situations
where two bees should be linked to two separate BBoxes,
the presence of only one BBox due to false detection results
in the failure to track one of the bees. Yang and Collins [9]

termed this occurrence a ‘‘merged situation’’ and introduced
a technique to split a single BBox into two. However, their
method was based on white backgrounds and background
subtraction for bee detection, which did not involve BBox
scores. In the realm of object detection, detecting two bees as
a single BBox would likely yield a low score for that BBox.
While BYTE [21] can consider BBox scores, it does not
encompass the idea of dividing false detections. To address
this, we have devised an approach that considers BBox
scores while effectively splitting a single BBox into two,
overcoming the challenge of false detections.

Third, the basic constant velocity model [9], [12], [13]
employed in bee tracking methods lacks the capacity
to sustain bee tracking when associations with detection
outcomes fail. While the Kalman Filter [19], [21], [22],
[28], prevalent in pedestrian and vehicle tracking approaches,
can utilize past detection results to temporarily continue
bee tracking even without current detections, the simple
constant velocity model [9], [12], [13] used in bee tracking
methods necessitates the presence of detection results to
sustain tracking. Therefore, we expanded the basic constant
velocity model to enable precise tracking of B. ignitus,
drawing inspiration from the functionality of the Kalman
Filter in established tracking methodologies.

III. IGNITUSTRACKER
In this study, we introduce a novel tracking approach named
IgnitusTracker to achieve an accurate count of B. ignitus
arrivals and departures to and from the hive. Following
the tracking-by-detection paradigm, IgnitusTracker takes
BBoxes with associated confidence levels as input. It then
proceeds to track worker and male bees using Ignitus-
Tracker after their classification through object detection.
IgnitusTracker comprises two key components, as illustrated
in Fig. 1: IgnitusModel, responsible for overseeing the
movement of individual bees, and IgnitusManager, which
oversees multiple IgnitusModels.

IgnitusModel extends the simple constant velocity model
utilized in bee tracking approaches to encompass the role of
the Kalman Filter employed in pedestrian and automobile
tracking methods. Meanwhile, IgnitusManager employs the
Generalized IoU (GIoU) metric for calculating the similarity
between predicted and detected BBoxes. This manager also
factors in the score of the detected BBox inmerged situations,
enhancing accuracy. The k-th frame in the video is denoted
as fk .

A. IGNITUSMODEL
IgnitusModel anticipates the bee’s BBox in the subsequent
frame and updates the state BBox as a tracking outcome,
relying on the detected BBox most similar to the anticipated
one. This iterative process is repeated for each frame,
ensuring the continuity of bee tracking. We extended
the constant velocity model to temporarily update the
state BBox from past detection results, such as the Kalman
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FIGURE 1. Overview of IgnitusTracker. (1) IgnitusManager refers to
IgnitusManager’s predictions. (2) IgnitusManager calculates the similarity
between predictions and detections to associate them.
(3) IgnitusManager assigns detections to individual IgnitusModels.
(4) IgnitusModel updates the state.

Filter, and to decompose the detection results in merged
situations.

1) PREDICTION STATE
The predicted center coordinates (xpredk , ypredk ) of the bee
tracked in the subsequent frame fk are determined from the
center coordinates of the state BBox in the preceding two
frames (Equation 1), akin to the approach used in existing
methods [9], [11], [13].

(
xpredk
ypredk

)
=

(
2 0 −1 0
0 2 0 −1

)
xk−1
yk−1
xk−2
yk−2

 (1)

For the prediction of center coordinates in f1, the center
coordinate of the bee in f0 is utilized as is, owing to the
unavailability of coordinates for the last two points. The
predicted BBox pk for the bee in the subsequent frame incor-
porates the width wk−1 and height hk−1 of the state BBox
from the previous frame: pk = (xpredk , ypredk ,wk−1, hk−1).

2) UPDATE STATE
The bee’s state BBox zk = (xk , yk ,wk , hk ) is determined
based on the detected BBox dk assigned from IgnitusMan-
ager in relation to the predicted BBox pk . If IgnitusManager
assigns dk = (xdetectk , ydetectk ,wdetect

k , hdetectk ), the current
state BBox is directly updated with zk ← dk , and τlost set
to 0. In cases where inaccurate bee detection results in no
assigned detected BBox from IgnitusManager, IgnitusModel
temporarily updates the state BBox using zk ← pk and
increments τlost by τlost + 1. These temporary updates
contribute to reducing ID switches caused by detection
results, as compared to conventional bee tracking methods.

3) PURGED UPDATE STATE
When IgnitusManager identifies a detected BBox in amerged
situation, it divides this false detection and determines the bee
state BBox. In this study, we call this process Purged Update.

Algorithm 1 Pseudo Code of IgnitusTracker. In Contrast
to BYTE, IgnitusTracker Facilitates the Utilization of GIoU
for Gauging Similarity Between Detections and Predictions,
Identifying Merged Situations, and Additionally Supporting
the Implementation of Purged Updates Within IgnitusModel.
Input: frame fk ; object detection model Detect; high detec-

tion score threshold τhigh; low detection score threshold
τlow;

Output: Deleted IgnitusModels T del
k ;

# Object Detection
1: Dk ← Detect(fk )
2: deviding Dk based on τhigh and τlow

3: Dhigh
k ← high score detections from Dk

4: Dlow
k ← low score detections from Dk

# Location prediction
5: for t in Tk−1 do
6: t.prediction()
7: end for
# High Score Detections Matching

8: Associate Tk−1 and D
high
k using GIoU

9: MatchDhigh
k ,Tk−1

← matching pair
10: MergeDhigh

k ,Tk−1,Tk−1
← merging pair

11: Dremain
k ← remainingdetectionsfromDhigh

k
12: T remain

k ← remainingtracksfromTk−1
13: for d , t in MatchDhigh

k ,Tk−1
do

14: t.update(d)
15: end for
16: for d , t1, t2 in MergeDhigh

k ,Tk−1,Tk−1
do

17: t1.purged_update(d)
18: t2.purged_update(d)
19: end for

# Low Score Detections Matching
20: Associate T remain

k and Dlow
k using GIoU

21: MatchDlow
k ,T remain

k
← matching pair

22: MergeDlow
k ,T remain

k ,T remain
k

← merging pair

23: T re−remain
k ← remainingtracksfromT remain

k
24: for d , t in MatchDlow

k ,T remain
k

do
25: t.update(d)
26: end for
27: for d , t1, t2 in MergeDlow

k ,T remain
k ,T remain

k
do

28: t1.purged_update(d)
29: t2.purged_update(d)
30: end for

# Assign and delete trackers based on conditions
31: T del

k ← deleting some trackers from T re−remain
k

32: T new
k ← assigning new trackers from Dremain

k
33: Tk ← (Tk−1 ∪ T new

k ) \ T del
k

34: return T del
k

The Manhattan distance is initially calculated between the
four corners of the predicted BBox pk and the detected BBox
dk . The corner of the detected BBox dk with the smallest
distance is selected among these distances. The state BBox
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zk is updated by shifting the predicted BBox pk to match the
corner with this selected corner. In cases of merged situations,
the process allows one erroneously detected BBox to be
divided into two separate BBoxes, each corresponding to the
size of one bee. This facilitates accurate tracking in such
scenarios. By incorporating IgnitusManager’s BBox score
handling process, the Purged Update helps mitigate tracking
failures caused by temporary drops in detection scores.

B. IGNITUSMANAGER
During this process, IgnitusManager associates the predicted
BBoxes from multiple IgnitusModels with the detected
BBoxes through object detection. Similar to BYTE, the
scores of the detected BBoxes are utilized in this association
process.

1) DATA ASSOCIATION
Detected BBoxes are associated with predicted BBoxes
based on the scores of the detected BBoxes obtained
through object detection, similar to BYTE. The association
process is executed separately for BBoxes with high scores,
which likely accurately capture bees, and BBoxes with
low scores, which may contain noise or bees with motion
blur. Associating them separately according to their scores
does not inhibit the association of BBoxes with high
scores. Moreover, it realizes the association of low score
BBoxes covering bees. IgnitusModel’s predicted BBoxes
are associated with the BBoxes with high scores τhigh, and
subsequently, IgnitusModel’s predicted BBoxes that were
unassociated are associated with the BBoxes with low scores
τlow. The association of high and low scores is executed in
the same manner. Optimal detected BBox can be assigned to
the IgnitusModel’s predicted BBox by optimizing using the
Hungarian Algorithm [29] based on the similarity between
the detected and predicted BBox.

For newly appeared bees, IgnitusModels are created from
high score detections that were not associated. When the
count of consecutive substitutions τlost exceeds a threshold,
it is considered that the bee has flown off the frame or
tracking is lost, leading to the deletion of the corresponding
IgnitusModel.

2) SIMILARITY METRIC
During the process of data association, Having the ability to
compute distances is crucial for similarity calculations even
when the predicted BBox and detected BBox do not overlap
due to abrupt changes in the bee’s direction of movement.
Moreover, it is essential to consider the size and shape of
BBoxes in similarity calculations. IoU is represented by
(Equation 2) when dealing with two BBoxes, A and B, and
it results in all zeros if the predicted BBoxes do not overlap.

IoU =
|A ∩ B|
|A ∪ B|

(2)

Therefore, we use GIoU (Equation 3) [20], [30], which
considers the smallest convex shape C enclosing A and B,

to calculate the distance, size, and, shape between the BBoxes
appropriately.

GIoU = IoU−
|C \ (A ∪ B)|
|C|

(3)

Because GIoU is scale-invariant, it allows for the assessment
of similarity between the predicted and detected BBoxes
regardless of the distance between the camera and the bee.
As a result, IgnitusManager can utilize this property to pass
the most similar detection results to IgnitusModel, aligning
with the behavioral characteristics of the bees.

3) DETERMINING MERGED SITUATION
Post data association, the merged situation is identified by
determining whether two predicted BBoxes from different
IgnitusModels simultaneously overlap with a single detected
BBox. Such an overlap scenario results in one predicted
BBox being associated while the other is not. If an IoU >

0 exists between an unassociated predicted BBox and an
associated detected BBox, it signifies the presence of another
predicted BBox associated with the same detected BBox.
Recognizing this scenario as a merged situation, these two
IgnitusModels execute a purge update. When a merged
situation involving three or more bees occurs, three or more
predicted BBoxes compete for a single detected BBox,
in which case the purge update is performed on the pair
with the largest IoU between the associated and unassociated
predicted BBoxes.

IV. EXPERIMENTS
To assess the effectiveness of IgnitusTracker in tracking B.
ignitus and accurately counting their arrivals and departures
to and from the hive, we conducted a comparative analysis
with existingmethods. Specifically, for accuracy comparison,
we employed SORT [28] and BYTE [21] for pedestrian
and vehicle tracking, while Yang and Collins (Y&C) [9]
trackingmethodwas used for honeybees. These three existing
methods were used because, compared to IgnitusTracker’s
processing, BYTE has a score-based associating process,
Y&C has a process for decomposing erroneously detected
BBox containing two bees, and SORT has neither. In addition,
to validate IgnitusTracker’s performance in a real-world
scenario, we installed devices equipped with IgnitusTracker
on an actual farm. This allowed us to tally the arrivals and
departures of B. ignitus workers and males from when the
hive was set up by the farmer until it was replaced.

A. IMPLEMENTATION
In the context of a farm where B. ignitus were engaged
in crop pollination, a camera (IO-DATA TS-NS410W [31],
1920× 1080 pixels, 30 FPS) was deployed. The camera was
positioned approximately 15 cm above a hive designed for B.
ignitus (Agrisect Inc.’s hive [32]), ensuring that both the B.
ignitus (Fig. 2 (a)) and the hive entrance/exit were within its
field of view (Fig. 2 (b)). A camera was installed in each of
the two hives set up by the farmer in the field to capture video
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FIGURE 2. A camera installed on a hive and its field of view. (a) A camera
placed on top of a B. ignitus hive was fixed on a tripod at a height of
about 15 cm from the hive. (b) Predefined inside and outside areas in the
video. The inside area, denoted by the blue region, signifies the hive
entrance, while the outside area, represented by the red region,
designates a considerable distance from the hive.

footage of B. ignitus. Given their heightened activity during
daylight hours, the recording was conducted between March
2023 to May 2023, between 9:00 a.m. and 4:00 p.m.. The
recorded camera footage was processed on an edge device
(NVIDIA’s Jetson AGX Orin [33]) to calculate the count of
B. ignitus arrivals and departures (Fig. 3).

We employed YOLOv5 [34] as the deep learning model
for object detection. For computational efficiency on edge
devices, we used images resized from 1920× 1080 pixels to
640× 360 pixels as input to YOLOv5. YOLOv5 was trained
on 792 images containing B. ignitusmales and workers, with
their BBoxes annotated respectively.

Five test datasets (V1-V5) were created to evaluate the
accuracy and computational efficiency of the IgnitusTracker.
These five test datasets consisted of different time periods
on different dates to ensure accurate evaluation in diverse
environments. Each test data is about a 20-second video
extracted from several videos by removing continuous frames
where bees do not appear for long periods of time to shorten
the computation time on the edge devices. We manually
annotated a total of 3418 frames across the five test datasets.
The ground truth of the number of bees arriving at and
departing from the hives was based on the ground truth of the
bee tracking. LabelImg [35] was used as the annotation tool.
In scenarios where a bee exited the camera’s field of view and
subsequently re-entered, we considered it a new bee rather
than assuming continuity. Regarding the hyperparameters of
IgnitusTracker, we determined the threshold values for GIoU,
τlost, τhigh, and τlow through trial and error with the captured
video footage. The set threshold values were−0.75 for GIoU,
3 for τlost, 0.5 for τhigh, and 0.1 for τlow.

B. JUDGING BEE ARRIVAL AND DEPARTURE BASED ON
TRACKING RESULTS
Upon bees’ arrival at the hive, those that emerged from
beyond the frame become concealed beneath the hive
entrance. Conversely, when bees departed from the hive,
those initially visible at the entrance vanished beyond the
frame’s boundary. By integrating this characteristic into

the arrival/departure decision framework, we determined
instances of arrival and departure using the tracking out-
comes.

In the initial stages, we delineated two specific areas within
the frame to establish criteria for identifying the entry and
exit of bees in the video footage. These two designated areas
comprise the following: The first, an inside area, defined
as the zone where a bee is considered to have entered the
hive, even if it becomes unobservable within the frame. The
second, an outside area, defined as the region in which a bee
is deemed to have exited the camera’s field of view, despite
its disappearance from the frame. (see Fig. 2b for a visual
representation). The specification of these areas was carried
out through a careful analysis of both the recorded footage
from the installed cameras and the observed behaviors of the
bees.

Determining whether a bee belongs to these areas hinges
on whether the central coordinates of the bee fall within
the specified regions. Within a single bee tracking result,
we establish the following definitions: If a bee is initially
observed within the inside area but is last seen within the
outside area, we classify this sequence as a ‘‘Departure’’.
Conversely, if a bee is initially spotted in the outside
area and concludes its observation within the inside area,
we label it as an ‘‘Arrival’’ (Fig. 4). This assessment
occurs during removing the IgnitusModel, as outlined in
Algorithm 2. The algorithm processes the tracking results
recorded by the IgnitusModel to make the arrival and
departure determinations. The tracking and recording of bee
arrivals and departures is accomplished through the persistent
application of this judgment process over an extended period.
Notice that this is not the method, but the problem setting.

C. MEASURES
For the assessment of whether object detection accurately
identified the bounding boxes (BBoxes) of male and worker
bees, we employed the mean Average Precision (mAP@0.5)
metric. Additionally, the processing speed of the object
detection was evaluated in terms of the frame rate. Uniform
output from YOLOv5 was utilized as input across all
tracking methods. To evaluate the accuracy of IgnitusTracker,
we adopted the evaluation approach of BYTE [21]. This
involved metrics such as MOTA [36], IDF1 [37], ID Switch
(IDs), and the frame rate. Among these indices, MOTA
focuses on detection accuracy, IDF1 focuses on association
performance, and IDs indicate instances where the assigned
ID for an entity has changed. Considering that the tracking
pertains to both worker and male bees in the case of the
B. ignitus study, we employed metrics such as mMOTA,
mIDF1, and mIDs, averaging evaluations across the entire
class. Since arrival and departure determinations are drawn
from the tracking results based on assigned IDs for the bees,
larger values of IDs exert a significant influence on accuracy.
Therefore, methods with lower IDs and substantial MOTA
and IDF1 scores are particularly crucial within the context
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FIGURE 3. Procedure for counting the arrivals and departures of B. ignitus from videos taken from the top of the hive. After
the bees are detected, they are tracked, and their arrival and departure are judged and counted.

FIGURE 4. Based on the trajectory of the bee’s center coordinates
recorded by IgnitusModel, if the first observed area is the inside area and
the last observed area is the outside area, then it is defined as a
departure; if the first observed area is the outside area and the last
observed area is the inside area, then it is defined as an arrival.

of this study. For assessing the count of bees arriving at and
departing from the hive, we employed the Mean Absolute
Error (MAE), representing the absolute discrepancy between
the actual and predicted counts of departures and arrivals.
This evaluation was averaged across the various classes.

V. RESULTS
A. BEE DETECTION
The outcomes regarding the detection accuracy of YOLOv5,
employed for object detection, are presented in Table. 1.
These detection results were subsequently utilized to assess
the performance of the tracking methods.

B. BEE TRACKING
A summarized representation of the tracking accuracy results
for B. ignitus is available in Table. 2. Based on the MOTA

Algorithm 2 Pseudo Code of Judging Whether Bee Arrivals
or Departures. AreaChecker Returns 0 If the Area Containing
the Center Coordinates of the Bee Is Inside Area and 1 If It
Is Outside Area.
Input: frame fk ; video V; Object detection model Detect;

object tracking Track;
Output: count of arrival Na, count of departure Nd ;
1: Initialisation : Na,Nd = 0, 0
2: for fk in V do

# Object Detection
3: Dk ← Detect(fk )

# Object Tracking
4: T del

k ← Track(Dk )
# Judeging Arrival and Departure

5: for t in T del
k do

# First Observed Area
6: i← AreaChecker(t.first)

# Last Observed Area
7: j← AreaChecker(t.last)
8: if (i == 1) & (j == 0) then
9: Na += 1

10: else if (i == 0) & (j == 1) then
11: Nd += 1
12: end if
13: end for
14: end for

metric, IgnitusTracker demonstrated accuracy on par with
the Y&C tracking method. However, considering IDF1 and
IDs metrics, IgnitusTracker exhibited superior accuracy.
Notably, the IDs metric reflected an improvement of more
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TABLE 1. The test data (V1-V5) was used to evaluate tracking. hive1 and
hive2 indicate the respective hive, am/pm indicates the time of day, Nw
and Nm indicate the total number of worker and male bee tracking IDs,
and Fw and Fm indicate the number of frames in which workers and
males appear.

FIGURE 5. An example under a merged situation. k is the temporal order
of the frames. The number on the upper left corner of the red BBox
indicates the ID assigned to the bee. The upper set of five frames shows
the results from SORT, which follows the detection results directly and
has no processing for the BBox. The lower set of five frames shows the
results from IgnitusTracker, which performs processing based on BBox
scores (BYTE) and purge updates (Y&C).

than 50% compared to existing methods. Regarding frame
rate, IgnitusTracker ranked as the second-best among all
the comparative tracking methods. Moreover, as illustrated
in Fig. 5, the utilization of IgnitusTracker allowed for the
tracking of individual bees even within merged situations.

C. BEE COUNT IN ARRIVALS AND DEPARTURES
The outcomes pertaining to the accuracy of arrival and
departure counting for each tracking method are presented
in Table. 3. Notably, IgnitusTracker consistently exhibited
smaller errors in the count of arrivals and departures across
all test datasets compared to the other tracking methods.

The time-series changes in the counts of arrivals and
departures for B. ignitus males and workers, as recorded
using IgnitusTracker, are visually represented in Fig. 6.
The hive featured in the video was set up on March
30, 2023, and subsequently replaced on May 13, 2023,
based on the farmer’s judgment. While the farmers were
unaware of the arrival and departure counts tracked using
IgnitusTracker, an observable trend emerged within this hive.
As the replacement date, determined by the farmers, drew
closer, there was a reduction in the number of worker bee
arrivals and departures, accompanied by an increasing trend
in male bee arrivals and departures. Interestingly, despite the
fact that male bees typically increase in number as their life
cycle nears its end, we noted a higher count of male bee
arrivals and departures right from the installation date.

VI. DISCUSSION
Combining simple components, IgnitusTracker can track
beeswith high computational efficiency and accuracy even on

FIGURE 6. Trends in the number of worker and male bees arriving and
departing by date from March 30, 2023, to May 13, 2023. The red line
indicates worker bees, the blue line indicates male bees, the solid line
indicates arrivals, and the dashed line indicates departures. The left axis
shows the number of worker arrivals and departures, and the right axis
shows the number of male arrivals and departures.

edge devices with limited computation resources. The results
presented in Table 3 strongly suggest that IgnitusTracker
significantly enhances the accuracy of counting B. ignitus
arrivals and departures. The noteworthy improvement in
IgnitusTracker’s mIDF, compared to the tracking method by
Y&C, can be attributed to GIoU’s consideration of the size
and shape between BBoxes during association. The reduced
mIDs of IgnitusTracker could stem from its handling of false
detections by incorporating the BBox score within merged
situations. Although IgnitusTracker exhibited a lower FPS
than Y&C, this is likely due to IgnitusTracker performing
association twice by splitting processes based on BBox
scores, in contrast to Y&C. Conversely, IgnitusTracker’s
relatively high FPS, despite performing more operations
than SORT and BYTE, can be attributed to the greater
computational efficiency of IgnitusModel over Kalman Filter.
However, the object detection method used in this study
(YOLOv5) has a much lower FPS than the tracking methods.
Consequently, the frame rate of object tracking is unlikely to
impact the overall processing time significantly. A limitation
of IgnitusTracker is that it does not support merged situations
in which more than three bees cross. However, since there
were few cases in which three bees crossed simultaneously,
we don’t consider that this has a significant impact on
tracking accuracy. Our test data contained the video with a
small number of male bees. Male bees as many as worker
bees could not be observed over time, which might be caused
by lifestyle differences. However, the effect on the accuracy
and computational efficiency was considered small because
both male and worker bees in the video acted similarly.

Employing Ignitus Tracker to count the arrivals and
departures of B. ignitus males and workers enabled us to
capture a segment of the species’ life cycle. This revealed
a decline in worker bees and an increase in male bees,
which are characteristic trends towards the end of their
life cycle. Therefore, it is foreseeable that determining the
appropriate time for hive replacement can be refined based
on the counted arrivals and departures of bees within the hive.
The prevalence of male arrivals and departures, even from the
initial date of hive installation, could potentially be elucidated
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TABLE 2. Comparison between proposed and existing methods in tracking accuracy of B. ignitus. SORT represents the method of Bewley et al. [28], BYTE
represents the method of Zhang et al. [21], and Y&C represents Yang and Collins [9] method, and OURS represents IgnitusTracker.

TABLE 3. MSE of arrival and departure determined by each tracking
method.

by considering the activity of male bees in the older hive with
the almost end of the life cycle that was set up before the
current hive.

VII. FUTURE WORK
This study focused on bee activity spanning seven hours, from
9:00 a.m. to 4:00 p.m. However, B. ignitus exhibits activity in
the early morning hours. Consequently, determining whether
restricting analysis to this time frame adequately captures the
activity trends of worker and male bees presents a challenge,
warranting further investigation.

In this research, we introduced IgnitusModel as a replace-
ment for Kalman Filter, incorporated GIoU instead of IoU
or pixel distance, and devised a mechanism for score-aware
false detection handling. Regarding the use of IgnitusModel,
further investigation is necessary to determine the essential
components that contribute to accurate counting.

VIII. CONCLUSION
In this study, we proposed IgnitusTracker, a novel method
designed for tracking B. ignitus males and workers using
video footage captured on a farm. IgnitusTracker demon-
strated higher tracking precision and accuracy in quantifying
arrivals and departures compared to existingmethods. Results
from IgnitusTracker’s counts of bee arrivals and departures
within the hive revealed a notable trend: as the designated
time for hive replacement approached, the number of worker
bees decreased, while the count of male bees increased.
Therefore, it is expected that utilizing IgnitusTracker’s counts
of bee arrivals and departures can assist in determining the
optimal timing for hive replacement.
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