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ABSTRACT While the Internet of Things (IoT) paradigm has transformed connectivity, it has also brought
with it previously unheard-of security risks. The categorization of IoT attacks using several machine learning
techniques and a deep learning method is the main emphasis of this research. In addition to proposing a binary
and multiclass classification framework with Machine Learning (ML) algorithms like Random Forest (RF),
Decision tree (DT), Extra Tree Classifier (ETC), Support Vector Machine (SVM), and k-Nearest Neighbor
(KNN) and Deep Learning (DL) architectures like Deep Neural Network (DNN), the study assesses a wide
range of attack types in IoT environments. Benchmark datasets with real-world IoT attack scenarios, such as
Edge-IloTset, are used for experimentation. Preprocessing is done on the dataset using Principal Componenet
Analysis (PCA) for feature selection, Synthetic Minority Oversampling Technique to handle class imbalance
and Standard Scaling for feature scaling. These approaches’ comparative performance and efficacy are
examined. The outcomes indicate how successful the DL model in managing intricate attack patterns and the
generalization capabilities of ML algorithms across various attack classes. The DNN model yields the best
results, with 100% accuracy for binary classification, 96.15% accuracy for 6-class classification, and 94.68%
accuracy for 15-class classification. Further, 10-fold cross validation has been applied to make sure that the
model does not overfit. This work contributes to the improvement of IoT security mechanisms by offering
insights into the selection of appropriate approaches for binary and multiclass classification of threats.

INDEX TERMS Internet of Things, machine learning, security, intrusion detection system.

I. INTRODUCTION
The development of IoT has brought about a new era of
connectedness by connecting systems and gadgets to form a
complex network that permeates many facets of contempo-
rary life (refer to Figurel). With continuous communication
between devices, infrastructure, and users made possible by
this interconnection, industries have witnessed previously
unheard-of levels of ease, efficiency, and creativity. Nonethe-
less, the extensive incorporation of IoT poses a significant
security problem because to the widened attack surface and
varied ecosystem, which reveal weaknesses that may be used
by malevolent entities.

Because so many devices are linked and can be targets
of cyberattacks, security in Internet of Things environments
has become critical. Strong security measures are made FIGURE 1. Expanse of internet of things.
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characteristics of [oT devices. The dynamic and decentralized
nature of IoT networks is a challenge for traditional security
measures, increasing the risk of breaches, data compromises,
and interruptions to vital services.

Industrial Internet of Things (IIoT) equipment and systems
are vulnerable to serious threats from ransomware, malware,
denial-of-service (DoS), and phishing attempts. Ransomware
has the ability to encrypt vital systems and demand money
in order to unlock them, while malicious software can
penetrate IIoT networks and jeopardize the integrity of
industrial processes and data. DoS attacks have the ability
to overload IIoT infrastructure, disrupting operations and
maybe even resulting in equipment failures. Phishing attacks
aim to fool administrators or staff into divulging private
information or allowing illegal access to IIoT networks and
devices. These cyberthreats highlight how crucial it is to
have strong cybersecurity measures in place, such as network
segmentation, encryption, staff education, and proactive
monitoring, in order to protect IloT settings from abuse
and guarantee the dependability and security of industrial
processes.

In the face of these obstacles, the use of ML methodologies
has attracted interest as a potentially effective means of
fortifying security inside IoT networks. With its capacity to
infer patterns from data and make choices or predictions
without the need for explicit programming, ML presents a
strong counter to the dynamic and intricate nature of cyber
threats. Within the domain of security, machine learning
algorithms have the capacity to evaluate enormous volumes
of data, recognize irregularities, and pinpoint patterns sug-
gestive of possible intrusions instantly, thereby enhancing
preemptive defensive systems. Nevertheless, there are still a
number of serious issues with the current solutions, even with
machine learning’s promise to strengthen IoT security. The
insufficiency of conventional rule-based or signature-based
techniques in successfully thwarting complex and dynamic
cyberthreats is among the main problems. These techniques
are vulnerable to evasion tactics used by contemporary
attackers who constantly evolve and come up with new ways
to avoid detection since they frequently rely on predetermined
rules or patterns.

Moreover, it might be difficult to directly implement
computationally demanding machine learning algorithms on
many IoT devices due to their resource constraints. It’s still
difficult to strike a balance between the limited processing
power, energy storage of IoT devices and the requirement
for strong security measures. Furthermore, the complexity of
securing a variety of devices is made worse by the absence
of defined security frameworks and protocols throughout the
Internet of Things, which can result in inconsistent security
implementations and interoperability problems.

This study intends to explore further the integration
of machine learning techniques as a preventive security
strategy in Internet of Things environments in light of these
constraints. It examines the shortcomings of current security
paradigms, investigates the potential of machine learning
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algorithms in threat mitigation, and suggests innovative ways
to strengthen IoT system resilience against new cyberthreats.

A. OBJECTIVES

1) GENERAL OBJECTIVE

This paper is aimed to investigate and evaluate the effective-
ness of using Machine Learning algorithms to improve the
accuracy and efficiency of intrusion detection systems. Based
on the type of data available, to understand how different
parameters will affect the detection of attack.

2) SPECIFIC OBJECTIVES
The specific objectives of this paper are:

1) Identifying the appropriate ML algorithms and tech-
niques for Intrusion Detection System (IDS) based on
the nature of data being analyzed and the characteristics
of network or system being protected.

2) Designing and implementing an ML/DL-based intru-
sion detection system and evaluating its performance
in terms of false positive and false negative rates,
accuracy, precision, recall, F1-score, test time and train
time.

3) Analyzing the impact of various factors on the perfor-
mance of ML-based IDS, such as size and quality of
training data set, ML algorithm and its parameters and
the nature of network or system to be protected.

4) Providing recommendations for optimizing perfor-
mance which includes strategies for improving the
accuracy, efficiency, and scalability of the system.

B. SCOPE

The purpose of this work is to offer a thorough assessment
of the effectiveness of utilizing machine learning algorithms
for intrusion detection and to make a contribution to the
creation of intrusion detection systems for Industrial Internet
of Things (IIoT) devices that are more effective and efficient.

C. MOTIVATION
The goal of an IDS based on ML is to increase intrusion
detection’s accuracy and effectiveness, particularly in the face
of developing and more advanced cyber threats. As observed
from the graph in Figure 2, the number of malware attacks is
increasing with each year. The effectiveness of conventional
intrusion detection systems, such as signature-based or rule-
based systems, may be limited when it comes to identifying
new or unidentified threats [31]. While harmful activity may
not yet be understood or characterized, ML algorithms can
learn from data and spot trends and anomalies that may be
suggestive of it. This increases the adaptability and ability
of machine learning-based intrusion detection systems to
identify previously undiscovered threats. DL techniques can
help to understand the complex patterns exhibited by the
attack data.

The volume and complexity of data (refer to Figure 3)
created by IoT gadgets is another reason for adopting machine
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FIGURE 2. Monthly number of loT malware attacks worldwide
from 2020 to 2022 [16].

181

w 160 147
e
3 140
s 120
9 120
k= 97
o 100
£ 79
5 8 64.2
= 60
2 5 M
o 40 2%
155 18
0, 5 65 9123 >3 I I I
0 — = m N [ | I I
S N v > » ) © A " o N * * ¥ F *
TSRS N N R R e N Y
BT AT DT AT AT DT DT DT DT AT A

FIGURE 3. Volume of data created, captured, copied and consumed
worldwide [17].

learning in intrusion detection [26]. With increasing volume
of data, there is a need for security of this data. The
volume of data is only going to increase with time. It is not
possible to efficiently monitor this and find patterns of attacks
manually. Large data sets can be efficiently analyzed by
machine learning algorithms, which can also spot trends and
abnormalities that traditional intrusion detection techniques
or human analysts might miss [30].

D. PROBLEM DESCRIPTION

A lot of IDS are based on the ML approach have been
developed [23]. However, they identify limited attacks and
the data which they use is not very vast. Also, these systems
use a lot of features which may not be necessary for
identification [19]. Through this paper, the aim is to evaluate
the performance of various machine learning and a DNN
model on Edge-IloTset. IoT devices are resource-constrained
and DL techniques have high computational complexity.
So, only one DNN model is chosen and its architecture is
structured in a way to maintain low complexity at the same
time maintaining good efficiency and performance.

E. CONTRIBUTIONS
1) This work provides a detailed review of several

previous works done to classify and identify attacks on
the Edge-IloTset.
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2) The entire methodology used to carry out the classifica-
tion has been explained in detail with proper steps and
algorithms.

3) Usage of PCA for feature reduction, SMOTE for class
imbalance and standard scaling for feature scaling
greatly improves the results.

4) Detailed performance analysis has been provided with
respect to 2-class, 6-class and 15-class classification of
attacks using the Edge-IloTset.

5) SmartSentry uses various types of machine learning
models like RF, DT, SVM, KNN, ETC and a deep learn-
ing model, DNN. For binary classification achieved
accuracy is 100% for most models. Whereas, for 6- and
15- class, DNN shows the highest accuracy (96.15%
and 94.86% respectively).

6) SmartSentry provides high performance measures in
very short amount of time without much data loss.
In case of DNN, the test times are 20.05s, 18.11s
and 27.99s respectively for 2-class,6-class and 15-class
respectively. This model exhibits smaller inference
times due to lower parameters, lower computational
requirements and hence, reduced complexity.

7) High 10-fold cross validation scores prove that the
model does not overfit and will generalize on unseen
data.

In Section II of this paper, previous work related to
Edge-IloTset dataset has been discussed. Section III dis-
cusses the dataset in detail. Various types of attacks are
discussed along with which parameters are used to categorize
each attack. Section IV discusses the methodology employed,
its implementation and framework. In Section V,results of
proposed model are discussed and comparisons have been
made with other state-of-the-art models. Section VI takes
into account a case study of industrial environmental setting
where the model can be implemented. SectionVII talks about
the conclusion and future work related to this research.

Il. RELATED WORKS
The research [1] suggests a new data-set for assessing
machine learning-based intrusion detection systems. The
Edge-lloTset dataset was created utilising a specially
designed IoT/IIoT test-bed that includes a sizable representa-
tive collection of devices, sensors, protocols, and cloud/edge
setups. The Edge-IloTset dataset contains a range of assaults,
including malware, man-in-the-middle, and denial-of-service
assaults. A wide range of IoT and IIoT applications are
covered by the dataset, which is also intended to be realistic
and thorough. On the Edge-IloTset dataset, the authors of
the study assess the effectiveness of various machine learning
algorithms in both centralised and federated learning modes.
A new IDS paradigm for Internet of Medical Things
(IoMT) networks is put out in the research [2]. The decision
tree classifier, a machine learning technique that may be
used to categorise data, is the foundation of the model. The
network traffic data is initially pre-processed by the suggested
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IDS model to identify pertinent aspects. The decision tree
classifier is then trained using these features. Once trained,
the classifier can be used to categorise fresh network traffic
data as benign or malicious. The UNSW-NBI15 dataset,
a publicly accessible dataset of [oMT network traffic, is used
by the authors of the research to assess the performance of
their suggested IDS model. They discover that their model
outperforms other cutting-edge IDS models in terms of
accuracy, achieving a figure of 94.23%.

IDS for IIoT networks are reviewed in the study [7] as
they currently stand. The authors talk on the difficulties
with intrusion detection in IIoT networks, including the
heterogeneity of devices, their resource limitations, and
the necessity of many IloT applications for real-time
functionality. In addition, the authors go over the various
IDSs that can be applied to IloT networks, such as signature-
based, anomaly-based, and machine learning-based IDSs.
They explore which types of IDSs are most suited for various
IIoT applications and analyse the benefits and drawbacks
of each type of IDS. They contend that machine learning
based IDSs are the most effective strategy for IIoT networks,
but that before they can be widely used in IIoT networks,
a number of issues must be resolved.

A new IDS model for IIoT edge networks is put out in the
paper [10]. A hybrid convolutional neural network (CNN)
and long short-term memory (LSTM) architecture serves
as the model’s foundation. The LSTM component of the
model learns temporal features from the data, whereas the
CNN component of the model learns spatial information from
the network traffic data. The model can identify a variety
of attacks, including both known and undiscovered threats,
thanks to the combination of CNN and LSTM features.
The suggested IDS model is also privacy-aware, which
means that it does not call for the gathering of any private
information. The model suitable for deployment in edge
networks, where privacy is a major concern. They discover
that when classifying traffic as benign or malicious, their
model achieves an accuracy of 97.85%, and when classifying
15 particular attacks, it achieves an accuracy of 97.14%.

A hybrid deep learning-based intrusion detection system
designed for the IIoT is presented in this research [13].
It efficiently detects security breaches in IIoT networks
by combining Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs). The hybrid design
of the model analyzes both temporal and geographical
elements in IIoT data, improving detection accuracy. This
technology is a useful tool for preserving the security of
industrial environments since it provides a strong defense for
IIoT networks against hostile intrusions.

The study [6] suggests a new decentralised and differ-
entially private Federated Learning (FL)-based IDS model
for IIoT networks. The model is made up of three parts: a
decentralised FL algorithm, a differentially private gradient
exchange method, and a key exchange protocol. Even with
severe privacy restrictions, the model achieves great accuracy
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in detecting attacks when tested on a real-world IIoT
dataset.

The paper [3] suggests a new architecture for leveraging
distributed DNNs in smart IoT ecosystems to identify
cyberattacks. The framework is made up of three parts: cloud
servers, IoT edge devices, and IoT gateways. To increase
scalability and effectiveness, the DNN model is distributed
across the IoT gateways. The system achieves great accuracy
in identifying cyber-attacks with a low false-positive rate
when tested on a real-world IoT dataset.

The paper [4] proposes a unique method using Al to detect
cyberattacks in IoT-based smart environments. It consists
of a distributed malware detection middle-ware and an
Al-enabled malware detection model. The model uses a
dataset of known malware and safe IoT traffic, and IoT
devices analyze the data. The middle-ware gathers contextual
data to increase detection accuracy. The model predicts the
traffic’s danger or benign nature, notifying the IoT device and
system administrator.

A unique FL-based technique for intrusion detection in
IToT networks is proposed in the study [5]. This decentralized
approach is well-suited for IoT environments, where cen-
tralized data processing may not be feasible due to factors
like network connectivity and scalability. Federated learning
provides a flexible framework that can be customized to
suit different industrial settings, allowing intrusion detection
models to adapt and evolve over time without the need for
manual intervention or centralized retraining.The suggested
method consists of two parts: a global IDS model that is
trained on the aggregated model updates from the local IDS
models, and a local IDS model that is trained on the local
data of each device. The IIoT network’s resource-constrained
devices are intended to operate the lightweight local IDS
paradigm. A more intricate model with a greater detection
accuracy is the global IDS model.

An extensive review of the security issues in ML-based
IDSs and open issues and challenges for ML-based IoT
security under advanced persistent threats (APTs) is given in
the paper [8]. The first section of the study covers the security
issues that IoT networks face, such as resource limitations,
heterogeneity, and dynamic topologies. It is challenging to
integrate conventional security solutions with IoT networks
because of these issues. The next section of the study
presents ML-based IDSs, a potentially effective method for
IoT security. From past data, ML-based intrusion detection
systems may recognize and identify unusual trends that can
be used to identify and prevent assaults. The article then
outlines the problems and obstacles that remain for ML-based
IoT security in the context of APTs. These are challenging to
identify and thwart. Future research areas for ML-based IoT
security under APTs are covered in the paper’s conclusion.

To detect anomalies in networking security, a unique
one-class classifier based on polynomial interpolation is
proposed in the study [9]. For the suggested classifier to
function, a polynomial interpolation model of the network’s
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typical traffic patterns must first be built. The limited region
including the upper and lower extremities of the polynomials
in the training dataset is therefore defined as the normalcy
area using this model. Then, if new observations are not
within the normalcy range, they are labeled as abnormal.
The suggested classifier outperforms rule-based intrusion
detection systems like SNORT and traditional one-class
classifiers like Extreme Learning Machine and Support
Vector Machine models, according to the results.

To safeguard the healthcare system’s whole network,
a novel intrusion and malware detection system is proposed
in the study [11]. The LightGBM-based IDS and the
Transformer-based malware detection system (MDS) are its
two primary parts. When combined, the two elements provide
healthcare systems a complete security solution. Whereas the
virus in network traffic is detected by the MDS, intrusions
in network traffic are detected by the IDS. After being tested
on four distinct datasets, the suggested approach had a 99%
accuracy rate. The findings demonstrate that the suggested
remedy is a successful means of defending healthcare
systems from cyberattacks. Although the suggested solution
is still in the early stages of research, it might significantly
improve healthcare systems’ security.

This study [12] proposes the DEIGASe model, which
combines deep extraction with feature selection to handle
anomaly detection problems in IoT-based smart cities.
Using a stacked auto-encoder, deep extraction is utilized to
extract features from the IoT data. The most illuminating
characteristics for anomaly detection are then chosen via
feature selection. A machine learning model is then trained
using the chosen characteristics to identify abnormalities.
Three datasets of IoT traffic from smart cities were used to
assess the DEIGASe model. The outcomes demonstrated that
DEIGASe works better in terms of accuracy and latency than
other anomaly detection techniques now in use.

Industrial Control Protocol (ICP) fuzz testing framework
MaskFuzzer [14] is built on MaskGAN and can automatically
generate adversarial test cases of high quality to reveal
vulnerabilities in ICP systems. To use MaskFuzzer, first train
a MaskGAN model using a dataset of authentic ICP traffic.
Next, we employ the MaskGAN model to produce synthetic
ICP traffic that, although visually identical to real data,
contains minute perturbations that may lead to vulnerabilities
in ICP systems. After being tested on several real-world ICP
systems, MaskFuzzer has proven to be successful in locating
security holes in these systems.

The authors of the study [15] suggest an IDS for IoV
networks based on federated learning. The suggested IDS
detects intrusions in the in-vehicle network (IVN) using a
convolutional long short-term memory (ConvLSTM) model.
The IVN traffic dataset used to train the ConvLSTM model
includes both malicious and genuine traffic. To further
improve the efficiency of the federated learning process, the
authors suggest a client selection method. A subset of cars
are chosen by the client selection mechanism for each training
cycle, taking into account the variety and caliber of their data.
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The authors demonstrate that the suggested IDS is efficient at
accurately identifying intrusions in the IVN by evaluating it
on a simulated IoV network.

The literature survey has been summarised in Table 1.
There are many studies which have been aimed at identifying
certain attacks with great accuracy. However, none of them
classify attacks like DoS, DDoS, Scanning attacks, Man In
the Middle (MITM), Injection Attacks and Malware attacks
(refer to Table 2) across devices like Ultrasonic sensor,
pH sensor, flame sensor, Heart Rate sensor, water sensor,
IR receiver sensor and more which are present in Edge-
IloTset. The performance metrics fall greatly when the
number of devices or attacks increases. Moreover, based on
data collected, it is important to understand which set of
features are required to detect which attack.

SmartSentry has high performance metrics in all types of
classifications (binary and multiclass). It does not have a
complex architecture. As the number of devices or attacks
increase, it can easily be trained on those as well.

IIl. DATASET DESCRIPTION

The extensive and varied Edge-IloTset dataset was built
especially for Edge Computing in IIoT settings. Its goal is
to replicate real-world scenarios found in IloT applications
using a vast array of data samples collected from different
sensors, machines, and devices deployed in industrial envi-
ronments. The intricacy and difficulties encountered at the
crossroads of Edge Computing and IIoT are captured in this
dataset.

In this section, the entire description of Edge-IloTset
has been given. Table 2 describes all the attacks from the
dataset.All the various features used (refer to Table 3), test
and train observations (refer to Table 4) have been mentioned
in this section.

Numerous sensor readings, including those for temper-
ature, pressure, humidity, vibration, energy consumption,
and other pertinent characteristics that are essential for
monitoring and control in industrial settings, are included
in the dataset. It records both typical operating conditions
and unusual behaviors that might be indicators of errors,
anomalies, or possible security concerns. It does this across
a number of time periods. Furthermore, a variety of
industrial gear and processes are included in Edge-IloTset,
guaranteeing a broad and diversified dataset for security
assessments, anomaly detection, predictive maintenance, and
robust analysis.

The dataset consists of two parts, Attack and Normal Data.
The Attack part consists of 14 .csv files for each attack type.
The Normal part has data collected from 10 different types of
sensors in the form of .csv files. For developing this model,
all the preprocessing and analyzing has been done on the two
other files provided namely: ‘ML-EdgelloT-dataset.csv’ and
‘DNN-EdgelloT-dataset.csv’

Ten IoT devices have been utilized in the dataset to collect
the data on attack and normal circumstances. The devices
include industrial sensors like ultrasonic sensor, pH sensor,
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TABLE 1. Literature survey.

Ref. No.

Algorithm

Results

Limitations

(1]

DT, RF, SVM, KNN, DNN

Accuracy with DNN 99.99% (2-class),
96.01% (6-class), 94.67% (15-class)

Many resources will be required to maintain
and analyse this dataset if size increases

(71

DNN, Recurrent Neural Network (RNN)

99.99% accuracy

Limited in its adaptability to new attack
scenarios

[10]

CNN, LSTM Neural Network

Accuracy 97.85% (2-class), 97.24%
(multiclass)

This system is much more complex compared
to traditional Intrusion Detection System

(13]

CNN, LSTM Neural Network

100% accuracy with binary classification

System requires significant resources
and expertise to optimize the DL models
effectively

(6]

2DF-IDS

2DF-IDS shows better metrics

FL increases the computational complexity
and requires more powerful hardware

[3]

DNN, SVM, RF, DT, Gradient Boosting (GB),
Naive Bayes(NB)

High Performance scores for DNN in both
10T-23 and Edge-IloTset

Framework involves a complex architecture.
Hence, deploying the solution in real-world
environments may prove to be challenging due
to hardware and software compatibility and
communication protocols

[4]

DNN, SVM, RF, DT, GB, NB

High Performance scores for DNN in both
[0T-23 and Edge-IloTset

It has a complex architecture with multiple
components

[3]

CNN, RNN

6% accuracy improvement

Federated learning-based approaches rely on
a distributed data architecture, and if the data
is not distributed or is highly imbalanced,
the performance of the approach could be
negatively affected

[8]

Comparison only

Paper does not include any empirical
evaluation or experimentation to demonstrate
the effectiveness of proposed solutions

[9]

Polynomial Interpolation, One Class Classifier

Edge IIoTset proves to be the best dataset
while retaining data

MaskFuzzer is only designed for fuzz testing
of ICPs and is not applicable for other devices
or protocols. It also takes a significant amount
of time to train

(11]

Transformer Model and LighGBM Model
along with Bayesian Optimization

BERT- based transformer gives best results

These models are resource intensive as they
scale for larger healthcare systems, they
require more infrastructure and investment
in terms of hardware

[12]

Multi Layer Perceptron, XGBoost, KNN

High efficiency and high detection rate

Deep feature extraction limits the inter-
pretability of the system, and these features
are not easily understood by humans. It also
requires regular maintenance to ensure its
effectiveness

[14]

Generative Adversarial Network (GAN)

MaskFuzzer has better TIAR

MaskGAN model takes a significant amount
of time to train

[15]

ConvLSTM

Good performance in all

Complexity increases because FTL techniques
are complex to implement. Use of multiple
devices in FTL increases communication
overhead

flame sensor, soil moisture sensor, heart rate sensor, sound
detection sensor, IR receiver sensor, DHT11 sensor, modbus
sensor and water sensor and more.

This dataset consists of 63 features, however, for this
research, only 40 of them have been used (refer to Table 3).
The rest of the features were host specific, IP and frame fea-
tures which do not prove to be useful in predictions of attacks.
Hence, they have been dropped (refer to Algorithm 3).

The removed features were static in nature, in the sense had
no use in classification of attacks as they had the same values
throughout.
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The file ‘ML-EdgelloT-dataset.csv’ contains a total of
157800 records of attacks and normal samples.Similarly,
the file ‘DNN-EdgelloT-dataset.csv’ has a total of 2219201
record samples. The number of records in each file and in
each category have been listed in Table 4.

IV. METHODOLOGY AND IMPLEMENTATION

In this section, the entire framework of this approach has been
described in detail. It includes all the algorithms, models and
test and train statistics used for this approach. Python 3.11 and
Jupyter Notebook were used in this paper’s implementation
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TABLE 2. Attacks classified in edge-lloTset.

Attack Specific Attack Type Description
DDoS TCP An instance of a DDoS attack in which a server is bombarded
DoS/DDoS with TCP packets to render it unusable.
DDoS UDP A form of DDoS attack that bombards a server with UDP
packets to render it unusable.
DDoS HTTP an instance of a DDoS attack where a web server is bombarded
with HTTP requests to render it unusable.
DDoS ICMP a form of DDoS attack where ICMP packets are swarming a

server to create denial of service.

Vulnerability Scanning Attack
Scanning Attacks

Scanning for open ports and services in an effort to find weak-
nesses in a system or network.

Port Scanning

technique for locating open services and ports on a system or
network.

OS Fingerprinting

a method of analyzing network data in an effort to determine
the operating system installed on a network or machine.

Man in the Middle ARP Spoofing Attack

a kind of attack where the perpetrator sends fraudulent ARP
signals to link their MAC address to the IP address of another
device on the network.

DNS Spoofing Attack

a kind of attack where the perpetrator intercepts DNS com-
munication and provides a fictitious IP address in place of the
requested domain name.

SQL Injection
Injection Attacks

an attack that inserts malicious SQL code into a database by
taking advantage of flaws in a web application’s input valida-
tion.

Uploading Attack

a kind of attack when a perpetrator downloads a harmful file to
a server or system in order to obtain unauthorized access.

Cross-site Scripting (XSS)

a kind of attack in which the perpetrator inserts malicious
code into a website in order to steal user information or obtain
unauthorized access.

Password cracking
Malware

a password guessing or cracking attempt made to gain unau-
thorized access to a network or system.

Backdoor

a covert access point that enables an attacker to circumvent
standard authentication and obtain unauthorised access to a
system or network.

Ransomware

malicious software that encrypts a victim’s data and demands
money in return for the key to unlock them.

Algorithm 1 Pseudocode for Machine Learning Models

Algorithm 2 Pseudocode for DNN

Input: File ML-EdgelloT-dataset.csv
Output: Prediction for different models
Data Preprocessing

Dummy Encoding

SMOTE for handling imbalance

Split into test-train 80-20% split
Standard Scaling

Feature Selection with PCA

Train models like DT, RF, ETC, SVM and KNN
Get predictions for the different models
Perform 10-fold cross validation

R AN A R

Input: File DNN-EdgelloT-dataset.csv
Output: Prediction for different models
: Data Preprocessing

Dummy Encoding

SMOTE for handling imbalance
Split into test-train 80-20% split
Standard Scaling

Feature Selection with PCA

Train the DNN model

Get predictions for DNN model
Perform 10-fold cross validation

R A A R ol S

of the experiment to deal with the Edge-IloTset dataset.
The Intel(R) Core (TM) i5-1135G7 @ 2.40GHz 2.42GHz
and 16 GB RAM are used in this experiment.

A. EXPERIMENTAL ENVIRONMENT

B. DATA ANALYSIS AND PREPROCESSING

Understanding the data helps to filter out unnecessary fea-
tures which often make the model complex. By performing
variable and count analysis all the static features were iden-
tified and dropped from the dataset. Static features include
the host, IP and frame features which were unnecessary for
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the prediction models. In this step, null values and duplicates
were also removed and a shuffle was performed on the
entire dataset (refer to Algorithm 3). Table 5 and Table 6
give a summary of records in each attack category before
and after pre-processing is done on the ML and DNN file
respectively.

C. DUMMY ENCODING

Dummy encoding, often referred to as one-hot encoding, is a
data preparation technique used to transform categorical vari-
ables into a numerical format, especially in machine learning
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TABLE 3. Features used for classification.

S. No. Feature Name Protocol Layer Datatype Description

1 arp.opcode ARP Unsigned integer Indicates the type of ARP message being sent or received

2 arp.hw.size ARP Unsigned integer Length of hardware address

3 icmp.checksum ICMP Unsigned integer IVerifies the integrity of an ICMP message

4 icmp.seq.le ICMP Unsigned integer Helps in identifying the order of sent packets

5 http.content_length HTTP Unsigned integer Length of content being sent in an HTTP message

6 http.request.method HTTP Character string Specifies the HTTP method used in HTTP request message

7 http.referer HTTP Character string Indicates URL of the webpage that led to the current request

8 http.request.version HTTP Character string Specifies the version of HTTP being used in an HTTP request
message

9 http.response HTTP Boolean Indicates the status code and other information about the re-
sponse to an HTTP request message

10 tep.ack TCP Unsigned integer Acknowledges receipt of a TCP segment or sequence of seg-
ments

11 tcp.ack_raw TCP Unsigned integer The acknowledgment number in a TCP segment, used for
acknowledging receipt of data

12 tep.checksum TCP Label A value used to verify the integrity of a TCP segment

13 tep.connection.fin TCP Label A TCP flag used to indicate that a connection should be termi-
nated.

14 tcp.connection.rst TCP Label A TCP flag used to indicate that a connection should be reset

15 tcp.connection.syn TCP Label A TCP flag used to initiate a connection

16 tcp.connection.synack TCP Label A TCP flag used to acknowledge receipt of a SYN flag and
initiate a connection

17 tep.flags TCP Label A field in a TCP segment that specifies various flag controls

18 tep.flags.ack TCP Boolean A TCP flag used to acknowledge receipt of data

19 tcp.len TCP Unsigned integer The length of a TCP segment in bytes

20 tcp.seq TCP Unsigned integer The sequence number of a TCP segment

21 udp.stream UDP Unsigned integer A sequence of UDP packets between two hosts

22 udp.time_delta UDP Time offset The time difference between two UDP packets in a stream

23 dns.qry.name DNS Character string The domain name being queries in a DNS request

24 dns.qry.name.len DNS Unsigned integer The length of the domain name being queried in a DNS request

25 dns.qry.qu DNS Boolean The query type being used in a DNS request

26 dns.retransmission DNS Boolean A retransmission of a DNS query due to a previous query
timeout

27 dns.retransmit.request DNS Label A DNS request for retransmission of a previous query

28 mgqtt.conack.flags MQTT Unsigned integer Flags used in an MQTT connection acknowledgement message

29 mgqtt.conflag.cleansess MQTT Boolean A flag used in an MQTT connection message to specify
whether the session should be cleaned up

30 mqtt.conflags MQTT Unsigned integer Flags used in an MQTT connection message

31 mgqtt.hdrflags MQTT Unsigned integer Flags used in an MQTT message header

32 mqtt.len MQTT Unsigned integer The length of an MQTT message in bytes

33 mqtt.msgtype MQTT Unsigned integer The type of MQTT message being sent or received

34 mqtt.proto_len MQTT Unsigned integer The length of the MQTT protocol name in an MQTT message

35 mgqtt.protoname MQTT Unsigned integer The name of the MQTT protocol being used in an MQTT
message

36 mqtt.topic MQTT Character string The topic being published or subscribed to in an MQTT mes-
sage

37 mqtt.topic_len MQTT Unsigned integer The length of the topic name in an MQTT message

38 mgqtt.ver MQTT Unsigned integer The version of the MQTT protocol being used in an MQTT
message

39 Attack_label NIL Number Specifies whether the data sample is attack or normal

40 Attack_type NIL Character String Specifies the type of attack

Algorithm 3 Dataset Preprocessing

Input: RawData
Output: PreProcessedData

| L N O R S

. df < RawData

. In(df) remove host_specific_features

: In(df) remove ip_features, frame_features
: In(df) remove NaN _values

: PreProcessedData < shuffle(df)

and statistical modeling. In case of categorical values, they

can

not be used for analyzing as they are. They need to be
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converted or augmented to relevant types. For every category
of a categorical feature, binary (0 or 1) variables are created
using dummy encoding. It generates ‘n’ binary columns for a
categorical variable with ‘n’ different categories, where each
column represents a single category (refer to Algorithm 4).
In this model, we have performed Dummy Encoding
of 6 features namely http.request.method, http.referer,
http.request.version, dns.qry.name.len, mgqtt.conack.flags,
mgqtt.protoname, mgqtt.topic. It keeps numerical values
from being mistakenly understood as having any kind of
meaningful order or magnitude by enabling models to handle
categorical data without assuming any ordinal relationship
between categories.
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ML Model Approach

Number of
samples in each

ML EdgelloT-dataset.csv

Data Analysis

Number of NaN,

Datat f i
atatype o duplicates, static @

each column

ttack 1
Step No. Records Features attac cotumns

) 157800 63 Data Prei)rocessing
(1) 152196 40 Removing static Removing Removing NaN (i)

columns duplicates values "
(iii) 152196 68 :
(iv) 121756 30 Data Encoding

Performing Dummy Encoding on
(V) 30440 30 categorical Data (iii)
Split into test-train = 20-80 split
(iv) Train Dataset Test dataset )
Feature Scaling Feahl;;-'Selecﬁon Feature Scalmg Feature Selection
(Standard Scaling) (PCA with 95% variance) (Standard Scaling) (PCA with 95% variance)

Random Forest Decision Tree

2-class accuracy 100 % 100%
6-class accuracy 85.64% 84.79%
15-class accuracy 80.92% 79.53%

FIGURE 4. Flowchart of approach for machine learning models.

TABLE 4. Category-wise number of samples in ML file and DL file.

Category Samples in ML file | Samples in DNN File
Normal 24301 1615643
DDoS_UDP 14498 121568
DDoS_ICMP 14090 116436
DDoS_HTTP 10561 49911
DDoS_TCP 10247 50062
Vulnerability_Scanner 10076 50110
Port_Scanning 10071 22564
Fingerprinting 1001 1001
MITM 1214 1214
SQL_Injection 10311 51203
Uploading 10269 37634
XSS 10052 15915
Password 9989 51053
Backdoor 10195 24862
Ransomware 10925 10925

D. HANDLING IMBALANCE

In machine learning, handling unbalanced datasets is critical,
particularly when one class greatly outnumbers another,
resulting in skewed models that favor the dominant class.
A common technique for addressing class imbalance is
the Synthetic Minority Over-sampling Technique (SMOTE),
which involves oversampling the minority class to produce a
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Extra Tree Classifier Support Vector Machine K - Nearest Neighbor

100% 99.99% 99.99%
85.33% 85.58% 85.04%
80.38% 77.8% 80.57%

TABLE 5. Number of samples before and after preprocessing
ML-EdgelloT-dataset.csv.

Category Before pre-processing | After pre-processing
Normal 24301 24101
DDoS_UDP 14498 14498
DDoS_ICMP 14090 13096
DDoS_HTTP 10561 10495
DDoS_TCP 10247 10247
Vulnerability_Scanner 10076 10062
Port_Scanning 10071 8921
Fingerprinting 1001 853
MITM 1214 358
SQL_Injection 10311 10282
Uploading 10269 10214
XSS 10052 9543
Password 9989 9972
Backdoor 10195 9865
Ransomware 10925 9689

dataset that is more balanced. SMOTE employs interpolation
between positively aligned instances to create new instances
by concentrating on the feature space. By interpolating new
instances along the line segments connecting pre-existing
minority class samples, SMOTE creates synthetic samples
for the minority class (refer to Algorithm 5). By producing
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DNN Model Approach

DNN EdgelloT-dataset.csv

Data Ahalysis

Step No.  Records Features
(1) 2219201 63 Number of samples in ~ Datatype of each Numlber of NaN, .
duplicates, static (i)
each attack column Jumn
(ii) 1909671 40 conumns
(iii) 1909671 89 Data Prei)rocessing
(IV) 122188 32 Removing static Removing Removing NaN (ii)
columns duplicates values
v) 381935 52
Data Encoding
(vi) 305548 52 : )
Performing Dummy Encoding on (i)
categorical Data
Split into test-train-val ~20:60-20 split
(iv) Train Dataset ) Test dataset Validation dataset  (vi)
Feature Scaling Feat.l;;e”'Selection Feature Scaling ”.'Feamre Selection FeatweScaliig Feature Selection
(Standard Scaling) (PCA with 95% variance) (Standard Scaling) (PCA with 95% variance) (Standard Scaling) (PCA with 95% variance)
DNN Model
2-class accuracy 100 %
6-class accuracy 96.15%
15-class accuracy 94.90%

FIGURE 5. Flowchart of approach for deep neural network.

TABLE 6. Number of samples before and after preprocessing
DNN-EdgelloT-dataset.csv.

Category Before pre-processing | After pre-processing
Normal 1615643 1363998
DDoS_UDP 121568 121567
DDoS_ICMP 116436 67939
DDoS_HTTP 49911 48544
DDoS_TCP 50062 50062
Vulnerability_Scanner 50110 50026
Port_Scanning 22564 19977
Fingerprinting 1001 853
MITM 1214 358
SQL_Injection 51203 50826
Uploading 37634 36807
XSS 15915 15066
Password 50153 49933
Backdoor 24862 24026
Ransomware 10925 9689

artificial examples that mimic actual minority class situa-
tions, this technique aids in increasing the representation of
the minority class. This technique ensures that the models are
not overfitting.

E. SPLITTING IN TEST-TRAIN

Here, the dataset is split into 20-80% of test-train. Performing
this step before Feature Scaling and Feature Selection avoids
leaking of data and thus prevents overfitting of the model.
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F. FEATURE SCALING

Feature scaling is a technique used to normalize or stan-
dardize the range of independent variables or features in a
dataset to ensure that they are on a similar scale, which can
improve the performance and accuracy of machine learning
models. It can also help avoid bias towards variables with
larger scales or ranges. In this approach, Standard Scaling has
been performed on the data. Each feature’s values are scaled
to have a standard deviation of one and are centered around
a mean of zero in standard scaling (refer to Algorithm 6).
By guaranteeing that every feature has a mean of 0 and a
standard deviation of 1, standard scaling essentially brings
all features to a single scale. It helps certain machine
learning algorithms perform better, especially those that rely
on distance metrics (e.g., K-Nearest Neighbors, Support
Vector Machines), keeps features with larger magnitudes
from dominating those with smaller magnitudes, and helps
algorithms that are sensitive to the scale of features converge
faster during training.

G. FEATURE SELECTION

To enhance model performance, lower computational cost,
and avoid overfitting, a subset of relevant features from
a larger collection of features in a dataset are chosen
through the feature selection process. This procedure involves
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Algorithm 4 Dummy Encoding

Algorithm 5 SMOTE for Imbalanced Classes

Input: A dataset with categorical variables to be dummy
encoded.
QOutput: A new dataset with one-hot encoded binary
columns.
1: Create an empty list to store the names of the new one-hot
encoded columns.
: for all categorical variables in the dataset do
for all distinct categories in the variable do
Create a new binary column for the category.
for all rows in the dataset do
if value in the original variable matches the
category then

AN A o

7: Assign 1 to the new column
8 else
9: Assign 0 to the new column
10: end if
11: end for
12: Append the new column name to the list of one-hot

encoded column names.
13:  end for
14: end for
15: Drop the original categorical columns from the dataset.
16: Concatenate the new one-hot encoded columns with the
dataset.

Input: 7,N, k
Output: S

1: if N < 100 then

2:  Randomise T' minority class samples
3 S=W/100) % T

4: N =100

5: end if

6: N = (int)(N/100)

7: fori=1to T do

8:  Compute k nearest neighbours for i
9:  Populate(N, i, nnarray)

10: end for

11: while N # 0 do

12:  nn = random(1, k)

13:  for attr < 1 to numattr do

14: dif = Sample[nnarray[nn]]lattr] —
Sampleli][numattr]

15: gap = random(0, 1)

16: Synthetic[newindex][attr] = Sample[i]lattr] +
gap * dif

17:  end for

18:  newindex + +
1990 N=N-1
20: end while

deleting redundant, irrelevant, or noisy features. It aims to
improve model accuracy and efficiency, while also improving
model interpretability and generalization ability. In order
to minimize the number of features (or dimensions) in a
dataset while preserving the greatest amount of variance
or information, Principal Component Analysis (PCA) is
a dimensionality reduction approach that is often used in
machine learning and data analysis. Even while PCA’s
primary purpose is to reduce dimensionality in data, it also
indirectly helps with feature selection by highlighting the
most crucial elements or characteristics that have a substantial
impact on data variance. By making it possible to identify the
most informative features that significantly contribute to the
variability of the dataset, PCA makes feature selection easier
(refer to Algorithm 7). By concentrating on the most pertinent
information in the data, this dimensionality reduction helps
minimize the curse of dimensionality, simplify computational
complexity, and may even enhance the effectiveness of
machine learning algorithms.

H. MODEL BUILDING

Now, all these pre-processed data is used to build various
models like Decision Tree, Random Forest, Extra Tree
Classifier, Support Vector Machine, K-Nearest Neighbor and
Deep Neural Network. These specific models have been
chosen, because some have been known to be robust against
noisy data, while some are good for generalization. They
all have trade-offs. So, by testing all of these side-by-side,
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Algorithm 6 Standard Scaling

Input: Dataset, X
Output: Standard Scaled Dataset, Z
I: Compute mean w; and Standard Deviation, o}

2: = Z

3 pya (x/ 1j)?
4: F(_)r each feature xeX
5. Z) = (x] — )/

6: =[Z17221""Zn]

it becomes easier to understand which would outperform all
with minimum trade-offs.

1) DECISION TREE CLASSIFIER (DT)

A well-liked machine learning approach for classification and
regression applications is the decision tree. It looks like a
flowchart, with branches standing in for potential outcomes
and nodes for decisions or features. The technique builds a
tree structure by recursively dividing the data according to
the most informative attributes. This enables it to move from
the root node of the tree to a leaf node, making predictions.
Decision trees are useful for both novices and specialists
in data analysis since they are simple to comprehend and
analyze. Additionally, they serve as a basis for more intricate
ensemble techniques like Random Forests, which increases
their capacity for prediction. The limitation of DT is that it is
prone to overfitting very easily.
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Algorithm 7 PCA Algorithm

Input: Feature set X with dimension dim
Output: k-dimensional feature set X’

1: Compute covariance matrix

2: while i < dim do

3 while j < dim do

4 wi < Sample mean of feature i
5: wj < Sample mean of feature j
6 0 =y 2o (&F — G — )
7 j=j+1

8: end while

9. i=i+1

10: end while

11: Split 7 into eigenvalues and eigenvectors

12: Calculate cumulative explained variance(CEV)
13: if CEV > 0.95 then

14:  construct projection matrix w

15: end if

16: Apply W to transform input X

17: Return X’

2) RANDOM FOREST CLASSIFIER (RF)

Several decision trees are combined in a Random Forest
Classifier, a highly effective ensemble machine learning
model that lowers overfitting and increases prediction
accuracy.It works by building a forest of decision trees,
each of which is trained using a different subset of the
characteristics and data. The final prediction is created during
classification by combining the outputs of each separate tree.
In addition to being resilient, Random Forests can handle
numerical and categorical input and are less likely to overfit.
They are renowned for their remarkable performance, inter-
pretability, and feature importance ranking in complicated
datasets and are widely utilized for a variety of applica-
tions, including regression and classification problems.It is
however, less interpretable compared to individual decsision
trees.

3) EXTRA TREE CLASSIFIER (ETC)

Extremely Randomized Trees, or the Extra Tree Classifier
for short, is an ensemble machine learning technique
closely linked to the Random Forest. It takes random
subsets of the data and creates numerous decision trees,
each with a different twist. By choosing random split
points for features, Extra Trees increase the degree of
randomization and provide even lower bias and variation
than conventional Random Forests. This method lowers
the chance of overfitting while increasing model variety.
Extra Trees work well with high-dimensional data and are
computationally efficient. With their reliable performance,
they are frequently employed in classification jobs and
come in handy in difficult feature selection situations.ETCs
can be less accurate due to the randomness in node
splits.
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4) SUPPORT VECTOR MACHINE (SVM)

A potent supervised machine learning approach for regres-
sion and classification problems is called Support Vector
Machine (SVM). SVM looks for the best hyperplane to
maximize the space between data points belonging to various
classes. Its goal is to minimize classification mistakes
and establish a well-defined decision boundary. With the
introduction of kernel functions, SVM can handle both linear
and nonlinear data, making it adaptable for a range of uses.
SVMs are frequently utilized in domains including image
recognition, text classification, and finance because they are
reliable and efficient for handling high-dimensional data.
They are widely used in machine learning due to their
robust generalization and capacity to handle complicated
datasets.They can, however, be computationally expensive
with large datasets and non-linear kernels.

5) K-NEAREST NEIGHBOUR (KNN)

A straightforward and efficient supervised learning approach
for regression and classification is K-Nearest Neighbors
(KNN). In order to provide predictions, it searches the feature
space for the K data points (neighbors) that are closest to
the query point. The class of the query point is determined
for categorization by the majority class among the neighbors.
The technique takes the average of the K nearest neighbors’
goal values for regression. KNN may be used to many sorts
of data and is non-parametric and intuitive. The selection
of K, data scaling, and high-dimensional data, however,
could have consequences. Given these difficulties, KNN is
a popular choice in pattern recognition and recommendation
systems because to its ease of use and practicality. KNN can
be computationally expensive with large datasets and many
neighbours. It also requires careful normalization to avoid
bias towards features with larger scales.

6) DEEP NEURAL NETWORK (DNN)

A subclass of artificial neural networks known as Deep
Neural Networks (DNNs) are distinguished by having
numerous hidden layers situated between the input and output
layers. The network can extract complex and abstract patterns
from the data thanks to these hidden layers. DNNs form
the basis of deep learning and have transformed machine
learning, resulting in advances in computer vision, natural
language processing, and several other fields. Activation
functions and back-propagation are used to modify model
parameters during training. DNNs are capable of modeling
intricate connections, but they overfit easily and need a lot of
data and processing power. Despite difficulties, they greatly
improved Al capabilities and are useful in many applications,
including voice and picture recognition.

I. VALIDATION PHASE

The method of K-fold cross-validation is used to assess
prediction models (refer to Algorithm 8). There are k folds,
or subsets, inside the dataset. A distinct fold is used as the
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TABLE 7. Model hyperparameters for 2-class classification.

Machine Learning Classifier

Hyperparameter Values

Random Forest

criterion: gini, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100

Decision Tree

criterion:gini, min_samples_leaf: 1, min_samples_split:2,

Extra Tree Classifier

criterion: gini, min_samples_leaf: 1, min_samples_split: 2, n_estimators: 100

Support Vector Machine

C: 1.0, degree: 3, kernel: linear

K-Nearest Neighbour

leaf_size: 30, metric: minkowski, n_neighbors: 5, p: 2

Deep Neural Network

layers:3, input_dim:50, hidden_neurons: 16, output_dim:2, activation:relu, softmax, optimizer:adam, epochs : 10

TABLE 8. Model hyperparameters for 6-class classification.

Machine Learning Classifier

Hyperparameter Values

Random Forest

min_samples_leaf:1, min_samples_split:2, n_estimators:100, n_jobs:None

Decision Tree

criterion:gini, min_samples_leaf: 1, min_samples_split:2

Extra Tree Classifier

criterion:gini, min_samples_leaf:1, min_samples_split:2, n_estimators:100

Support Vector Machine

C:1.0, degree:3, kernel:linear

K-Nearest Neighbour

metric:minkowski, n_neighbors:5, p:2

Deep Neural Network

layers:5, input_dim:48, hidden_neurons:96, output_dim:6, activation:relu, softmax, optimizer:adam, epochs : 5

TABLE 9. Model hyperparameters for 15-class classification.

Machine Learning Classifier

Hyperparameter Values

Random Forest

max_depth:15, criterion:gini,min_samples_split:2, min_samples_leaf:1

Decision Tree

criterion:gini, min_samples_leaf:1,min_samples_split:2

Extra Tree Classifier

criterion:gini, min_samples_leaf:1, min_samples_split:2

Support Vector Machine

C:15.0, kernel:linear

K-Nearest Neighbour

metric: minkowski, n_neighbors: 3

Deep Neural Network

layers:5, input_dim:49, hidden_neurons:96, output_dim: 15, activation:relu, softmax, optimizer:adam, epochs:5

validation set for each of the k training and evaluation cycles
of the model. The generalization performance of the model is
estimated by averaging the performance indicators from each

fold.

J. PREDICTING DATA

The different models mentioned above (refer to Section I'V-H
are built using different hyperparameters (refer to Tables 7, 8

and 9).

K. PERFORMANCE EVALUATION

TPatt
Pr=——— 2)
TPut + FPuorm
TP,
Re=— " 3)
TPut + FNay
Pr x Rc
F1—score =2 x —— “4)
Pr 4+ Rc

Here, acc is Accuracy, Pr is Precision, Rc is Recall. TP,
is the True Positives (correct Attacks detected), TN,orm 1S
True Negatives (correct Normals detected), F/Py, is False
Positives (Attacks detected when it Normal) and FP,; is
False Positives (Normals detected when it is Attack).

To assess the effectiveness of the created models, a variety

of performance indicators including Accuracy, Precision,
Recall, Fl-score, and confusion matrix are utilized. In this
investigation, DNN produced the best outcomes across all
three categorization classes. The following part will detail the

findings.

acc =

V. RESULTS AND DISCUSSION

In this section, results have been discussed with respect
to confusion matrices (refer to Section V-A), performance
metrics of 2-class, 6-class and 15-class (refer to Section V-B),
AUC-ROC curves (refer to Section V-C), k-fold cross
validation (refer to Section V-D), Time Complexity Analysis

TPuy + TNporm (refer to Section V-E) and comparison to state-of-the-art-

TPutt + TNyorm + FPuorm + FNast
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models (refer to Section V-F).
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(a) Confusion matrix for 2-class

FIGURE 6. Confusion matrices for random forest classifier.

Algorithm 8 10-Fold Cross Validation
Input: Balanced Dataset (data)
Output: Classifier performance parameters
1: create(classifier)
2: data_split(1t010) < to_10_folds(data)
3: per_met < null
4: for i=1to 10 do
5. data_train < null
6: j<1
7.  whilej < 10 do
8
9

if j # i then

: data_train < append(data_train, data_split (j))
10 end if
11:  end while
12:  train(classifier, data_train)
13:  test(classifier, data(i))
14: per_met < performance_metrics(classifier)
15: end for
16: print per_met

A. CONFUSION MATRICES

A confusion matrix is a table that is used to assess how
well a classification system performs. It offers a thorough
synopsis of how a model’s predictions relate to the real
ground truth for various classes. Understanding a classifier’s
accuracy, precision, recall, and other performance indicators
is made easier with the help of this matrix. In this section,
confusion matrices are shown for Random Forest Classifier,
as it was the best performing among other machine learning
models and for the DNN model. The confusion matrices
are shown for 2-class, 6-class and 15-class classification
(refer to Figure 6 and Figure 7). For 6-class classification,
0,1,2,3,4,5 refer to DDoS, Injection, Man-in-the-Middle
(MITM), Malware, Normal and Scanning respectively.
For 15-class classification, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14
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(b) Confusion matrix for 6-class

(c) Confusion matrix for 15-class

refer to Backdoor, DDoS_HTTP, DDoS_ICMP, DDoS_TCP,
DDoS_UDP, Fingerprinting, MITM, Normal, Password,
Port_Scanning, Ransomware, SQL_Injection, Uploading,
Vulnerability_Scanner and XSS respectively. In case of
2-class, a perfect confusion matrix has been achieved with
zero false positives and false negatives. For 6-class, the
model faces some difficulty to detect class 3 which is
Malware attacks being incorrectly classified as Injection
attacks. Similarily, for DNN, a perfect confusion matrix has
been achieved for 2-class. In case of 6-class and 15-class
classification, some false positives are there. However, upon
considering other performance metrics and cross-validation
scores, the model is robust.

B. PERFORMANCE METRICS

For 2-class, almost all models give 100% results in all
performance metrics (refer to Table 10). Achieving high
values for performance metrics other than Accuracy, shows
that these are not overfitting and are reliable in their
efficiency. For 6-class and 15-class, DNN shows the best
results (refer to Table 11 and Table 12).

Figure 8 and Table 13 presents the accuracy of all models
in all classes.

The trend of the model’s accuracy throughout epochs-
iterations or runs through the complete dataset during
training—is shown on accuracy graphs. As training contin-
ues, they demonstrate the model’s accuracy in predicting
outcomes on training and validation datasets. In an ideal
scenario, training and validation accuracy would both trend
higher, indicating that the model is learning efficiently
and neither overfitting nor underfitting. Differences in the
accuracy of training and validation might point to problems
like underfitting (both accuracies stay low) or overfitting
(high training accuracy but lower validation accuracy). From
Figure 9(a), it is seen that accuracy shoots up in the 4 th epoch
and validation accuracy is 1 throughout for 2-class. In case
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FIGURE 7. Confusion matrices for DNN model.

TABLE 10. Performance Metrics for 2-class classification.

Algorithm | Metric | Normal(0) | Attack(1)
Pr 1.0 1.0
DT Rc 1.0 1.0
FI 1.0 1.0
Pr 1.0 1.0
RF Rc 1.0 1.0
FI 1.0 1.0
Pr 1.0 1.0
ETC Rc 1.0 1.0
FI 1.0 1.0
Pr 1.0 1.0
SVM Rc 1.0 1.0
FI 1.0 1.0
Pr 1.0 1.0
KNN Rc 1.0 1.0
FI 1.0 1.0
Pr 1.0 1.0
DNN Rc 1.0 1.0
FI 1.0 1.0
Accuracy

100.00
100.00

96
94.90

100.00

7

90.00

84.

80.00

70.00

60.00

50.00

Percentage

40,00

30,00

20,00

10.00

0.00

80.38

SVM NN DNN
Model

6-class acc W 15-class acc

DT

m 2-class acc

FIGURE 8. Accuracy for all models and all classes.

of 6-class, training accuracy shows a steep slope from first
to second epoch (from 96.11 to 96.14), and then gradually
increases till fifth epoch (till 96.16). Validation accuracy
experiences a similar scenario, going from 96.10 in the first
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(b) Confusion matrix for 6-class

(c) Confusion matrix for 15-class

epoch to 96.13 in the fifth epoch (refer to Figure 10(a)). For
15-class, training accuracy gradually increase from 94.88 in
first epoch to 94.94 in the fifth epoch. For validation accuracy,
a steep slope is noticed from second to fourth epoch. In the
fifth epoch, validation accuracy slightly reduces (refer to
Figure 11(a)).

The trend of the model’s loss function over epochs is
displayed in loss graphs. In comparison to forecasts, the loss
function expresses how well the model approximates the
true values. Better model performance is shown by lower
loss values. Just as with accuracy graphs, it’s important to
watch the training and validation loss trend. Both should
ideally decline across epochs to show that the model
is learning efficiently. Divergence between validation and
training losses might point to problems such as underfitting
or overfitting. For 2-class, training loss drops drastically in
the second epoch and continues to remain low throughout
(refer to Figure 9(b)). The validation loss, remains low-almost
negligible thorughout the five epochs. The same scenario can
be seen in case 6-class (refer to Figure 10(b)) and 15-class
(refer to Figure 11(b)), where training loss drops significantly
in second epoch and validation loss remains low.

From the graphs, it is seen that the graphs are converging,
so the model is neither underfitting nor overfitting. A con-
sistent and close trend observed in losses and accuracies
indicates good generalization of data.

C. AUC-ROC CURVES
One popular statistic for assessing the effectiveness of binary
classification algorithms is the AUC-ROC (Area Under
the Receiver Operating Characteristic Curve). It assesses
a model’s capacity to discriminate between positive and
negative classes over a range of threshold values.

Plotting the True Positive Rate (TPR) versus the False
Positive Rate (FPR) for various categorization thresholds is
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TABLE 11. Performance Metrics for 6-class classification.

Model | Metrics | Normal | DDoS | Injection | MITM | Malware | Scanning
Pr 1.00 0.89 0.73 1.00 0.81 0.81
DT Re 1.00 0.89 0.73 1.00 0.81 0.82
F1 1.00 0.89 0.73 1.00 0.81 0.81
Pr 1.00 0.90 0.72 1.00 0.85 0.83
RF Re 1.00 0.88 0.79 1.00 0.85 0.83
Fl1 1.00 0.89 0.75 1.00 0.82 0.83
Pr 1.00 0.89 0.72 1.00 0.83 0.82
ETC Rc 1.00 0.89 0.76 1.00 0.80 0.81
F1 1.00 0.89 0.74 1.00 0.81 0.82
Pr 1.00 0.96 0.67 1.00 0.97 0.75
SVM Rc 1.00 0.83 0.94 1.00 0.69 0.85
F1 1.00 0.89 0.78 1.00 0.81 0.80
Pr 1.00 0.88 0.70 1.00 0.86 0.82
KNN Re 1.00 0.90 0.77 1.00 0.77 0.79
F1 1.00 0.89 0.74 1.00 0.81 0.81
Pr 1.00 0.92 0.67 1.00 0.98 1.00
DNN Rc 1.00 0.99 0.91 0.96 0.50 0.74
Fl1 1.00 0.95 0.77 0.98 0.66 0.85
Training and Validation accuracy Training and Validation loss
[ as —— Training loss
—— Validation loss
30
2 25
z 2.0
€ -4 2
3 = 15
-6 1.0
05
- v tamnyaecaniey 00
2 4 6 8 10 z 4 6 8 0
Epochs Epochs
(a) DNN Accuracy (b) DNN Loss
FIGURE 9. Accuracy and loss graphs for 2-class classification.
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FIGURE 10. Accuracy and loss graphs for 6-class classification.

known as the ROC curve. FPR is the ratio of false positives to
all negatives, whereas TPR is frequently referred to as recall
or sensitivity. A distinct threshold value is represented by
each point on the ROC curve. The whole two-dimensional
area under the ROC curve is measured by AUC. An AUC of
1.0 for a perfect classifier would mean that, at any threshold,
it achieves complete classification between positive and
negative classes. An AUC of 0.5 for arandom classifier would
suggest no capacity to discriminate apart from chance. All the
classifiers in this research have AUC of 1.0, indicating they
are perfect classifiers (refer to Figure 12).
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D. K-FOLD CROSS VALIDATION

One method for assessing machine learning models is
K-fold cross-validation. The process is dividing the dataset
into K subsets, using K-1 subsets for model training,
and using the remaining subset for testing. Every subset
serves as the test set once during the K repetitions of this
operation. This ensures that every data point is used for
both training and testing, maximizing the use of available
data. It lessens overfitting, encourages generalization, and
aids in evaluating a model’s performance. The findings are
averaged over K rounds, giving a more accurate evaluation
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of a model’s capabilities. Since the model is evaluated on
multiple different test sets, k-fold cross-validation provides
a more realistic assessment of the model’s generalization
performance. It helps in determining how well the model
performs on unseen data, which is crucial for assessing its
robustness. 10-fold cross validation has been used on all
models in this research (refer to Table 14). The consistency
observed in the 10-fold cross validation scores, shows the
robustness and its ability generalize unseen data. Highest
scores have been observed in case of DNN for 2-class (1.00),
6-class (0.96) and 15-class (0.94) which also coincide with
its accuracies achieved.

E. TIME COMPLEXITY ANALYSIS

Other than performance metrics, another important aspect
to evaluate a model is it’s time complexity. If a model
performs well but takes an unreasonable amount of time,
it is not feasible to deploy such a model. Especially, in cases
like intrusion detection, where attacks need to be detected
with milliseconds, high time complexities can prove to be
very costly. Larger datasets and more complicated models
may be handled more effectively and scalable by algo-
rithms with reduced time complexity. Determining hardware
requirements and model training timeframes, as well as
efficiently allocating computing resources, are all aided by
an understanding of temporal complexity. This analysis helps
determine which method, given the size of the dataset and
available processing resources, is best suited for a given task.
The Table 15 gives the train and test time complexities of
all models used in SmartSentry. From the table, Decision
Tree shows the best time complexities for both testing and
training. Table 16 provides a concise view of the test and
train times of the different algorithms used. The DNN model,
inspite of having high complexities, their testing times are
significantly low. Since, the DNN model have otherwise
shown the best performance metrics, it is a good choice for an
intrusion detection system. The machine learning algorithms
like DT, RF have low testing and training times, but their
other performance metrics makes them a poor choice for an
IDS.This is because, DT is prone to overfitting and the results
given by RF are not that interpretable. They will not be able
to generalize on unseen data.

F. COMPARATIVE ANALYSIS

In this section, comparison has been made of the proposed
model to the previous studies done in this area. Comparison
has been made in terms of (1) Best performing state-of-the-
art models and types of classification with their performance
metrics (refer to Table 17) (2) Method employed by the
different state-of-the-art models in their studies (refer to
Table18).

The model proposed in [1] is completely outperformed by
the proposed model in terms of all performance measures.
Moreover, this paper does not take into account test time,
train time and cross validation scores of the models. Paper [3]
and [4] have been written by the same authors. This paper
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FIGURE 11. Accuracy and loss graphs for 15-class classification.

TABLE 13. Accuracy comparison of all models.

Algorithm | 2-class | 6-class | 15-class
DT 100.00 | 84.79 79.53
RF 100.00 | 85.64 80.92
ETC 100.00 | 85.33 80.38
SVM 99.99 85.58 77.80
KNN 99.99 85.04 80.57
DNN 100.00 | 96.78 94.90

Receiver Operating Characteristic (ROC) Curve

k] ul

086 i

TABLE 15. Train and test time complexity of models used.

Model Train Time Complexity | Test Time Complexity
Random Forest O(k’*n*log(n)*m) O(m*Kk’)

Decision Tree O(n*log(n)*m) O(m)

Extra Tree Classifier O(k’*m*n*log(n)) O(k’*n*log(n))
Support Vector Machine | O(n?) O(n’*m)

K-Nearest Neighbour O(k*n*m) O(n*m)

Deep Neural Network | O(n*p*q) O(n*p)

TABLE 16. Train and test time for all ML Models (in seconds).

Tue Positive Rate

0z

00

— ROC curve (AUC = 1.00)

FIGURE 12. AUC-ROC curve for 2-class classifiers.

02

04 06
False Positive Rate

TABLE 14. 10-fold cross validation scores.

08 10

Model | 2-class accuracy | 6-class accuracy | 15-class accuracy
DT 1.00 0.95 0.93
RF 1.00 0.96 0.94
ETC 1.00 0.95 0.93
SVM 1.00 0.95 0.93
KNN 1.00 0.95 0.93
DNN 1.00 0.96 0.94

does not perform binary classification and has not performed
cross-validation to ensure that the model is not overfitting.
Moreover, test and train times have not been mentioned.
This paper [6], has a good accuracy, but its other metrics
suggest that the model may not generalize well to unseen
data i.e. the model could be overfitting. Lack of validation
scores is also a major limitation. In paper [9], the authors
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Aleorithm 2-class 6-class 15-class
& Train Test Train Test Train Test
DT 0.19 0.01 7.48 0.0075 11.08 0.0066
RF 4.21 0.45 64.08 0.62 57.43 0.55
ETC 1.14 0.53 17.48 0.74 17.63 0.94
SVM 0.32 0.21 764.77 | 102.44 | 1748.23 99.26
KNN 0.0053 | 176.29 0.09 93.71 0.01 57.44
DNN 715.36 | 20.05 373.88 18.11 367.58 27.99
H Gateway
Attackers SmarlSentry \
IDS
=
W ((0)) SmdrtSentry
4!‘% Idustrial IoT \v
S e \\_.? loT Servers
S
&7 GdtCWdy

FIGURE 13. SmartSentry in industrial loT environment.

suggest a one-class classifier. Research has only been done on
binary classification. Proposed model, outperforms this study
in binary classification with a DNN model by approximately
3% greater accuracy. Research [10] presents a CNN-LSTM
model for binary and multiclass classification. It has a greater
accuracy than the DNN model proposed in this research.
However, upon comparing other performance metrics like F1-
score, it has low values. It is seen that the hybrid CNN-LSTM
model is overfitting and will not be able to generalize
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TABLE 17. Comparison to other models based on performance metrics.

Clas?;;g:“"“ Ref. No. [1] [3] [4] 6] [9] [10] [12] Pi‘d’ggz‘;’d
Best Algorithm DNN - - - Poly BR | CNN-LSTM | Xgboost DNN
Acc 99.99 - - - 97.27 97.85 100.00 100.00
Pr 99.98 - - - 96.03 98.13 100.00 100.00
Rc 100.00 - - - 94.82 97.59 100.00 100.00
2- class FI 99.98 - - - - 97.81 100.00 100.00
Train Time - - - - - - 2 715.36
Test Time - - - - - - 0.077 20.05
Cross Validation - - - - - - - 1.00
AUC - - - - - - 100.00 100.00
Best Algorithm DNN - - - - - - DNN
Acc 96.01 - - - - - - 96.78
Pr 91.83 - - - - - - 96.82
6-class Rc 84.16 - - - - - - 96.16
FI 87.66 - - - - - - 95.97
Train Time - - - - - - - 373.88
Test Time - - - - - - - 18.11
Cross Validation - - - - - - - 0.96
Best Algorithm | DNN | DNN | DNN Ceﬁ;ﬂge‘j - CNN-LSTM - DNN
Acc 94.67 94.00 | 94.00 94.84 - 97.14 - 94.90
Pr 80.20 98.00 | 98.00 79.00 - 82.32 - 95.33
15-class Rc 77.00 89.00 | 89.00 84.00 - 72.66 - 94.90
Fl 77.33 93.00 | 93.00 79.00 - 74.62 - 94.62
Train Time - - - - - - - 367.58
Test Time - - - - - - - 27.99
Cross Validation - - - - - - - 0.94
TABLE 18. Comparison to other models based on methodology used.
Approach Edge-IloTseT [1] | AI Enabled Mid- | Hybrid =~ CNN- | Hybrid Deep | DEIGASe [12] Proposed Model
dleware [4] LSTM [10] Learning [13]
Dummy v X X v X v
Encoding
Balancing v v X X X v
Technique
(SMOTE)
Feature Scaling | v X X v X v
(Standard
Scaling)
Feature Selection | X X X X v v
(PCA)
Cross validation | X X X X v v
(10-fold)

to unseen data. In [12], a deep extraction approach has
been combined with feature selection. Although, the results
suggest zero FPR, work has not been done on 6-class or
15-class classification. Moreover, no results are provided to
make sure that the model does not overfit the data.

The proposed model, hence, outperforms the compared
exisiting state-of-the-art models in terms of performance
metrics like Accuracy, Precision, Recall, Fl-score, Train
Time, Test Time, AUC-ROC Curve. Moreover, 10-fold cross
validation scores suggest that the model does not overfit the
data.

VI. CASE STUDY: PROTECTING ENVIRONMENTAL
SENSORS IN INDUSTRIAL SETTINGS THROUGH
SMARTSENTRY

The previous sections of this research discuss the method-
ology and performance of the proposed model. This section
gives an insight on how it can be implemented in real-life
scenarios. Taking the example of an industrial setting having
various environmental sensors like Flame sensor, Water
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sensor, Temperature sensor, Humidity sensor, pH sensor,
Ultrasonic sensor.

By continually monitoring conditions, environmental sen-
sors play vital roles in assuring safety and compliance in
industrial settings. These sensors do, however, provide a
growing danger of data manipulation, system breach, and
safety hazards due to their increased susceptibility to cyber-
attacks. Tough industrial settings make these weaknesses
worse. An inventive cybersecurity solution designed for
environmental sensors is SmartSentry. SmartSentry protects
sensor networks against cyberattacks by using real-time
monitoring and intrusion detection. Its powerful security
procedures and tamper-proof design efficiently decrease risks
in environmental monitoring systems by protecting industrial
operations from cyber threats, guaranteeing the integrity of
sensor data, and preventing unauthorized access. Integrating
SmartSentry with the Gateway ensures that the servers remain
protected in both cases- whether it be while collecting data
from the sensors, or while someone tries to attack the
Servers.
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VIi. CONCLUSION AND FUTURE WORK

Expanding on the discussed approach, the development of
SmartSentry with high-performance metrics across various
classification models showcases its potential in enhancing
network security. Notably, the utilization of Deep Neural
Networks (DNN) yielded the best results among all the
models employed (100% accuracy for binary classification).
This success demonstrates the effectiveness of deep learning
techniques in accurately identifying and mitigating potential
threats. To further improve the model’s performance, future
research can explore the application of GridSearchCV,
a technique that systematically tunes hyperparameters across
multiple models. By fine-tuning the parameters, better
accuracy can be achieved, leading to more reliable intru-
sion detection. Additionally, investigating different feature
selection techniques can enhance the model’s efficiency.
By identifying the most relevant and informative features, the
models can focus on key indicators of intrusion, improving
their overall performance. Moreover, the application of
this approach extends beyond traditional network security.
As illustrated in the case study, it can be applied to smart
city models, protecting devices within the infrastructure
against various cyberattacks. This highlights the versatility
and potential of the proposed approach in securing complex
and interconnected systems.

In conclusion, the ongoing research and development
in intrusion detection systems holds great promise for
enhancing network security. By incorporating advanced
techniques, such as RNN, CNN and hyperparameter tuning,
and exploring different feature selection methods, the model
can continue to evolve and effectively counter emerging
cyber threats. Although this study has shed light on how IoT
assaults are classified, it also opens up a number of new
research directions. To test the resilience and efficacy of the
same strategy, simulating it on several datasets is a viable
avenue. To test how successfully our IDS responds to real-
world situations, it can also be integrated into genuine IoT
devices and assaults may be replicated. The more assaults the
model is trained on, the more it will be able to generalize to
new forms of data. Filling up these research voids will help
safeguard the integrity of data gathered from IloT devices in
addition to enhancing cyber security.
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