IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 28 January 2024, accepted 22 February 2024, date of publication 1 March 2024, date of current version 19 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3372388

== RESEARCH ARTICLE

SHC: 8-bit Compact and Efficient S-Box Structure
for Lightweight Cryptography

SUNIL KUMAR"“"2, DILIP KUMAR !, HEMRAJ LAMKUCHE 3, VIJAY SHANKAR SHARMA 2,
HEND KHALID ALKAHTANI 4, (Member, IEEE), MUNA ELSADIG 4, (Member, IEEE),
AND MARIYAM AYSHA BIVI-5

! Department of CSE, National Institute of Technology Jamshedpur, Jamshedpur 303007, India

2Department of Computer and Communication, Manipal University Jaipur, Jaipur 303007, India

3School of Computing Science and Engineering, VIT Bhopal University, Bhopal 466114, India

“Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
3Department of Computer Science, College of Computer Science, King Khalid University, Gregar, Abha 61421, Saudi Arabia

Corresponding author: Muna Elsadig (Memohamedahmed @pnu.edu.sa)

This work was supported by Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, through Researchers Supporting under
Project PNURSP2023R384.

ABSTRACT The AES (Advance Encryption Standard) has made the development of new block ciphers
unnecessary; it is now the de facto standard for most uses of block ciphers. However, the AES is still not
well-suited for very limited contexts like RFID (Radio-Frequency Identification) tags and WSN(Wireless
Sensor Networks), despite recent implementation advancements. In this study, we present SHC (Simple
Hybrid Cipher), a new block cipher that uses a 64-bit block length and a 128-bit key length. It offers a
hardware implementation that efficiently uses limited resources, making it ideal for use as a sensor in a WSN
or an RFID tag. The core function of SHC depends on S-Box-based, composite field arithmetic technology,
as it consumes relatively low cost on hardware implementation while still providing sufficient security as
a solid encryption algorithm. The hardware implementation of SHC-64 requires 949 LUTs; it generates a
maximum operating frequency of 515.995 MHz on the Xilinx-powered Artix-7 Field Programmable Gate
Array (FPGA) development board. At the same time, the National Institute of Standards and Technology
(NIST) recommended standard algorithm AES consumes 3645 LUTs and generates a maximum operating
frequency of 277.369 MHz. The SHC-64 cipher also shows resistance against known cryptanalytics attacks.

INDEX TERMS AES, SHC, FPGA, block cipher, LU decomposition, cryptanalytic attack, hardware
implementation.

I. INTRODUCTION instead of with less implementation cost. Under challenging

We use S- boxes in block cipher with the best cryptographic
characteristics and economical hardware design. The S boxes,
which work on 4-bit words, may have with smaller decreased
size of variables which expands the optimum differential
probability values together with linear correlation. In such
cases, several turns are necessary to obtain a similar
resistance to differential with linear attacks. In another
way, building a lightweight cryptic cipher includes using
a large S box, working with 8 bits just as an AES,

The associate editor coordinating the review of this manuscript and

approving it for publication was Jun Wang

problems, we can efficiently use S-Box, which uses fewer
resources and has high safety value. But, for some mannered
environments, the overall cost may be increased. Therefore,
it is necessary to make a better S box application with the
objective of successive S boxes adaptable to linear cum
differential attacks. So, with this paper, we will build an
inversion-dependent S box that will be easier to implement
in hardware than an AES S box with the same cryptographic
properties.

Mathematical functions over GF(2"") can be thought of as
the S-box, and it plays a crucial role in both the Substitution
Permutation Network (SPN) and the Feistel structures (2™).

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

39430

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-1953-6273
https://orcid.org/0000-0003-2834-6479
https://orcid.org/0000-0002-8354-6898
https://orcid.org/0000-0002-3493-6574
https://orcid.org/0000-0001-7507-5267
https://orcid.org/0000-0003-1051-6804
https://orcid.org/0000-0003-4408-9441
https://orcid.org/0000-0003-1911-4676

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

An inversion of GF (2%) and affine transformations of
GF(2™) are used by AES, CLEFIA, and Camellia, for
example. The S-box circuits are critical to the hardware
performance of these ciphers. There is a tremendous demand
for lightweight S-box implementations because IoT devices
are getting mainstream. IoT devices are generally resource-
constrained. The subject of S-box hardware design is well-
known. This is the simplest hardware version of the 8-bit
S-box, but it takes up a lot of room. In light of these
concerns, we must look into constructing an S-box using
only logic gates, paying particular attention to the critical
path delay and the overall area required. Cipher hardware
and essential path time can be blocked by S-boxes, which
have a considerable impact. Consequently, the S-efficient
box’s structure is critical to deciding the implementation’s
performance.

Lightweight block ciphers, for example, are designed to
be implemented on ever-smaller devices. This goal can be
achieved by developing algorithms that can only be used on
a small number of devices at any given time. The use of
cryptographic algorithms to secure cryptosystem data while
requiring less hardware has been proposed [1], [2] In block
ciphers like Noekeon, PRESENT, CLEFIA, block, AES
[3], Camellia [4], and PRINCE, the substitution box is the
most common and sophisticated sub-block (Xbox). CLEFIA
and Camellia are two examples of block ciphers that,
in addition to Halka and SMS4, can use the recommended
S-box. It can also be used for future lightweight block
ciphers. There are two main processes in this suggested
S-box computation: field inversion and affine transformation.
Nonlinearity, Differential approximation probability (DAP),
The CMOS technologies at 180 nm and 65 nm make it
possible to achieve critical path latency and area consumption
for the structures. (Critical path latency). Hardware resources,
temporal features, and security attributes are all adequate in
the suggested system compared to the alternatives.

The Simple Hybrid Cipher (SHC) is expertly designed
for environments with constrained resources, such as RFID
tags and Wireless Sensor Networks (WSN), by utilizing a
64-bit block length and a 128-bit key length for optimal
balance between security and performance. Unlike AES,
which requires significant computational resources and
power, SHC’s efficient use of hardware, demonstrated by
its implementation requiring only 949 Look-Up Tables
(LUTs) compared to AES’s 3645 LUTs, ensures minimal
energy consumption and maximizes operating frequency,
making it ideal for low-power devices. The core innova-
tion lies in its S-Box design, employing composite field
arithmetic for cost-effective hardware implementation while
maintaining strong resistance against cryptanalytic attacks.
This tailored approach addresses the challenges of AES
in limited contexts by significantly reducing the hardware
footprint and operational costs, ensuring SHC’s suitability for
securing next-generation IoT devices within these restricted
environments.

VOLUME 12, 2024

II. LITERATURE REVIEW

The size of the data stored on a computer, the amount
of power consumed by the device, and the device’s price
all need to be reduced, and an encryption technique is
essential for this. such as electricity consumption, chip
size, memory use, etc. While they are lightweight, lack
of appropriate protection is one of the foremost issues
behind their discard. However, several algorithms already
adopt and applied in various areas of use, along with
PRESENT [5], CLEFIA [6], KATAN/KTAANTAN [7],
LE DED (light-encryption device), PHOTON [8], PICCOLO
[9], PRINCE [10], SPONGENT [11], SIMON/ SPECK [12],
LEA (low-speed encryption), PRIDE [13], TEA (minor
encryption algorithm) (Wheeler and Needham 1994). This
section summarizes the majority of modern lightweight block
ciphers.

SEN (Feistel Network Substitution-Permutation) encoding
method, both SPN structures and Feistel network structures,
has been implemented (FN) [14]. Their device consisted
of a 64-bit input block and a 96-bit key longitude, which
were used by the rear 32-bit Key and the other 64-bit
critical extension and round encryption as a control signal.
Each 32-bit control signal performs a single round operation
for key expansion, encryption, and decryption in the two
structures’ operational mode (SPN/FN). [15]. A key basic
schedule was implemented without changing the key status,
resulting in the need for smaller spaces for hardware deploy-
ment. Various round functions have been reprogrammed
to make it possible to use the same small set of round
keys repeatedly. Researchers [16], [17] created a lightweight
block cipher algorithm based LiCli, including 31 consecutive
rounds and four lightweight S-boxes. It supports 64-bit
plaintext and 128-bit key length information. LiC used
1153 equivalent gate area (GE), 1944 storage bytes, and
30 mW power [18]. The advanced feature of SPN-based
lightweight cryptography has been given the name BORON.
It served a plaintext block that was 64 bits in size and had an
input size of 128 or 80 bits. In addition to that, it has resistance
against linear and differential assaults.

A 128-bit 1939 GE key and an 80-bit 1626 GE key are
required with the BORON software and hardware platform.
Reference [19] made several changes to the PRESENT design
methodology and suggested an enhanced GIFT SPN block
chip. PRESENT S-Box, which incorporated bit permutation
with the DDT / S-Box Estimation Table, was utilized in place
of a previous S-Box that was far smaller and more effective
(LAT). This method proposed a GIFT-64 and a GIFT-128
with 28 and 40 rounds, each with a 128-bit steady of the key
size. The scientists have implemented the 64-bit QTL block
cipher algorithm to encrypt SPN and Feistel structures [20].
There were 64-bit and 128-bit key lengths. They decrypt
using the same process as encryption but in the opposite order.
Their solution didn’t use key scheduling to reduce memory
and power usage. The QTL hardware design uses 1025.52 and
1206.52 GE for 64-bit and 128-bit keys, respectively. QTL

39431

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

isn’t immune to statistical assaults on block ciphers. This is
the method’s biggest drawback [21], [22].

The plaintext and keys for ‘RECTANGLE’ are 80 and
128 bits. 80-bit main was 74.31 w and 1600 GEs. The
128-bit key mode used 2064 GEs and 72.15 w. Benefits
include hardware-friendly architecture and faster develop-
ment. Another group proposed adding an AKF small-block
processor to the standard Feistel chip [23], [24]. Authors
for AKF reintroduced ITUbee lightweight block cipher
with an 80-bit block size and an 80-bit security key [25].
ITUBEE employed 20 rounds and some necessary whitening
layers to make the game more secure. ITUBEE was
designed to resist the significant attack that corresponded
to it [26]. Combining SIMON and SPECK’s advantages
led to the SIMECK (SIMECK 32/64, SIMECK 48/96, and
SIMECK 64/128) families (2015). Both CMOS 130 nm
and 65 nm hardware were used. Random byte and bit-flip
failure attacks can compromise SIMECK [27], [28]. The
LED technique was given some help by a symmetric
SPN-type block cipher proposed in Input is 64 bits, and
keys can be either 64 bits (LED-64) or 128 bits (LED-128).
Every three iterations, the LED used the same encryption
method.

The author discusses several different S-boxes. Employs
a cyclic group denoted by the symbol C255 to construct
the proposed S-box. One way to build an S-box is to use
the Box—Muller transforms in conjunction with polarization
and the method for the central limit. It is proposed that the
S-box be built using the bee waggle dance. An innovative
new S-box approach was created, “‘projective linear groups
on the projective line and triangular permutation groups”.
The author suggests a chaotic map and artificial bee
colony optimization to create an S-box. In this way, the
straightforward nature of the S-box approach to building is
preserved.

Equal attention is given to both Feistel and MISTY
structures in equilibrium. In we locate non-involutive 4-bit
S-boxes, while in we locate involutive 4-bit S-boxes, both of
which have an optimal bit-slice representation. The critical
path delay for this 4-bit S-box is 7TX + 4TA, where TX and
TA are the time delays of a 2-input AND gate and 2-input
XOR gate, respectively. New tower fields are proposed to
reduce the size of the AES combined S-box/inverse S-box
design, which is then optimized for this new field and
investigated the possibility of a more compact S-box. There
is now the smallest AES S-box design available. The AES
S-best-known box’s implementation was given in two works.
Although the composite field is employed it is the tower field
that is taken into account over the more general framework of
F((2%)%) [29].

These works shift all linear operations from the input
mappings to the output mappings of an isomorphic circuit.
There have been numerous proposals for S-box circuits that
are either more compact, quicker, or energy efficient than
S-box. Despite its name, the S-box is not built for speed.
Accordingly, high-velocity S-box layouts are provided. The

39432

paper proposes a hybrid method using polynomial and normal
bases. With the MB, the inversion circuit’s Area Delay can
be reduced. Each PB, NB, and MB base represents an m-bit
element of F(2") [30]

Furthermore, each member of F(2™) can be represented in
two independent representations using n (> m) bits. There
exists an irreducible modular polynomial of degree m for
non-redundant representations, while for redundant words,
a modular polynomial of degree n can be reduced. Therefore,
there is a larger pool of modular polynomials to choose from
in redundant representations.

IIl. METHODOLOGY AND DESIGN OF SHC BLOCK CIPHER
In our study, the Simple Hybrid Cipher (SHC) employs
S-Box-based Composite Field Arithmetic (CFA) technology,
markedly enhancing the hardware efficiency of cryptographic
processes while maintaining robust security for the encryp-
tion algorithm. This approach is particularly beneficial in
constrained environments, such as RFID tags and Wireless
Sensor Networks (WSN), where computational and power
resources are limited. The use of CFA for the S-Box
design in SHC enables a reduction in the hardware footprint
by simplifying the complexity of the operations required
for encryption and decryption processes. This is achieved
through a strategic decomposition of algebraic operations
into smaller, more manageable parts, allowing for effi-
cient implementation on hardware with limited capabilities.
By doing so, SHC can be implemented with a significantly
lower number of Look-Up Tables (LUTs) compared to
traditional algorithms like AES, which directly translates to
reduced power consumption and faster processing times—
critical factors in the aforementioned applications. Moreover,
the security of SHC is not compromised for the sake of
efficiency. The design choices surrounding the S-Box and
the implementation of composite field arithmetic ensure that
SHC retains resistance against common cryptanalytic attacks,
such as differential and linear cryptanalysis. The optimization
of the S-Box through CFA allows for the maintenance of high
nonlinearity and low differential uniformity, which are key
indicators of a cipher’s ability to resist cryptanalytic attacks.

A. DESIGN OF FEISTEL STRUCTURE

The 64-bit plaintext is fed into the suggested Feistel structure.
After that, it splits the input into two 32-bit portions. The XL
is made up of the leading 32 bits, while the XR is made up of
the leading 32 bits to the right. There are a total of fourteen
rounds in the structure. A different subkey from the P-array
is utilized in every round.

Figure 1 represents the Feistel structure of the algorithm.
At the start of the i”* round, XL is XORed with an i
subkey, i.e., Pi, and the result is stored in XL. After that, the
F-function takes this XL value as an argument. After that,
we XOR the F-output functions with XR, feed it into the S-
function, and then XOR it with XL. The next round is fed the
resultant XL, which is subsequently exchanged for XR. When
14 rounds have passed, the undo swap switches XR and XL.

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

PLAINTEXT g4 gt

{St Rnund}
{2"" Raund} XOR

11th
More round

{4‘" Round}
{Swappmg}

XOR

CIPHERTEXT g4 gt

FIGURE 1. Proposed design of Feistel structure for SHC-64.

The XR and XL values are then XORed with the 15,16,
17" and 18™ rounds using the key whitening subkey. For
the 64-bit result, the 32-bit XL and XR numbers are added
together. Decryption is identical to encryption, except that the
key schedule is inverted.

B. LU DECOMPOSITION TECHNIQUE

In linear algebra, the LU Decomposition is the product of
a lower and upper triangular matrix. There may also be a
permutation matrix in this product. For solving a set of linear
equations, we can compare the LU decomposition method
to the matrix form of the Gaussian elimination method.
LU decomposition technique takes a group of plaintext char-
acters as input (say m) and substitutes ciphertext characters
for them. The idea here is to take linear combinations of
all the characters in one plaintext element. Several different
varieties will be m. This will produce an (mxn) constant
matrix S. LU decomposition method is used to generate
the matrix containing keys, i.e., X=LU and g.c.d((det X)
mod ¢, q) =1. The matrix containing the constant is then

VOLUME 12, 2024

calculated using the formulae K=XP —K =LUP. So, for
the encryption process, the cipher (C) can be calculated
as LC=K=— C=L-1K, and in the decryption process, the
plaintext (P) can be found using UP = C = P=U-1K.

C. LOW-COST S-BOX IMPLEMENTATION
A detailed explanation of the low-cost S-Box implementation
is given below in several sections like 1, 2, and 3

1) Cryptographic characteristics of S- S-boxes: In
different block ciphers, the S-box has its best use as
a component. The S-box layer provides the foundation
for the implementation cost, which includes area and
CPD. To get an optimal result, we must minimize the
cost of area and timing property of S- the box. In this
paragraph, we will present an efficient optimization of
area x delay to get 8- a bit S- box dependent upon
inversion operation with less area and small CPD. An S
box uses n-bit numbers as i/p and changes them into
m-bit numbers o/p, where n and m may differ [31].
We can use a lookup table to implement the n x m
S box with 2n words of m- bits. We can describe an
S-box as a linear mapping from the fixed field F2n to
the fixed area F2. A m x n S box can be defined as a
vectorial Boolean function F: F2n We use differential
uniformity analysis, algebraic degree, nonlinearity, and
differential uniformity to check the strength of S boxes.
In the future, we will present precise safety parameters
that will be used to evaluate the security and safety of
S boxes.

2) The cryptographic architecture of the low-cost
8- bit S box: So, in this work, we have used mxn
S-Box as better hardware and time complex y the
implementation of the proposed S-Box consumes low
hardware cost for affine transformation and systematic
Galois field inversion to minimize logic gates, a lookup
table (LUT), and resource sharing is used to construct
multiplication over GF (2*) in the inversion circuit. The
fundamental inversion process over GF (2%) equality is
optimally revised. The proposed architecture is divided
into two parts. The first part has been improved to
minimize area and delay. The other part contains
two addition operations, one multiplication operation,
one field squaring operation, and one multiplication
operation using constant (A), all performed over GF
(2*). The integrated block of the initial part of S-Box
is linked to the form of a cohesive framework. As a
result of the implementation of CMOS technology
demonstrated in terms of the overall performance, the
proposed S-box and the S-box over inversion are much
faster than the conventional composite field arithmetic
S-box over the Galois field. Most of the well-known
S-boxes have less area, delay, and throughput. The
proposed work of S-box provides high security and
consumes little hardware cost in implementing S-box
over FPGA devices which is a healthy option for block
cipher algorithms.

39433

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

3) Design of low-cost 8- bit S-Box We have used mxn
S-Box with the integrated Boolean function of 8-bit
S-box where F:F(2") is made by placing all elements
with the inverse values and using it with an affine
transformation.

Where m is the number of input bits, and n is
the number of output bits. The values of m-bit and
n-bit are different. Now for LUT implementation, the
capacity of m and n varies. m holds the number
of bits of the address, whereas n has the width of
words depending on the used bit. The value of m
and n are used in S-box implementation. In this
research, we have used optimized composite field
arithmetic operation over GF (2*)? to implement
the field inversion. Mixed-field arithmetic is used
in the implementation of the proposed S-box to
reduce the amount of hardware resources needed
to calculate the S-box. The following two-step pro-
cedure is used to lower the cost of the S-box
operation:

Step 1: Over the field, compute the field inversion over
GF (22

Step 2: Inverting the output using a low area-efficient
affine transformation operation.

Let us take the arbitrary element in the field GF (242
mxn S box function GF (2m), where m is the no
of a bit of address — GF (2%)? is used to implement
field inversion. Thus, to reduce the cost of hardware
implementation, we have specifically used below:

1) Compute the field inversion over GF (24?2

2) Applying an affine transformation to the output of the
inversion (as shown in Figure 3)

Let us take m; x+m; to be an arbitrary element in
GF (2%2, Where mi—(m;3, m;2,m; 1, m;0), the
most significant bit is in the 8-bit input and m; =
(mj 3, mj2,mj1, m;0), the least significant bit in the
8-bit input, therefore m;, mj € GF(2*) and m;, m; € GF(2)
The Galois field GF (24)2 is constructed as a field extension
over the Galois field GF (2*) by using the irreducible
polynomial f(x)=x2+Kx+Y where K, Y GF (2*). now the
inversion can be calculated by inversion of n;x +n; = (m;x +
mj)_1 where n;, n; belongs to GF(2*). The above Equation
can be generated by using extended Euclidian algorithms as
follows:

(m;x + I‘Ilj)f1 =m; (m,~2Y + m,~mjK+mj2)*1 X + (m; +
m;K) (m?;Y+m;m;K + m?))~!

Choosing K=1
—>
Y=A (mx+ mj)_l
= m,-(mZiA +b (m,- + mj))_lx
+ (mj 4 mi)m3 &+ my(m; + m;)) ™!
= miD~ " x 4 (mj + m;)D™!
where, D = (m; + mj) m; + Am?, To calculate the output

bit, we have n; = m;D~!, and nj = (mj + m;)D~!. Thus,

39434

the irreducible polynomials used in the optimized composite
field arithmetic operation in the Galois field consist of
GF(2®)¢ — GF(2%? using F(x) = x* + x + 1, and
GF(2%) — GF(2*)> f(x) = x> + x + ¢ and GF(2*)GF(2*)?
f(x) = x% + x + A Where the value of ¢ and A are chosen in
such a way as to minimize the area consumption in hardware
architecture, therefore we have to use the constant value of ¢
and X to get the lowest area utilization are 10, and (1100),,
i.e. 2y and 12y respectively.

Figure 2 depicts the proposed architecture of an §-bit
S-box, an 8-bit inverse S-box (S—box’l), and a coupled
S-box and S-box 1 (S-box/S-box~1). A shared inversion block
is shared by S-box/S-box~!" the integrated S-box/S-box~!.
We have proposed a transformation that can be optimized
with hardware implementation. Sub-blocks’ multiplication
and their inversion squaring must be defined over GF (29
with polynomial f(x) = x> + x + 1. Further, we will have
to implement optimization with the design of the S box by
reducing the delay on the critical path. Therefore, the method
depends on optimizing a few sub-blocks, which may combine
the square of the sub-block and multiply with A. Thus, the
gate count and delay of the critical path will be reduced.
Hence, we can find the advantage of the S box as having
the most minor consumption and delay of time will also
be low.

The operation of the S box is computed by inverting
the function GF (2*) and transformation (AT). The first
inverse transformation (AT-1) is initiated for the S box using
GF (2%) The affine transformation, the initial flip operation
over in GF (2%), is accomplished in the S-box operation
immediately. The inversion is also performed following the
inverse affine transformation in the S-box (S-box1) inverse.
The hardware configuration of the field elements and the
affine transformation greatly impact the S-box’s complexity.
The Equation for affine transformation is AT(A) = B, where
B = MxA® C; is computed, where A, M, C; is given
below:

M =[8 x §]

T a4] F100010017 [5] [17
as 11000100 be 0

as 01100010 bs 0

as | _.|00110001 by 0

Al w 1=B 10011000 % 55 |®] 0
a 01001100 by 0

ar 00100110 by 1
| w0 | 100010011 | b0 | |0

Here A = (ao, az as a4, as, ae, a7) B = (bo, bz’ b3, b4,
bs, be, b7), C; = (10000010) m and n is 8x8 matrix. The
inverse S-Box used inversion is performed after the inverse
of affine transformation (AT’I), where AT! is calculated
by computing AT~!(B). where B = NxA@® C,. Where
B is computed by using N, A, and constant C, as given

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

8 bit
8 bit
32 bit . 1 AT 32 bit
Input AT Qutput
8 bit]
8 bit

FIGURE 2. Design of low-cost 8- bit S-Box.

below:
T011000107] [ar] [17]
00110001 a6 0
10011100 as 1
01001110 a 0
—1] _ 4
[AT]‘N 00100010 | | a3 |®] 1
00010001 a 1
10001101 a 1
(11000000 | a0 | | 1]

Here B is an 8 x8 matrix, and constant C; is (10101111).
Below is the formula for calculating affine transformation
(AT) B = (b7, b6, b5, b4, b3, bz, bl, bo), similarly for
computing the inverse affine transformation (AT™!) is A =
(a7, ae, as, a4, as, ap, aj, ag). The transformation of
information between affine transformation and inverse affine
transformation is given below in the following equations:

ag = (b7 ® b3 ®bp) by = (ay ® a; & ag)
a; = (b7 ®bs ®b2)b; = (as B a ®ay)
ay =(bgy ®b; ®by)'by = (a D a3 D ap)
a3 = (bs ®by ®by)b3 = (a7 ® ag B a3)
ay = (b ® b3 ®by)'by = (as ® ag @ ap)
as = (b7 ® by ® by)'bs = (ag ® as ® ay)
ag = (bs ® by ® bg)'bs = (a7 ® a¢ ® a2)
a7 = (bs @ bs ® by)'by = (a7 ® a3 & ap)

VOLUME 12, 2024

The architecture of the proposed affine transformation
AT(A) and inverse affine transformation AT~!(B) requires
several two-input XOR gates and two-input XNOR gates
to implement on the hardware. The critical path delay of
the transformation function, like affine transformation AT(A)
and inverse affine transformation AT’l(B), is = 2 times Tk,
where x is the XOR gate delay.

1) Multiplication Inversion using Galois Field:

The multiplication over Galois field GF (24) is based
on primitive polynomial f(x) where the function f(x) is
described as follows: f(x) = x—4 + x+1. The overall
structure of multiplication in the inversion is as two
4-bit inputs: Al and A2. The critical path delay in two
inputs, Al and A2, and the multiplication output is 2Tx
and 3Tx, respectively, where Tx signifies the time delay
of two 4-bit input XOR gates, respectively, as shown
in Figure 4. The structure uses 3-Quad bit field
multiplication in the inversion system. So, to reduce
the no of XOR gates, we use two multiplications with
single operands. The input is supplied to the input A2
of field multiplication in the inversion system.

Thus, to minimize the critical path delay, we have
used a similar multiplication supplied to the input
Al of field multiplication in the inversion system.
The overall structure uses two multiplications with
primitive polynomial f(x)., where f(x) = x—4 + x+1.
Thus, the hardware resources needed for two distinct

39435

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

2)

39436

y—

L
-

W

——J—
L——
Yo l—
F o

l———

r—yr—yr—J

——s

VIVIV

WUy
Wy

iy
i

—)s
pr=Jr—

s

[‘
-
- g
N
-5
-4

|
L T

o
>—

FIGURE 3. Affline transformation for SHC-64.

multiplications are two input Nand Gate and two
input XOR Gate. However, the intended analytic of
two multiplication required fewer hardware resources;
hence less XOR gate and Nand gate are minimized in
our proposed systems.

Input A,
A=2T,

Multiplication using primitive
polynomial

NAND Gate Block

XOR Gate Block

Output
FIGURE 4. Optimized gate usage in SHC-64.

Optimized architecture of low-cost 8-bit S-Box

We have deployed hardware acceleration to the
improved 8-bit S-box. In the S-Box, you can find a
constant, a multiplication block that combines squaring
and multiplication, and two addition operations(}).
The S-box’s internal structure combines to form a
coherent framework where we have used two-block
multiplication by the constant (1). The execution of
field squaring is executed over Galois field GF (2%).
It is specifically used for hardware optimization only.
The area squaring is implemented using 4-bit binary
numbers, which are the elements of Galois field GF

4-bit P (Aq)}—od]

XOR
/P 8-bit
4-bit IIP (Ag)

(24), along with primitive polynomial f(x) where f(x) =
x—4 + x+1.

Calculating using f(x)

GF(2%2 Xxh

multiplication

FIGURE 5. Optimized architecture of low-cost 8-bit S-Box.

To maximize the performance of the below S-box
structure mentioned in Figure 5, the overall process
initiated with 8-bit input is further divided into pairs
of 4-bit inputs. Now we compute the value by using
the XOR gate and then performing multiplication over
we have Galois field GF (2*) along with primitive
polynomial f(x) where f(x) = x—4 + x+1. We have
also used a pair of block multiplication using A
(a constant variable as discussed above). The above
operation’s output is again evaluated using the XOR
gate over Galois field GF (2%).

Thus, we can optimize the hardware implementation of
our S-box structure which will help us achieve higher
performance. Assuming that the critical path delay is
evaluated to 2Tx, nearly 4 logic gates are needed to
perform both squaring and multiplication operations
over constant A. The 4-bit output in Figure 6. above
requires no logic gates following refinement in the
unification of the S-box structure. As a result, our new

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

design s-box structure requires less hardware footprint
in implementation and further improves critical path
delay in the s-box structure.

I—. b3
aq

bq

4bitIP ag 4-bit O

l ¢
& .

a; s
: \l—- by
a44—
FIGURE 6. Inversion function over galois field.
3) One nibble inversion function in GF (24): The

multiplicative inversion can be executed by using any
of the techniques given below:

« The multiplicative inverse is calculated by mathematical
inversion in the Galois field GF (2%), similar to the XOR
logic gate.

o The multiplicative inverse can also be implemented
using lookup tables in hardware descriptive languages
like VHDL or Verilog.

o The above inversion equation can also be deduced by
using electronic gates like AND, OR and

« NOT gate excluding XOR gate in Galois field GF (2%).

vvvvvvvvv ble

1 R BB

[” W N
O O
C |
O W” m
C O

|
/MMIDILLI_IMM

FIGURE 7. Inversion function over galois field.

Programmable
Interconnections

The primitive polynomial f(x) where f(x) = x~* + x+1.
Uses A = {1100}, in our implementation. From Figure 7,
we state that the overall performance of multiplicative
inversion consumes fewer logic bits and optimizes the critical
path delay, further improving hardware area footprint and
hardware efficiency by using the composite field arithmetic
operation over the Galois field GF 2.

IV. FPGA IMPLEMENTATION OF SHC BLOCK CIPHER

A. VHDL IMPLEMENTATION OF SHC BLOCK CIPHER

Any verified issue can be solved by an FPGA. FPGAs use
Xilinx soft microprocessors due to their parallel architecture
and gate equivalent efficiency. Digital controllers with
excellent performance and cheap cost in the footprint area
are required for commercial applications. VLSI technology
enables high-performance, low-cost architecture. A unique
hardware description language (HDL), such as Verilog
HDL or VHDL, was developed to describe digital circuits.
Developers may quickly test and model their digital circuit

VOLUME 12, 2024

designs using the simulators for Verilog® and VHDL.
Hardware implementations include FPGAs, ASICs, and
GPUs. Because of FPGA’s low cost and programmability,
we chose to use it for the hardware implementation of our
method. To facilitate the rapid rollout of WSN-compatible
lightweight cryptography, RFID tags, aggregation networks,
the Internet of Things, and pervasive computing, FPGA
are almost the perfect runners. Internal memory expansion,
such as Block RAM in Xilinx devices or system blocks
in Artix-7 devices, is when a device gets internal memory.
FPGA has many advantages since it can quickly build lookup
tables and conversion functions on the device’s limited RAM.
We used a unique FPGA board with Digilent Nexys DDR4
Artix 7 power to implement our SHC algorithm. The timing
analysis, behavioral simulation, and Verilog implementation
are all synthesized using Xilinx Vivado 2022.3. The SHC
algorithm is broken into many modules to ensure portability
and coded using the Verilog computer language.

B. EFFICIENT HLS IMPLEMENTATION USING XILINX
VIVADO

The programmable input-output, programmable logic, and
programmable connectivity of these blocks within a single
unit make up the FPGA architecture (see Figure 8. A data
stream is directly customized into the design of an FPGA
device. The lookup tables (LUTSs), registers, slices, and
arithmetic hardware, which include digital signal processing
(DSP) blocks, are all integrated within the programmable gate
array. LUTSs can be configured to carry out logic operations
very quickly. It can convert a bitwise AND action into a
bitwise XOR operation. By repeatedly creating comparable
computing hardware in an FPGA, parallelism is possible. The
FPGA device carries out the task without a CPU because its
architecture serves as a circuit in and of itself.

Additionally, we can set up the system to work effectively
for both single-core and multi-core processing. The entire
FPGA is stored in volatile memory (RAM or random-access
memory), where the program remains in memory as long
as the device is powered on. They should therefore be
created each time a control is offered. When an FPGA
device is being programmed, a design entry is used, in which
the source code for a program is written in either Verilog
programming or hardware description language (HDL). The
code is then translated into device netlist format after
being programmed. The entire circuit, including logical
components, is represented in the netlist format. The design
synthesis phase is the name of this conversion phase. Native
Generic Circuit (NGC) files are created during synthesis
and sent to the design implementation phase for additional
processing.

Using an NGC file as an input, the design implementation
process performs serial operations, including translation,
map, and place and route. The translate function converts the
design into NGD and maps the input netlists from the NGC
file (native generic database). Physical pins on the FPGA
board have been assigned to each available port. The user

39437

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

constraints (UCF) file contains the translation phase’s output.
All subblocks are mapped to combinational logic blocks in
the mapping phase, which follows the design implementation
process (CLB). Place and route is the final stage of design
implementation, during which every logic block is precisely
mapped following the user-constrained file (UCF). Once the
steps above have been completed, a connection wire is used to
load a routed design into an FPGA device. The implemented
method needs to be converted into a format that the FPGA
device can support. BITGEN is a tool used to create a BIT
file that is configured with an FPGA device to convert an
implemented design into an FPGA-compatible format.

C. TRANSLATION DESIGN AND OPTIMIZATION

This research implemented the SHC cryptographic algorithm
using a Digilent Nexys4 DDR FPGA board. The Nexys4
DDR board is a cutting-edge Artix-7TM Field Programmable
Gate Array (FPGA) from Xilinx® powered digital circuit
creation platform that is ready to use. The high-capacity
FPGA board for the Artix-7 is powered by Xilinx and has
the part number XC7A100T-1CSG324C. Its other features
are significant external memories, USB ports, Ethernet,
VGA connectors, some input switches, 16 LEDs, 7 segment
LEDs, and numerous additional resource ports. Applications
ranging from straightforward combinational circuits to potent
embedded processors can be run on the Digilent Nexys4

Nexys4 DDR Artix-7 FPGA Board powered by Digilent

Project Family Artix-7

Part No. XC7A100TCSG324-1

Process Nodes 28 nm

Target Language HDL / Verilog

Development tool Vivado® 2022.2

Device Name: Digilent Nexys4 DDR

#Slices 15,850 logic slices
6-input LUT, 8 Flip-flops

RAM 4,860 Kbits

Clock 6 Clock tiles, each with a phase-locked
loop (PLL)

DSP slices 240

Slice LUTs 63,400

Slice Registers 126800

F7 Muxes 31700

F8 Muxes 15850

Block RAM tile 135

Bonded IOB 210

PHY_CONTROL 6

Phaser_Ref 6

In/Out FIFO 24/24

IBUFDS 202

Delay 300

10_LOGIC 210

Internal Clock | 450 MHz

Speed

DDR chip. The Digilent Nexys4 DDR FPGA device is
manufactured with numerous integral peripherals, including
a temperature sensor, digital microphone, accelerometer,
speaker amplifier, and multiple input-output devices, which
enables the Digilent Nexys4 DDR FPGA device to be used
for a wide range of projects without requiring any additional
hardware (Digilentlnc, 2014). High-performance logic is
installed on the Artix-7 XC7A100TCSG324-1 FPGA device

39438

powered by Xilinx to maximize performance. It provides a
lot of capacity for improved project development as well. The
table below lists the key characteristics of the Digilent Nexys4
DDR Artix-7.

D. OPTIMIZED LOGIC IMPLEMENTATION

The Digilent Nexys4 DDR Artix-7 FPGA board is compatible
with most advanced development tools, including Xilinx ISE
and High-performance development tool Xilinx™ Vivado®
2022.2 edition, includes ChipScope™ for better device
management. This FPGA development board is empowered
with 128 MiB DDR2 SDRAM memory. It also delivers
automatic overcurrent and overvoltage protection on the
input power supply. This device is also plugged in with
the list of manufactured ports and peripherals, including
16 user switches, a Micro SD card connector, 16 user LEDs,
a 12-bit VGA output, Two 4-digit 7-seg display, PWM
audio outputs, a USB-UART Bridge, PDM microphone, Two
tri-color LEDs, 3-axis accelerometer, Temperature sensor,
Digilent USB-JTAG port, 10/100 Ethernet, USB HID Host,
128MiB DDR2, Five pushbuttons, Serial Flash, JTAG port for
external cable, Four PMOD ports, FPGA configuration reset
button, PMOD for XADC signals, CPU reset button (for soft
cores), and Programming mode jumper.

E. DEVICE PROGRAMMING AND TESTING

Our SHC processor and hardware implementation of the
cryptographic algorithm is created using the Xilinx Vivado
tool, which Xilinx Developer offers. The updated Graphical
User Interface of Xilinx Vivado® 2022.3 is available
(GUI). The UltraFast Create Methodology, integrated into
Vivado 2022, enables developers to design projects at a
breakneck speed, enhancing the design cycle and maximizing
productivity. The simplest way to develop a solution using
hardware description language or Verilog programming is
with Vivado, which compiles source code to guarantee logical
programming efficiency. One key aspect that draws us from
Xilinx ISE to Vivado is that it has a particular feature to inte-
grate C and C++ applications and automatically transform
them into hardware description language or Verilog on the fly.
Programs written in C, C++, and Synthetic can be natively
targeted for Xilinx-powered devices using Vivado’s built-in
standard libraries without creating RTL (Resistor-Transistor
Logic). High-level synthesis (HLS) is a feature of Vivado
that guarantees high performance and productivity. In its IDE
(integrated development environment), Xilinx Vivado has
four primary components: the Vivado Simulator, High-Level
Synthesis, IP Integrator, and TCL (Tool command language)
store.

F. BEHAVIORAL SIMULATION

To translate our design logic into a functional project,
implementation in Xilinx Vivado follows a straightforward
procedure. When you start a new project, you are prompted
to enter the working project’s name and location. After that,
you must choose the type of flow and source code file. You

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

Low Power SHC Processor

Compact
S-box

Inverse S-box

SHC memory unit

SHC Encryption module SHC Decryption module

FIGURE 8. Low powered SHC-64 implementation.

can select the type of project you want to build from various
options, including RTL projects, post-synthesis projects, I/O
planning projects, imported projects, and example projects.
The RTL project enables us to execute RTL analysis,
Synthesis implementation, design planning, and process add
programming source code files, design block designs in IP
integrator, and generate IP. The source code file, which allows
for the specification of HDL or Verilog source code files,
netlists, block designs, and IP files, is a crucial component
in designing projects. Finding the Design Constraints File
(SDC or XDC) for Physical and Timing Constraints is the
following stage in the development phase. The development
board we selected for designing our projects is specified
by Vivado in the following method; in this instance,
we chose the Digilent Nexys4 DDR Artix-7 FPGA board.
By creating BITSTREAM using the hardware manager
tool, Vivado transforms our design into a device-supported
format after the synthesis and implementation phases are
complete.

G. FUNCTIONAL SIMULATION

This research aims to construct a low-cost processor for
our SHC cryptographic method. We outline a novel strategy
for implementing the S-box at a reasonable cost utilizing
composite field arithmetic (CFA) technology. The initial
key and S-box settings are utilized during the encryption
procedure.

A pipelined implementation of the compact S-box was
used to achieve parallelism and excellent performance
in key generation. The Field Programmable Gate Array
(FPGA) chip implements the SHC algorithm and its low-cost
processor design. Our method significantly outperformed
current techniques when we compared them. SHC algorithm
hardware was integrated into a Digilent Nexys4 DDR Artix-7
FPGA chip. The SHC algorithm processor’s main module is
depicted in Figure 8. above; these modules are connected via
connections and relations.

H. TIMING SIMULATION

We deployed two Digilent Nexys4 DDR Artix-7 FPGA
devices to test the hardware implementation of the SHC
encryption and decryption algorithm. One of these two
Artix-7 FPGA devices is used for information transmission,

VOLUME 12, 2024

and the other is for information reception. The Universal
Asynchronous Receiver Transmitter (UART) module is used
for information transmission and reception. A full-duplex
asynchronous system that can connect with the physical
ethernet card attached to our Artix-7 FPGA board is provided
by a UART module. The sending and receiving pins are set
up to deliver feedback on the link status and data activity
(Digilentlnc, 2014).

To initiate the connection, the UART module must
be configured with several parameters, including Baud
Rate, Number of Data Bits, Parity Check, Stop Bits, and
Endianness. After conversion, the UART module delivers
digitally encrypted data to embedded hardware or wireless
sensors. The embedded devices or wireless sensors at the
receiving station will receive encrypted data and send it to
the UART module for additional processing. The UART
module’s baud rate generator enables information to be
received and delivered back to the SHC decryption algorithm
for deciphering the original statement given by a sender.
UART sequentially transfers data using bytes of digital
information, enabling error-free data processing. The UART
module will set a flag indicating that new information is
available during the transfer of data from the receiver. It may
also cause a CPU interrupt to request that the host processor
transmit the data it has just received.

Figure 9 shows the suggested SHC algorithm in an exper-
imental configuration for real-time transmission utilizing a
Digilent Nexys4 DDR Artix-7 FPGA board.

In this work, the bit-error-rate (BER) checker, which is
used to examine errors that occurred during the transmission
of information, is initiated by the FPGA platform in the
transmitting block. To start a BER test, the receiving station
also retains data from the transmitter. Information won’t be
decrypted if there is an intertwining event in the data; instead,
an error counter will be increased. To prevent timing errors,
ChipScope is utilized to collect encrypted data as it is being
transmitted at a maximum clock frequency of 100 MHz.
ChipScope is also a logic analyzer to record the programming
logic in VHDL or Verilog coding meticulously. Integrated
Bus Analyzer (IBA) and Integrated Logic Analyzer (ILA)
are used to capture the internal signals and internal buses,
respectively (IBA). To examine the internal movement
created during information transmission and reception and
the programming logic, we employed the 64-bit Xilinx ISE
Design Suite ChipScope. This utility enables us to interact
with numerous Artix-7 FPGA device components.

V. RESULTS AND FINDINGS

A. SIMULATION RESULTS

First, the proposed architecture of the SHC algorithm pow-
ered with a compact S-box was implemented using a Digilent-
powered Artix-7 FPGA development board. The proposed
design is described using the Verilog HDL. The development
system is Xilinx Design tool Vivado 2022 edition. The overall
implementation of our proposed lightweight block cipher

39439

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

Transformer Full wave Rectifier

3|

Voltage Regulator

e

i Healthcare

i &

| Wearable
sensors

,,,,,,,,,,,,,,,,,,,,

1 Display/
i Dashboard
0 Yy
Zigbee
antenna
- - Xbee Pro
I
g3 £
A g5
w S o
=
RF Module
AS M/C
Program

Microcontroller System

FIGURE 9. Proof of concept using SHC-64.

SHC algorithm focuses on the power-constrained device
and embedded systems. For various application situations,
specific requests exist on the usage and implementation
objectives. The section describes the findings and implemen-
tation results of the SHC algorithm for low-cost hardware
implementation using the Artix-7 FPGA development board.
The FPGA execution of a low-cost SHC cryptographic
algorithm module. We have employed SHC-encryption and
SHC-decryption cores. For each, we explored our design
approaches regarding look-up tables (LUTs) for our compact
S-box components embedded with CFA technology. The
SHC method was implemented in hardware, which was used
to generate the experimental results. With the aid of hardware
implementation, the overall logical and structural architecture
can be broken down into smaller, more manageable pieces.
Synthesis and automation on VHDL and RTL are used to
test and verify these components (Register-transfer Level)
automatically. We used VHDL to create a synchronous
digital circuit with data-signal-based logic operations and
information flow across hardware registers. To determine
how well our SHC encryption algorithm runs on low-power
devices, we have implemented it on the Digilent Nexys
Artix-7 FPGA development board.

B. HARDWARE FOOTPRINT AREA OF S-BOX

Our SHC cryptographic implementation has 32 IOBs (Input-
Output Blocks), as shown in Figure 10. The interface of
our SHC algorithm emphatically relies upon the target
application by utilizing extra I/O pins for a parallel key
input. We did not code the key inside the cryptographic
module to minimize the overhead of control logic. SHC
algorithm is an autonomous cryptographic module where
the key is provided remotely. From that point of view, our
hardware implementation decision offers the best adaptability
compared to standard AES, Blowfish, and IDEA symmetric

39440

cryptosystems. The Digilent Nexys4 DDR Artix-7 provides
high compatibility with Xilinx® Vivado® design suite,
which also includes ChipScope™, so our design can be
implemented with no extra cost.

Vv

——— Secret key (63:0)

— Indata (63:0)

Data ready =

———— Data available

— Rest(RST) outdata f—on

FIGURE 10. 1/0 Interface of SHC-64 Cryptosystem.

C. HARDWARE FOOTPRINT AREA OF SHC CIPHER

The entire SHC algorithm control logic is precisely designed
using a finite state machine over starting, intermediate, and
final states, as shown in Figure 11. The operation of the SHC
algorithm begins with resetting the interface to initiate the
first round of the Feistel function with two inputs of the SHC
algorithm, the plaintext of 64-bit and secret key of 64-bit,
which was pre-computed with the help of a compact s-box
and 32-bit p-array, the compact s-box data are read from
pipelined registers. In contrast, the other data is read from
equivalent registers. The SHC uses a 64-bit multiplexer which
selects appropriate input plaintext and corresponding secret
key in the initial round of the Feistel function. D flip flops
are used for SHC-64 bit to synchronize the key schedule’s
output and a round function’s output. The compact S-box
runs parallel with the Feistel function to generate complex
ciphertext in each round. The output of Ist round acts as

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

input to the next round, and it continues till the execution of
14 straight rounds to generate the complete ciphertext. The
key schedule works with the Feistel function for each round
1<j <14

Data available =1

g Ready
4.
done P { \
data ready=1 - 4
Round counter =14

FIGURE 11. Finite state machine for SHC-64 Cryptosystem.

The execution of permutation and substitution of bits are
remarkably clear in hardware, which is simple wiring of
input bits. The non-linear SHC S-box module is implemented
using composite field arithmetic (CFA) technology which
consumes less hardware footprint when compared with
conventional S-box. A parallel pipelined implementation of
the S-box achieves high performance without destroying
extra overhead implementation. The S-box, fueled by CFA,
is the lightweight block cipher’s main strength in the SHC.
An inverter allows us to offer a new H function that operates
at a very high speed. The H function receives the result of the
F function as an input and inverts the 32 bits immediately
to generate new output. The decryption process of the
SHC algorithm is an inverse operation of its encryption
process. The decryption process begins with swapping
extra p array keys. which will continue for 14 rounds to
generate original plaintext information. The low-power SHC
processor was implemented over Artix-7 to handle encryption
and decryption processes along with block-level parallel
execution of compact S-box and inverse S-box which runs
parallel with SHC’s Feistel structure.

The hardware implementation of the SHC cryptosystem
was executed on Artix 'M-7 FPGA development board bear-
ing code number Xilinx® XC7A100TCSG324-1, as shown
in Figure 12.

The hardware implementation of the Simple Hybrid
Cipher (SHC-64) on the Xilinx-powered Artix-7 FPGA
development board demonstrates a remarkable blend of
efficiency and performance, particularly when compared to
the Advanced Encryption Standard (AES) and other block
ciphers. The SHC-64 requires only 949 Look-Up Tables
(LUTs) for its implementation, showcasing a significantly
smaller hardware footprint compared to AES, which is
known to require more extensive resources for similar levels
of security. Furthermore, SHC-64 achieves a maximum
operating frequency of 515.995 MHz, indicating superior
processing speed which is crucial for real-time encryption

VOLUME 12, 2024

tasks in resource-constrained environments such as RFID
tags and Wireless Sensor Networks (WSN).

The simulated experimental results were carried out using
Xilinx Vivado 2022 edition on Microsoft Windows 10 oper-
ating system-powered laptops with 64-bit architecture on
Intel® Processors. Table 1 shows the detailed specification
of the core processor used in this research.

TABLE 1. System specifications used in the implementation of the SHC
cryptosystem.

System Specifications

Processor Name Intel Core i5-10505 Intel Core i7-
11700K

Processor Number | i5-10505 17-11700K

Lithography 14 nm 14 nm

Total Cores 6 8

Total Threads 12 16

Turbo Boost Fre- | 4.60 GHz 4.90 GHz

quency

Processor Base | 3.20 GHz 3.60 GHz

Frequency

Cache 12 MB 16 MB

Bus Speed 8 GT/s 8 GT/s

TDP 65 W 125W

Memory Types DDR4-2666 DDR4-3200

Max Memory | 41.6 GB/s 50 GB/s

Bandwidth

Laptop RAM 12 GB 12 GB

SSD 500 GB 500 GB

Graphics Nvidia Nvidia

The SHC cryptosystem was implemented on the Digilent
Artix-7 FPGA development board and the most potent
experimental board used explicitly for research and devel-
opment projects. The board is manufactured to deliver high
performance. For low-cost cryptosystem implementation, the
board comprises more GPIO (general purpose input-output
pins) to help us connect multiple healthcare sensor devices
to exchange secure communication between sensors and
IoT gateways through the FPGA controller. Table 2 shows
device specifications that allow the cryptographic operation
to perform on the fly because the key can reside in inbuilt
RAM bits of the Artix-7 FPGA board.

Table 3 outlines the hardware performance of our proposed
SHC cryptosystem using an Artix-7 FPGA board. The
performance metrics were achieved after successful synthesis
on Xilinx Vivado 2022 edition. The entire simulation
and hardware programming involves several function exe-
cutions, including post place, post map, and post route
mapping timing report. The development board of the
family Artix-7 FPGA is specifically used to minimize power
consumption and deliver high-end performance with minimal
implementation cost.

The proposed implementation of the SHC cryptosystem
with a compact S-box is enacted using the CFA mechanism.
The pipelined registers of the Artix-7 FPGA device help
us map the substitution box’s arithmetic operations to
execute its operations at a very high speed to gain optimal
performance with minimal LUT consumption. The overall
LUT consumption is less than the standard symmetric cryp-

39441

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

P

L anlohs
g_l'ﬂﬂg-
a7

UEL

£ XILINX.

o100 0 e 1o
é’rl—ll ,-L. '—’t ’-l. ‘:’. l_r'.‘ '-, ,--'

EE'" 1

L7 Long

s Copyrighe 303

FIGURE 12. Digilent Artix-7 FPGA development board for SHC cryptosystem.

tosystem implemented on the Artix-7 FPGA development
board.

D. DEVICE UTILIZATION OF SHC CIPHER

Table 4 illustrates the overall resource utilization achieved
through the hardware implementation of the SHC cryptosys-
tem. The proposed SHC implementation has a hardware
footprint area cost equivalent to 1.49% of the total hardware
resources available on the Artix-7 FPGA development board.
The total slices utilized for logic are 949, which is 1.49% of
the available 63400 LUTs.

E. COMPARATIVE ANALYSIS OF LIGHTWEIGHT CIPHERS

The Xilinx Vivado IDE’s timing analysis of the SHC
cipher allows for simple verification of clocks, constant
clocks, pulse width clocks, unconstrained internal endpoints,
delays, multiple clocks, generated clocks, loops, partial
input delay, partial output delay, latch loops. Table 5 shows
that the IP Integrator is the first step in Xilinx Vivado’s
initialization, simulating, analyzing, synthesizing, analyzing,
and implementing are all steps along the way of creating a
bitstream. To continue the analysis, the generated bit file is
read by specialist software, which then uses it to put a script
file (also a bit file) into the required FPGA hardware. In our
specific circumstance, we generated using Xilinx Vivado
2022 and programmed them into dedicated hardware, i.e.

39442

TABLE 2. Digilent Artix-7 FPGA board specifications.

FPGA Device Specifications

FPGA Board Digilent Artix-7 FPGA
Code Xilinx XC7A100TCSG324-1
1 MSPS On-chip ADC Yes

Logic Cells 101,440

Logic Slices 15,850

DDR?2 (MiB) 128

Flip-flops 65,200

Block RAM (Kbits) 4,860

DSP Slices 240

GTP 6.6Gb/s Transceivers 8

1/0 Pins 300

Distributed RAM 1188

GPIO Yes

XADC Blocks 1

Maximum Temperature 125°C

Programming JTAG, USB FLASH
LEDs (Output) 16

Switches (Input) 16

Artix 7 FPGA development board, using the Digilent Adept

desktop application.

F. PERFORMANCE COMPARISON OF SHC, AES, AND

BLOWFISH CIPHER

The execution of encryption and decryption using the SHC
algorithm was carried out on an Artix-7 FPGA development
board from the Xilinx family bearing the model number
XC7A100TCSG324. The SHC-64 accepts an input of 64 bits,

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

TABLE 3. Performance of SHC cryptosystem using Artix-7 FPGA

development board.

Hardware Profiles Performance metrics
Symmetric Cipher SHC

Architecture LWC

Block Size 64-bit

Key Size 128-bit

Number of Rounds 14

Structure Feistel Network
FPGA Board Digilent Nexys Artix-7
Device Family XC7A100TCSG324
Package Xilinx CGS324
Speed -1

IDE Xilinx Vivado 2022.2
The operated Design Mode | RTL

used

Maximum Operating | 515.995 MHz
Frequency

Number of Slices-M 134

Number of Slice-L 205

Number of LUTSs 949

Number of bonded IOBs 32

Number of GCLKs 2

Latency 28

Throughput 2.362 (Gbps)

Critical Path Delay 1.938 ns

Power Utilization 2.56012 mW
Efficiency(Throughput/Slices) 6.96

TABLE 4. Artix-7 FPGA device utilization for SHC-64.

Constraints Available Used Percentage
Slices LUTs 63400 949 1.49 %

F7 MUX 31700 81 0.25 %

F8 MUX 15850 19 0.11 %
Bonded IOB 210 32 15.24 %
Slices-L 15850 205 1.29 %
Slices-M 15850 134 0.84 %

and out of those 64 bits, 16 bits (LSB bits) were supplied by
using the 16 input switches available on the FPGA device.
The ON state of the switch is analogous to the binary
number 1, while the OFF state of the switch is analogous to
the binary number 0. Similarly, the 16-bit least significant bit
of the 64-bit encrypted output in binary form was displayed
on 16 user LEDs pins to display the 16-bit LSB as ciphertext.
LEDs light up on the FPGA board to indicate the state of the
decryption bits, shown in Figures 13 and 14 below.

G. TIMING ANALYSIS OF SHC CIPHER

The SHC algorithm is best described by its key properties,
including its incredibly high-speed operations, lightweight,
and compact size. By increasing the number of rounds in
the Feistel network, the SHC algorithm can support key
lengths ranging from 128 bits to 256 bits. Applications such
as wireless sensor networks (WSN), ubiquitous computing,
the Internet of Things (IoT), RFID tags, and aggregation
networks are excellent candidates for their use. Any file and
any size of the file can be encrypted using an application that
is used to deploy the software implementation of the SHC
cryptosystem.

VOLUME 12, 2024

TABLE 5. Timing analysis of SHC cipher using Xilinx Vivado 2022 edition.

Constraints Elapsed Time
XDC timing constraints 00:00:20
Logic Optimization (Retarget) 00:00:00.382
Constant Propagation (to load pins) 00:00:00.433
Sweep 00:00:00.492
BUFG optimization 00:00:00.620
Shift Register Optimization 00:00:00.637
Power Optimization 00:00:00.070
Netlist Obfuscation Task 00:00:00.003
XDEF routing 00:00:00.134
Global Placement Core 00:00:05
Area Swap Optimization 00:00:05
Pipeline Register Optimization 00:00:05
Delay and Skew Optimization 00:01:37
Constraint Validation Runtime 00:00:01
Write Bitstream 00:00:36
Global Vertical Routing Utilization 0.19872 %
Global Horizontal Routing Utilization 0.186346 %

The OpenMP module that came pre-installed on the pro-
fessional edition of Microsoft Visual Studio 2022 was used
to complete the SHC implementation process. In addition,
we have used a variety of file types, including Text (TXT),
Joint Photographic Expert Group (JPEG), Zip Compressed
(ZIP), Document (DOC), Portable Document Format (PDF),
Audio (MP3), and Video (MP4) files, each of which has
a unique file size. To generate the encrypted version of a
file, the application used for file encryption for SHC serial
and SHC parallel accepts any file of any type as input.
It requires a static secret key for the encryption process. The
SHC-Parallel version was put through its paces on 6-core and
8-core CPUs while being tested with an encryption software
application. To achieve high performance, the parallel design
of the SHC algorithm was carefully constructed with the
help of the OpenMP architecture. Additionally, the source
code was optimized with the loop unrolling technique.
The SHC-Sequential algorithm is contrasted with its paral-
lel counterpart, the SHC-Parallel algorithm, regarding the
encrypted file. Table 6 and 7 illustrates the difference in the
amount of time required to execute the SHC-64 cryptosystem
with another standard block cipher like AES and Blowfish
algorithm.

H. POWER UTILIZATION ANALYSIS OF SHC CIPHER

A significant number of researchers have successfully
implemented lightweight block ciphers over FPGA. A good
number of them concentrated on achieving the highest
possible level of performance. In contrast, others attempted
to optimize their designs for the least amount of money,
space, and power consumption. Additionally, lightweight
block ciphers were created expressly only for hardware
applications. We evaluate the performance of our SHC
algorithm implementation compared to the version of other
lightweight block ciphers based on FPGA implementations.
Table 8 demonstrates that implementing a lightweight
block cipher for low-cost FPGA cores, SHC-64, offers the
smallest hardware footprint area for performance and the

39443

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

ANALOG
IDEVICES

=

Ll i i‘;‘-"
AUmID QT

FIGURE 13. LSB input provided using switches on Artix-7 FPGA development board for

encrypting information.

highest hardware efficiency compared with standard block
ciphers such as AES, PRESENT, HIGHT, and others. This
is demonstrated by the fact that the hardware footprint
area for implementing SHC-64 is the smallest. The com-
plexity of the SHC encryption algorithm, which operates
on a fixed block size and takes approximately the same
amount of time for input, is written as O(1). Our SHC
encryption algorithm typically has a time complexity of
O(m), where m is the message size block of data that
needs to be encrypted. This time complexity can vary
depending on the mode of operation. The results of the
experiments show that our SHC encryption algorithm has a
high-performance level compared with the AES algorithm
in terms of the efficiency of the hardware, specifically
throughputs and area cost. The performance narrative is based
on the throughput rate, measured in inputs, outputs, and
iterations.

I. CORRELATION AND ENTROPY USING SHC CIPHER

Our hardware version of the SHC encryption algorithm
was far superior in terms of latency, throughput, area, and
power consumption. This was something that we were
able to find. The SHC algorithm enables data processing
at high electronic speeds while maintaining an adequate
level of security. Additionally, we have analyzed the power
consumption of several lightweight blocks based on the
FPGA design. For each block, the overall amount of power
consumption is computed. The Xilinx Vivado 2022.3 edition

39444

TABLE 6. Comparative analysis of various lightweight ciphers on Intel
Core i5 CPU-based system.

Tested on SHC SHC Execution time
Intel Core i5-10505 Serial Parallel (ms)

Key Used: SHC64CIPHER

File File Size | Single 6 Core AES Blowfish
Type Core (serial) (serial)
TEXT 102 KB 0.02856 0.0238 0.09710 0.0714
JPEG 324 KB 0.08996 0.07496 0.30586 0.2249
ZIP 866 KB 0.14326 0.11938 0.48708 0.3581
WORD 224 KB 0.07558 0.06298 0.25697 0.1889
PDF 512 KB 0.09255 0.07712 0.31467 0.2313
AUDIO 1.04 MB | 0.23549 0.19624 0.80066 0.5887
VIDEO 2.56 MB | 0.56696 0.47246 1.92766 1.4174

can automatically estimate the power consumption of the
encryption and decryption processes of the SHC algorithm.
Compared to the AES and BLOWFISH algorithms, the power
consumption of the SHC algorithm, which is 6.82 mW,
is significantly lower. AES consumes 18.5 mW, CLEFIA
consumes 13.7 mW, and Blowfish consumes 29.86 mW.
Figure 15 shows the block-level RTL schematic diagram of
the SHC hardware implementation on the Artix-7 FPGA
development board.

VI. SECURITY ANALYSIS

The method proposed was planned with simple but logically
operational solid measures. The security threat review of
the proposed solution is explained below, explaining the
protection mechanism against different attacks.

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

FIGURE 14. The SHC-64 encryption process executed on Artix-7 FPGA development board.

TABLE 7. Comparative analysis of various lightweight ciphers on Intel
Core i7 CPU-based system.

Tested on SHC SHC Execution

Intel Core i7-11700 Serial Parallel time (ms)

Key Used: SHC64 CIPHER

File File Size | Single 8 Core AES Blowfish
Type Core (serial) (serial)
TEXT 102 KB 0.02753 0.02238 0.0936 0.0688
JPEG 324 KB 0.08879 0.07218 0.3018 0.2219
ZIP 866 KB 0.13998 0.11380 0.4759 0.3499
WORD 224 KB 0.07558 0.06144 0.2569 0.1889
PDF 512 KB 0.09145 0.07434 0.3109 0.2286
AUDIO 1.04 MB | 0.22959 0.18665 0.7806 0.5739
VIDEO 2.56 MB | 0.55121 0.44813 1.8741 1.3780

A. LINEAR CRYPTANALYSIS

This form of attack is referred to as a plaintext attack.
In this case, the attacker knows some unknown plaintext
and its ciphertext. The primary purpose is to retrieve the
Key that is used during encryption. An attacker uses the
Equation to create a linear link between the plaintext and its
respective ciphertext. to determine the likelihood of satisfying
the equation [29], [30].

a]@az@....an@ bl@ by @...b,,:() (1)

Equation (1) applies to an encryption method for the
plaintext where the number of bits is greater than 1 and
less than 2n. If the cipher is not protected inside this text,
then the cipher would be regarded as weak and attackable.

VOLUME 12, 2024

The difference in probability from values 1 to 2 is called a
bias. A bias value close to 1 in 2 represents improved linear
attack security. For most linear terms, the linear likelihood is
precisely 1 to 2, and the bias value is (1 to 2) — (1 to 2) = 0.
Therefore, the proposed technique protects against the linear
attack (known as the known-plaintext attack).

B. DIFFERENTIAL CRYPTANALYSIS
This form of attack is referred to as a plaintext attack
identified. This attack focuses on the high likelihood of output
differences concerning a particular input difference [29],
[30]. For example, X is a set of bits of the proposed
S-box input plaintext such as X = [x1, x2...xn], and Y is
the corresponding set of ciphertext bits such as Y = [yl,
y2...yn]. The discrepancy between the two complaint texts
is shown as o = x1 to x2, and B = yl to y2 reflects the
difference between their respective ciphertexts. For a given
input difference, § is indicated as differential pair («, S).
Suppose B for the given « is a distinctive form of attack.
The difference pair probability must be reduced to protect
the cipher under differential attack or ciphertext assault.
Several combinations of 16-bit o’ were checked for the
corresponding f values with different 16-bit plaintexts.
SHC-64’s S-Box design is a critical component in its
defense against linear and differential cryptanalysis. The
composite field arithmetic (CFA) used in the S-Box con-
struction enhances non-linearity and reduces differential
uniformity, making it difficult for attackers to establish linear

39445

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

FIGURE 15. RTL Schematic of SHC-64 cipher.

or differential characteristics that could be exploited in these
attacks.

Consequently, the difference pair (¢, 8) was observed for
the proposed method. The maximum likelihood of differ-
ential observed is 9 to 216. However, the most satisfactory
probability of differentiation is 2 bis 216, which is very
acceptable for any encryption technique. Therefore, it is
possible to conclude that the algorithm proposed is safe from
differential attack.

C. BICLIQUE ATTACK

It is a variant of the cryptanalysis meet-in-the-middle
(MITM) method. A biclique structure is used to maximize
the number of rounds the MITM attack could target. Biclique
attack, just like MITM, applies both to cipher blocks and
(referred) hash functions. A full AES and a complete
IDEA [41] breakdown can be done using a biclique attack
but with little gain over brute force. The KASUMI cipher
and preimage resistance of the Skein-512 and SHA-2 hash
functions were also applied. The only one-key assault on AES

39446

is publicly known to attack the maximum number of rounds.
Previous known attacks were usually applied with algorithm
variants in which rounds were reduced (typically to 7 or 8).
In Biclique Attack Mitigation the structure of SHC-64,
including its key scheduling and block cipher design,
is constructed to resist biclique attacks, which are advanced
forms of meet-in-the-middle (MITM) attacks. By carefully
designing the algorithm’s internal structure and employing
a secure key expansion mechanism, SHC-64 minimizes the
effectiveness of biclique attacks, which are known to be
potent against several standard encryption algorithms.

D. AVALANCHE EFFECT

A cryptographic security review calculates the best encryp-
tion ratio. This research shows that changing even one bit
in the plaintext or ciphering key can change the ciphertext
significantly. When at least 50% of ciphertext bits expand,
it’s considered an avalanche. More avalanche implies better
protection. Equation (6.5.1). shows the avalanche effect.
The hamming distance for a plaintext block was randomly
set to 5 bits during observation. Table 3 compares SHC
to lightweight encryption algorithms based on test results.
Table 6.4 shows the same observation using Key and
plaintext. The avalanche effect for plaintext and Key in SHC
tests.

AE — Number of changed bit in ciphertext

Number of bits in ciphertext x 100% ()

In Avalanche Effect the SHC-64 is designed to ensure a
strong avalanche effect, where a single bit change in the
plaintext or key results in a significant and unpredictable
change in the ciphertext. This property is vital for securing
against various forms of cryptanalysis, as it ensures that
the cipher’s output is highly sensitive to its input, thereby
obscuring patterns that could be used in cryptanalytic attacks.

E. INTERPOLATION ATTACK

Following the two attacks, several new block ciphers were
introduced that proved safe against differential and linear
attacks. The KN-Cipher and the SHARK Cipher were
developed as iterative block ciphers. The resistance of both
the lightweight and standard block ciphers is tested via
interpolation attacks. An S-box is an algebraic function
used in interpolation operations; this function might be
quadratic or polynomial above GF (28). An adversary
can use the LaGrange interpolation method to define the
coefficients without the confidential key information if given
the input as a linked plaintext and associated Key over an
encryption process. Because our lightweight S-box uses CFA
technology, an attack of this kind is improbable.

F. BRUTE FORCE ATTACK

A cryptanalytic attack by a brute force attack can decrypt
encrypted data [42], [43], except for the unconditionally
secure encryption technique (information-theoretic security).
Such an attack may be used if other vulnerabilities in an

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

TABLE 8. Performance comparison of lightweight cryptosystems.

Algorithm | Block size | FPGA device | Frequency | T’puts Slices Efficiency | Reference

SHC 64 Artix-7 515.995 2.362 (Gbps) | 339 6.96 This Chapter

PRESENT | 64 Spartan-IIT 254 508 271 1.87 Guo et. al., [32],2008
ICEBERG 64 Virtex-I1 - 1016 631 1.61 Rouvroy et. al., [33],2004
SEA 64 Virtex-IT 145 156 424 0.368 Standaert et. al., [34], 2006
AES 128 Spartan-IIT 196.1 25,107 17,425 | 1.44 Good et.al., [35], 2005
HIGHT 64 Spartan-IIT 163.7 65.48 91 0.72 Yalla et. al., [36],2009

LED 64 Artix-7 378 21.6 37 0.58 Nall et.al., [37],2014

XTEA 64 Spartan-IIT 62.6 35.77 254 0.14 Kaps et. al., [38], 2008
SIMON 64 Spartan-IIT 136 3.60 36 0.10 Aysu et. al., [39], 2014
PRINT 64 Spartan-II1 147.73 147.7 210 0.703 Matsukawa et. al., [40],2016
PRINT 64 Artix-7 293.51 293.5 139 2.11 Matsukawa et.al., [40], 2016

encryption scheme (if any) cannot be taken advantage of that
would facilitate the job. The brute force attacks work by mea-
suring any possible combination of passwords and checking
them to see if they are correct. As the length of the password
increases, the time and the average computing power needed
to find the right password increase exponentially. With rising
key sizes, resources needed for a brute attack are growing
exponentially, not linearly. While U.S. export regulations
traditionally limit the key length to 56-bit symmetrical keys
(e.g., the Data Encryption Standard), these limits no longer
apply, so modern symmetrical algorithms usually use 128- to
256-bit keys that are computationally more robust.

The choice of 64-bit block size and 128-bit key length in
SHC-64, combined with its efficient yet secure cryptographic
operations, ensures that brute force attacks are infeasible. The
algorithm’s design requires computational efforts that grow
exponentially with the key size, making it resistant to brute
force attempts.

G. WEAK KEYS ATTACK

The weak keys embody a small part of the total room.
Hackers can compromise a system by encrypting plaintext
data using a randomly generated key. A solid cipher has no
weak keys [44]. Complex cipher creation is made possible by
the SHC encryption algorithm’s linearity, which relies on its
CFA technology. In making the ciphertext, SHC does not use
the actual Key. Instead, XOR is used to cascade the Key into
F. Fixed F-function has a pure nonlinear feature, and it may
be made resistant to weak key attacks by choosing the right
key.

H. RELATED KEYS ATTACK

An attack in cryptography called “‘related-key’” is when the
attacker can watch the cipher work under several different
keys whose values are unknown, but where the attacker
knows how the keys are related to each other in a certain way.
For example, the attacker may figure out that the keys always
have the same last 80 bits, even if they have no idea what the
bits are. There is no way an attacker could get a cryptographer
to encrypt plain text with many different secret keys linked in
some way.

VOLUME 12, 2024

In this attack, the attacker has some idea about some
mathematical connection (or they try to find it) that connects
the keys. An attacker would have a challenging time
convincing a human cryptographer to encrypt plaintexts using
several secret keys that are somehow linked. Therefore, this
model appears impractical at first glance.

Related-key Cryptanalysis implies that the attacker learns
the encryption of some plaintexts under the initial unknown
Key, K, and some related keys (e.g., K = g(K)). As the
name suggests, a chosen related-key attack involves a specific
method by which the Key will be altered. It’s important
to remember that the attacker only knows or picks the key
relationship, i.e., g(k), but not the key values themselves.

VII. CONCLUSION

In this study, we present SHC-64, a novel, efficient block
cipher. There are many different kinds of attacks on RFID sys-
tems that are making them vulnerable. The most significant
difficulty with RFID systems is providing enough protection
against such attacks. Because of the considerable amount
of processing power, storage space, and other resources
needed for their implementation, the modern encryption
algorithms developed for high-end devices are unsuitable
for RFID systems. RFID systems have strict limits on the
allowed power consumption and the available encrypted store
space size. One of the best ways to keep data safe under
such conditions is to use lightweight cryptographic methods.
Our target was a cipher with the same level of security
as ciphers with 64-bit block sizes and 128-bit keys but
with a much smaller footprint. Interestingly, SHC-64 shares
with many compact block ciphers the exact implementation
needs. SHC-64 was created to work well in low-resource
settings, such as those seen in RFID tags or other small,
pervasive devices. Based on our research into the system’s
security, we’ve concluded that SHC-64 is safe to use.
To top it all off, SHC-64 only needs 949 LUTS in its area-
optimized implementation, which is 72.61 % less space than
the NIST-recommended AES encryption technique. For this
reason, we consider it to be of theoretical and practical
significance. We urge researchers to analyze the SHC-64
algorithm critically, as with all new submissions.

39447

IEEE Access

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Majumdar, T. Debnath, S. K. Sood, and K. L. Baishnab, ‘“Kyasanur
forest disease classification framework using novel extremal optimization
tuned neural network in fog computing environment,” J. Med. Syst.,
vol. 42, no. 10, pp. 1-16, Oct. 2018.

A. Majumdar, N. M. Laskar, A. Biswas, S. K. Sood, and K. L. Baishnab,
“Energy efticient e-healthcare framework using HWPSO-based clustering
approach,” J. Intell. Fuzzy Syst., vol. 36, no. 5, pp. 3957-3969, May 2019.
T. K. L. Hui, R. S. Sherratt, and D. D. Sanchez, ‘“Major requirements
for building smart homes in smart cities based on Internet of Things
technologies,” Future Gener. Comput. Syst., vol. 76, pp.358-369,
Nov. 2017.

G. Zhou, Z. Liu, W. Shu, T. Bao, L. Mao, D. Wu, and Feng-Qiu, ““Smart
savings on private car pooling based on Internet of Vehicles,” J. Intell.
Fuzzy Syst., vol. 32, no. 5, pp. 3785-3796, Apr. 2017.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-
lightweight block cipher,” in Proc. 9th Int. Workshop Cryptograph. Hardw.
Embedded Syst., Vienna, Austria, Springer, 2007, pp. 450—466.

T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-bit
blockcipher CLEFIA,” in Proc. 14th Int. Workshop Fast Softw. Encrypt.,
Springer, 2007, pp. 181-195.

C. De Canniere, O. Dunkelman, and M. KneZevic, “KATAN and
KTANTAN—A family of small and efficient hardware-oriented block
ciphers,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst.,
Springer, 2009, pp. 272-288.

J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON family of lightweight
hash functions,” in Proc. 31st Annu. Cryptol. Conf. Adv. Cryptol., Santa
Barbara, CA, USA, Springer, 2011, pp. 222-239.

K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai,
“Piccolo: An ultra-lightweight blockcipher,” in Proc. 13th Int. Workshop
Cryptograph. Hardw. Embedded Syst., Nara, Japan, Springer, 2011,
pp. 342-357.

J. Borghoff, A. Canteaut, T. Giineysu, E. B. Kavun, M. Knezevic,
L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yal¢inC, “PRINCE—A low-latency block cipher
for pervasive computing applications,” in Proc. 18th Int. Conf. Theory
Appl. Cryptol. Inf. Secur. Adv. Cryptol., Beijing, China, Springer, 2012,
pp. 208-225.

A. Bogdanov, M. KneZevi¢, G. Leander, D. Toz, K. Varici, and
I. Verbauwhede, “SPONGENT: A lightweight hash function,” in Proc.
13th Int. Workshop Cryptograph. Hardw. Embedded Syst., vol. 6917, Nara,
Japan, Springer, 2011, pp. 312-325.

R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and
L. Wingers, “The Simon and SPECK lightweight block ciphers,” in Proc.
52nd ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1-6.
D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H. Ryu, and D.-G. Lee,
“LEA: A 128-bit block cipher for fast encryption on common processors,”
in Proc. 14th Int. Workshop Inf. Secur. Appl., Jeju Island, South Korea,
Springer, 2013, pp. 3-27.

M. R. Albrecht, B. Driessen, E. B. Kavun, G. Leander, C. Paar, and
T. Yalgin, “Block ciphers—Focus on the linear layer (feat. PRIDE),” in
Proc. 34th Annu. Cryptol. Conf. Adv. Cryptol., Santa Barbara, CA, USA,
Springer, 2014, pp. 57-76.

S. Banik, A. Bogdanov, T. Isobe, K. H. Shibutani, H. Hiwatari, T. Akishita,
and F. Regazzoni, “Midori: A block cipher for low energy,” in Proc.
21st Int. Conf. Theory Appl. Cryptol. Inf. Secur., Auckland, New Zealand,
Springer, 2015, pp. 411-436.

L.Li, B. Liu, Y. Zhou, and Y. Zou, “SFN: A new lightweight block cipher,”
Microprocessors Microsyst., vol. 60, pp. 138—150, Jul. 2018.

B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, and D. Kwon, “CHAM:
A family of lightweight block ciphers for resource-constrained devices,”
in Proc. Int. Conf. Inf. Secur. Cryptol., Springer, 2017, pp. 3-25.

J. Patil, G. Bansod, and K. S. Kant, “LiCi: A new ultra-lightweight
block cipher,” in Proc. Int. Conf. Emerg. Trends Innov. (ICEI), Feb. 2017,
pp. 40-45.

G. Bansod, N. Pisharoty, and A. Patil, “BORON: An ultra-lightweight
and low power encryption design for pervasive computing,” Frontiers Inf.
Technol. Electron. Eng., vol. 18, no. 3, pp. 317-331, Mar. 2017.

S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “Gift:
A small present: Towards reaching the limit of lightweight encryption,” in
Proc. 19th Int. Conf. Cryptogr. Hardw. Embedded Syst., Taipei, Taiwan,
Springer, 2017, pp. 321-345.

39448

(21]

[22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(371

(38]

(39]

[40]

(41]

[42]

(43]

L. Li, B. Liu, and H. Wang, “QTL: A new ultra-lightweight block cipher,”
Microprocessors Microsyst., vol. 45, pp. 45-55, Aug. 2016.

S. Sadeghi, N. Bagheri, and M. A. Abdelraheem, “Cryptanalysis
of reduced QTL block cipher,” Microprocessors Microsyst., vol. 52,
pp. 3448, Jul. 2017.

W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede,
“RECTANGLE: A bit-slice lightweight block cipher suitable for multiple
platforms,” Cryptol. ePrint Arch., 2014.

A. Chaurasia, V. S. Sharma, C. L. Chowdhary, S. Basheer, and
T. R. Gadekallu, “Non-Gaussian traffic modeling for multicore archi-
tecture using wavelet based rosenblatt process,” IEEE Access, vol. 11,
pp. 38523-38533, 2023.

F. Karakog¢, H. Demirci, and A. E. Harmanci, “AKF: A key alternating
feistel scheme for lightweight cipher designs,” Inf. Process. Lett., vol. 115,
no. 2, pp. 359-367, Feb. 2015.

F. Karako¢, H. Demirci, and A. E. Harmanci, “ITUbee: A software
oriented lightweight block cipher,” in Proc. 2nd Int. Workshop Lightweight
Cryptogr. Secur. Privacy, Gebze, Turkey, Springer, 2013, pp. 16-27.

G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, “The
simeck family of lightweight block ciphers,” in Proc. 17th Int. Workshop
Cryptograph. Hardw. Embedded Syst. (CHES), Springer, Sep. 2015,
pp. 307-329.

V. Nalla, R. A. Sahu, and V. Saraswat, ‘“Differential fault attack on
SIMECK,” in Proc. 3rd Workshop Cryptography Secur. Comput. Syst.,
Jan. 2016, pp. 45-48.

A. Majumdar, A. Biswas, K. L. Baishnab, and S. K. Sood, “DNA based
cloud storage security framework using fuzzy decision making technique,”
KSII Trans. Internet Inf. Syst., vol. 13, no. 7, 2019.

H. M. Heys, “A tutorial on linear and differential cryptanalysis,”
Cryptologia, vol. 26, no. 3, pp. 189-221, Jul. 2002.

S. Khan, M. S. Ibrahim, M. Ebrahim, and H. Amjad, “FPGA implemen-
tation of secure force (64-bit) low complexity encryption algorithm,” Int.
J. Comput. Netw. Inf. Secur., vol. 7, no. 12, pp. 60-69, Nov. 2015.

X. Guo, Z. Chen, and P. Schaumont, “Energy and performance evaluation
of an FPGA-based SoC platform with AES and PRESENT coprocessors,”
in Proc. 8th Int. Workshop Embedded Comput. Syst., Archit., Model.,
Simul., Samos, Greece, Springer, 2008, pp. 106-115.

G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, ““Compact
and efficient encryption/decryption module for FPGA implementation of
the AES rijndael very well suited for small embedded applications,” in
Proc. Int. Conf. Inf. Technol., Coding Comput., vol. 2, 2004, pp. 583-587.
F. X. Standaert, G. Piret, N. Gershenfeld, and J. J. Quisquater, “SEA:
A scalable encryption algorithm for small embedded applications,” in
Proc. 7th IFIP Smart Card Res. Adv. Appl., Tarragona, Spain, Springer,
2006, pp. 222-236.

T. Good and M. Benaissa, ‘“‘AES on FPGA from the fastest to the smallest,”
in Proc. 7th Int. Workshop Cryptograph. Hardw. Embedded Syst., Springer,
2005, pp. 427-440.

P. Yalla and J.-P. Kaps, “Lightweight cryptography for FPGAs,” in Proc.
Int. Conf. Reconfigurable Comput. FPGAs, Dec. 2009, pp. 225-230.

N. N. Anandakumar, T. Peyrin, and A. Poschmann, “A very compact
FPGA implementation of LED and PHOTON,” in Proc. 15th Int. Conf.
Cryptol. Prog. Cryptol., New Delhi, India, Springer, 2014, pp. 304-321.
J. P. Kaps, “Chai-tea, cryptographic hardware implementations of XTEA,”
in Proc. 9th Int. Conf. Cryptol., Springer, Dec. 2008, pp. 363-375.

A. Aysu, E. Gulcan, and P. Schaumont, “SIMON says: Break area records
of block ciphers on FPGAs,” IEEE Embedded Syst. Lett., vol. 6, no. 2,
pp. 3740, Jun. 2014.

T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato, ‘“Hierarchical Gaussian
descriptor for person re-identification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1363-1372.

D. Khovratovich, G. Leurent, and C. Rechberger, ‘“Narrow-bicliques:
Cryptanalysis of full IDEA,” in Proc. 31st Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Adv. Cryptol., Cambridge, U.K., Springer, 2012,
pp. 392-410.

C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students
and Practitioners, Springer, 2009.

S. Kumar Sharma, A. Chaurasia, V. S. Sharma, C. L. Chowdhary,
and S. Basheer, “GEMM, a genetic engineering-based mutual model
for resource allocation of grid computing,” IEEE Access, vol. 11,
pp. 128537-128548, 2023.

VOLUME 12, 2024

S. Kumar et al.: SHC: 8-bit Compact and Efficient S-Box Structure for Lightweight Cryptography

IEEE Access

[44] J. Daemen, “Cipher and hash function design strategies based on linear
and differential cryptanalysis,” Ph.D. dissertation, KU Leuven, Leuven,
Belgium, 1995.

SUNIL KUMAR received the bachelor’s degree in
computer engineering and the master’s degree
in computer engineering from RGPV University,
in 2009 and 2014, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Computer Engineering, National Institute of
Technology Jamshedpur. His research interests
include lightweight cryptography, the cloud-IoT
security, machine learning, and social network
analysis. He has been serving as a Reviewer for
IJISP journal (IGI Global) for more than 20 research articles.

DILIP KUMAR received the B.Tech. degree in
CSE from BIT Sindri, Jharkhand, the M.Tech.
degree in computer science from NIT Rourkela,
and the Ph.D. degree from the National Insti-
tute of Technology (NIT) Jamshedpur, India.
He is currently an Assistant Professor with
NIT Jamshedpur, India. His research experi-
ence is around 23 years. His research interests
include optimization techniques, heuristic tech-
niques, machine learning, the IoT, and cloud
computing.

HEMRAJ LAMKUCHE received the degrees from
North Maharashtra University and Bharathiar
University, and the Ph.D. degree from Symbiosis
International University. With a strong foundation
in mathematics and computer science, he com-
pleted his Ph.D. degree. He is currently a Distin-
guished Cryptographer with more than 11 years
in the field, made pioneering contributions to
cybersecurity. His research, marked by numerous
international publications and patents, focuses on
designing secure protocols, considering practical constraints, and privacy.
His expertise spans cryptography, VAPT, information security, digital twins,
and blockchain technology. He is proficient in solidity, Python, and C++.
Recognized for his training programs for armed forces and civil services,
his innovative work shapes modern encryption techniques, influencing the
next generation in cryptography. He is a member of IACR, Nvidia CUDA
Developer, and holds IEEE professional membership.

VIJAY SHANKAR SHARMA received the B.E.,
M.E., and Ph.D. degrees from the MBM Engi-
neering College, Jodhpur, which one of the oldest
engineering college of India. He is currently
an Assistant Professor (Senior Scale) with the
Department of Computer and Communication
Engineering, Manipal University Jaipur, India.
He has teaching experience of more than ten
years. He has been published 19 research papers
in international and national journals/conferences.
His research interests include networking and simulation, AI, ML, big data
analytics, Hadoop, and the theory of computation.

VOLUME 12, 2024

HEND KHALID ALKAHTANI (Member, IEEE)
received the Bachelor of Science degree in com-
puter science from the School of Engineering
and Applied Science, The George Washington
University, in 1992, the Master of Science degree
with concentration in information management
from the Department of Engineering Management,
The George Washington University, in 1993, and
the Ph.D. degree in information security from the
Department of Computer Science, Loughborough
University, in 2018. She is currently pursuing the Ph.D. degree with the
Information Systems Department, College of Computer and Information
Sciences, Princess Nourah bint Abdulrahman University (PNU). She is also
an Associate Professor with the Information Systems Department, College
of Computer and Information Sciences, PNU. She has 23 years of work
experience as a Lecturer, and worked as a Computer Center President and
a Statistic Center President in faculty collages. She received an Award from
SIDF Academy: Leading Creative Transformation in Critical Time Program,
Stanford University, Center for Professional Development.

MUNA ELSADIG (Member, IEEE) received the
Ph.D. degree in information technology, network
security form Universiti Teknologi PETRONAS
(UTP), Malaysia. She is currently an Assistant
Professor with the Department of Information
System, College of Computer and Information
Sciences, Princess Nourah bint Abdulrahman
University (PNU), Saudi Arabia. Her research
interests include blockchain technology, cyber
security, healthcare quality, intelligent security
systems in the IoT, cloud, and risk assessment. She is a reviewer of many
international journals and conferences.

MARIYAM AYSHA BIVI received the B.Sc.
degree in computer science from Madurai Kamaraj
University, in 1997, the M.C.A. degree from
Madras University, in 2000, and the M.Phil. degree
in computer science from Periyar University,
in 2005. She is currently a Lecturer with the
Department of Computer Science, King Khalid
University, where she has been, since September
2007. From 2000 to 2007, she was with the Justice
Basheer Ahmed Sayeed College for Women,
eventually as a Senior Scale Lecturer. She was also a part-time Lecturer with
the University of Madras, from 2000 to 2007, an Academic Counsellor with
Indira Gandhi National Open University, from 2002 to 2007, and a Guest
Lecturer with the Bharathi Women’s College, in November 2002. She has
published many technical papers in journals and conferences. She worked
and contributed in the fields of machine learning, the IoT, and vehicular
network. She is also working on machine learning, image processing, data
mining, big data, and the IoT.

39449

