
Received 14 December 2023, accepted 27 February 2024, date of publication 1 March 2024, date of current version 8 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3372405

Interactivity Anomaly Detection in Remote
Work Scenarios Using LSTM
JESUS ARELLANO-USON 1, EDUARDO MAGAÑA 1,2, (Member, IEEE),
DANIEL MORATÓ 1,2, (Member, IEEE), AND MIKEL IZAL 1,2, (Member, IEEE)
1Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Arrosadia Campus, 31006 Pamplona, Spain
2Institute of Smart Cities, 31006 Pamplona, Spain

Corresponding author: Jesus Arellano-Uson (jesus.arellano@unavarra.es)

This work was supported by the Spanish State Research Agency under Project PID2019-104451RB-C22/AEI/10.13039/501100011033.

ABSTRACT In recent years, there has been a notable surge in the utilization of remote desktop services,
largely driven by the emergence of new remote work models introduced during the pandemic. These
services cater to interactive cloud-based applications (CIAs), whose core functionality operates in the
cloud, demanding strict end-user interactivity requirements. This boom has led to a significant increase
in their deployment, accompanied by a corresponding increase in associated maintenance costs. Service
administrators aim to guarantee a satisfactory Quality of Experience (QoE) by monitoring metrics like
interactivity time, particularly in cloud environments where variables such as network performance and
shared resources come into play. This paper analyses anomaly detection state of the art and proposes a novel
system for detecting interactivity time anomalies in cloud-based remote desktop environments. We employ
an automatic model based on LSTM neural networks that achieves an accuracy of up to 99.97%.

INDEX TERMS Remote work, interactivity time, anomaly detection, LSTM, cloud-based interactive
applications, remote desktop, QoE.

I. INTRODUCTION
Cloud-based interactive applications (CIA) are those appli-
cations whose major part of load runs in the cloud with strict
end-user interactivity requirements. They are also known as
cloud-based distributed interactive applications (CDIAs) [1]
or real-time interactive applications (RIAs) [2]. Examples
of CIA are remote desktop services, cloud gaming services
and interactive web applications [1]. In remote desktop
services, user interaction occurs by pressing a key or clicking
a mouse. The response corresponds to an update of the
screen content so fast that the user cannot perceive that the
application is not running locally. Services such as video-
on-demand or voice-over IP are not considered CIA because
they do not have interactions as defined above. These services
utilize audio/video data streams with temporal requirements
but without specific user interaction requirements with the
service.

The associate editor coordinating the review of this manuscript and
approving it for publication was Omer Chughtai.

In the CIA paradigm, users can connect from a local device
to a remote one as if they were sitting in front of the remote
device. The local device may have limited computational
resources and is referred to as a thin client in the context
of remote desktop scenarios. In the context of interactive
web applications, the local device can be a web browser
running on any device, while in cloud gaming scenarios,
it can be a gaming console, computer, smartphone, tablet,
etc. The remote device is typically a virtual machine running
on a shared server, although it can also be a dedicated
computer. The thin client captures mouse movements, clicks,
and keyboard keystrokes to send them to the remote device,
which is responsible for executing the applications. This
paradigm facilitates user mobility, allowing access from any
device and location, with minimal reliance on an internet
connection and lowered requirements for management and
maintenance, leading to cost savings.

The COVID-19 pandemic imposed remote work measures
in favour of public health. Studies [3] and [4] suggest
that approximately 40% of large and small companies

34402

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3350-3793
https://orcid.org/0000-0002-6851-3414
https://orcid.org/0000-0002-0831-4042
https://orcid.org/0000-0002-2770-912X

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

expected 40% or more of their workers to adopt remote
work after the health crisis. Ultimately, of those workers
before the COVID-19 pandemic, nearly 50% became remote
workers [5]. It is estimated that by 2025, 70% of employees
will work remotely at least five days a month [4]. Many
of the services that enable remotework are within the scope of
interactive cloud-based applications. Specifically, the use of
remote desktops dramatically increased due to this situation.
In the information technology sector, the increase in remote
desktop deployment was 258% in 2020 [6], and spending on
remote desktop solutions doubled in 2021 [7]. Meanwhile,
other types of CIA such as cloud gaming solutions are
also booming, with this industry expected to reach a value
of $3.107 billion by 2024, representing a 54% increase
from 2019 [8].

These data reveal that CIAs such as remote desktops
are increasingly prevalent and require the development of
solutions to monitor Quality of Experience (QoE) [9], [10].
It’s crucial for cloud service providers to grasp users’
perceptions of the services they offer [11], [12], especially
as both personal and business applications transition to the
cloud, making perceived service quality a key differentiator
among providers [13]. Among the metrics that characterize
QoE, the interactivity time, the number of frames per
second, and the image resolution stand out. Interactivity
time [14] is the time elapsed between a user interaction
via keyboard or mouse and the on-screen update with the
result of the user interaction. This metric is also referred
to as responsiveness [15]. CIAs have particular interactivity
requirements and therefore the interactivity time metric is,
to a larger extent, responsible for the user experience. While
these requirements are present in applications running locally,
they become critical in cloud-based interactive services
because there is a network between users and the cloud.
The network introduces additional elements like latency,
jitter, packet loss, and bandwidth constraints. Moreover,
server computational resources are frequently shared among
multiple users, potentially impacting the end-user experience.

The literature suggests that further work is needed on
remote work communications [16]. In this work, we build
upon the extraction of interactivity time from a previous
study [14], using the system in a national parcel delivery
company with a network of remote desktops across different
offices. We collected data from real users to design a scheme
for the automatic detection of anomalies in interactivity time.
While there have been previous attempts to measure QoE
in remote desktops, as we will elaborate in state of the art
section, they frequently exhibit significant limitations.

This study presents a pioneering system aimed at pre-
emptively identifying operational issues in remote desk-
tops before they become perceptible to the user. Our
approach involves the implementation of an automatedmodel
employing Long Short-Term Memory (LSTM) neural
networks and supervised learning. Notably, no previous
work has addressed anomaly detection during interactivity

times, marking a significant gap in the existing research
landscape. We introduce, for the first time, available options
for anomaly detection and propose a viable solution based on
a comprehensive literature analysis, leveraging LSTM neural
networks.

The main contributions of this paper are as follows:
• We conduct an extensive analysis of the state of the
art in anomaly detection. We propose a novel and clear
categorization that can assist researchers in deciding
which method is more suitable for anomaly detection in
this or any other domain.

• We evaluate and identify the most suitable solutions
from the literature for quantifying QoE in CIAs.
Additionally, we highlight the drawbacks of current
solutions.

• We propose an innovative system for detecting anoma-
lies in interactivity time in cloud-based remote desktop
systems. This system enables service administrators to
assess the real-time QoE of their deployments.

• For the implementation of the anomaly detection
system, we employ LSTM neural networks due to their
inherent ability to capture long-term dependencies in
time series data.

• We present and discuss new research directions derived
from this paper with the intention of facilitating further
investigations.

The rest of the document is structured as follows: in
Section II, we evaluate the state of the art in QoE quan-
tification and anomaly detection. In Section III, we explain
the test environment we use and present the data used
for training and evaluating the anomaly detection model.
In Section IV, we describe the proposed LSTM model, the
features it employs, and the parameter adjustments we made.
In Section V, we evaluate the proposed model, achieving an
accuracy of up to 0.9997, a precision of up to 0.9367, a recall
of up to 0.9779, and an F1 score of up to 0.9569. Finally,
Section VI concludes the paper.

II. STATE OF THE ART
In this section, we delve into the analysis of the state of the
art. Firstly, we explore the current state of the art related
to acquiring interactivity time metrics. To achieve this, first
subsection is dedicated to outlining the primary options
identified in the literature. We elaborate on their operation,
advantages, and disadvantages. Also, we focus on the state
of the art in anomaly detection. For this purpose, the second
subsection conducts an extensive categorisation of existing
anomaly detection methods in the literature. We anticipate
that this categorisation will serve as a valuable starting
point for future implementations of anomaly detection,
regardless of the application domain. Finally, last subsection
summarizes the key conclusions from the two preceding
subsections, justifying the procedures followed and the
proposed anomaly detection model in this paper.

VOLUME 12, 2024 34403

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

TABLE 1. Comparison of techniques for measuring interactivity time.

A. TECHNIQUES FOR MEASURING INTERACTIVITY TIME
The literature currently presents two primary methodologies
for assessing QoE of remote desktops through the quantifica-
tion of interactivity time: Slow-motion benchmarking [17],
[18] and thin client latency analysis (TeCLA) [14]. Both
approaches aim to measure the interactivity time of remote
desktops. For more detailed and comprehensive information,
we recommend consulting the original papers.

Slow-motion benchmarking provides only an estimation of
interactivity time based on the patterns of network packets
exchanged between the thin client and the cloud server. When
a user interacts with an application through a remote desktop,
the thin client sends a request to the cloud server. This
request generates an increase in network traffic. When the
application located on the cloud server produces a response,
it sends it back to the thin client, generating another spike
in network traffic. Slow-motion benchmarking monitors the
network traffic to obtain the time elapsed between the
two traffic peaks. If slow-motion benchmarking captures
the traffic near the thin client, this elapsed time is an
approximation of the time the user perceives from interacting
via keyboard or mouse with the thin client to perceiving a
response on the screen. However, the methodology requires
instrumenting the applications on the thin client to prevent a
new user interaction until a response to the previous request
is received. Therefore, it is not suitable for measuring a
user’s real-time QoE, but only serves to characterize the
scenario under controlled conditions. Several works in the

literature employ the methodology described by slow-motion
benchmarking [19], [20], [21].

TeCLA provides another method to quantify QoE in
remote desktops, regardless of the protocol used, and without
the need to instrument the applications. The system is based
on an agent running on the thin client that collects timestamps
of keyboard and mouse interactions, as well as timestamps
of screen changes. By correlating these timestamps, TeCLA
extracts the interactivity time for each user interaction.
The interactivity time is, therefore, the sum of the time
taken to capture the interaction on the thin client, transmit
that interaction to the server over the network, process it
by the remote desktop system on the server, the time it takes
for the application to generate the response, the generation
of the screen refresh and its compression, the transmission of
that refresh over the network, and the display of the refresh
on the screen.

In summary, Table 1 shows the two primary methodologies
from the literature, along with their respective advantages and
disadvantages.

While these two proposals from the literature are consid-
ered the most effective for capturing interactivity time, the
dynamic nature of CIA service operations necessitates more
than static thresholds to gauge sufficient QoE. Administrators
require advanced anomaly detection and trend identification
systems to effectively manage these dynamic environments.
In the next subsection, we explore the existing options in the
literature to address these needs.

34404 VOLUME 12, 2024

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

TABLE 2. Comparison of anomaly detection methodologies.

B. TECHNIQUES FOR ANOMALY DETECTION
Anomaly detection involves identifying individual samples
or sets of samples that are substantially different from what
would be expected [22], [23]. Due to the novelty of the
interactivity time metric, to the best of our knowledge, there
are no previous works in the literature that specifically
address anomaly detection in time series of this nature.
However, the development of algorithms for anomaly detec-
tion is a well-established research field with over 30 years
of work [23] in various domains such as network traffic
monitoring and computer systems, cybersecurity banking
sector, and healthcare [24].

By definition, anomalies are rare occurrences because
if they were common, they would change the typical
pattern of the data. One immediate option for handling
observations or sets of observations that deviate from the
common pattern or distribution is to model the normal
observations. These anomalies can be global or local in
nature, leading the literature to distinguish between three
types of anomalies [22], [23], [24], [25].

• Point anomaly: An observation whose value is atypical
at any point in time.

• Contextual anomaly: An observation or set of observa-
tions that deviate from the usual pattern not because of
their value but due to the context (date, time, and/or
adjacent observations).

• Collective anomaly: Groups of observations where
individual observations alone are not anomalous, as they
can occur in a usual manner separately and in their
temporal context, but not consecutively.

There are several works in the literature that address the
classification of anomaly detection methods [22], [23], [24],
[25], [26], [27], [28]. From these studies, we extract some
common methods:

1) HEURISTIC MODELS
In this type of method, a maximum and/or minimum
threshold is selected, and it is compared when one or several
samples of the time series fall outside the limits defined by
these thresholds. Within these models, we find:

• Static Thresholds: The analyst manually selects the
threshold for each time series. They require prior
knowledge of the monitored metric. If the usual values
of the metric change, the analyst must repeat the
process. If the metric under study varies significantly in
magnitude following a periodic pattern, it becomes nec-
essary to define multiple thresholds based on date/time.
Otherwise, the ability to detect contextual anomalies
may be limited.

• Statistical Tests: The threshold is calculated based
on the data series model. For example, assuming the
data follows a Gaussian distribution and setting the

VOLUME 12, 2024 34405

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

thresholds at the mean ± 3 standard deviations or
considering percentiles [26], [29], [30]. This approach
does not take into account the temporal component and
the potential periodic nature of the samples.

• Baseline Models: For data with periodic temporal
patterns, the historical data can be used to estimate
normality over recent periods and apply thresholds or
statistical tests for anomaly detection. However, if the
pattern of normality varies over time, the baseline may
not be representative. Additionally, if past anomalies
represent a significant deviation in the magnitude
of the monitored metric, this can affect statistical
descriptors such asmean and standard deviation, making
it challenging for the baseline to function correctly [31].

• Density-Based Models: These models involve con-
structing a model that represents the density of
observations or the probability of encountering cer-
tain values. Less probable values are identified as
anomalies [23], [25], [26].

2) STATISTICAL MODELS
These models assume a specific model or distribution of the
data they try to fit. They involve fitting a statistical model
that allows for evaluating whether the underlying process
generating the data series has undergone any changes. Often,
these models use statistical fitting to predict future samples
and compare their prediction with the actual observation [24].
The error made in this process can determine whether the
sample is an anomaly. Within these models, we find:

• SARIMAX Models: These models are widely used
in the field of statistics for sample prediction. They
take into account previous samples (autoregressive
component), errors made in predicting previous samples
(moving average component), and the possible variation
in magnitude of the data series (differencing transforma-
tion component) [24].

• Exponential smoothing: It encompasses methods that
provide an estimation of the current observation based
on a weighted average of previous observations, follow-
ing an exponentially decreasing distribution according
to the age of the samples. This allows the model to adapt
more easily to new patterns in the time series. However,
in order to work properly with periodic time series,
manual adjustments to the model are required [29].

3) MACHINE LEARNING
These algorithms have been developed for use with multi-
dimensional observations without temporal reference. How-
ever, sliding windows can be used with a certain number of
observations or the time frame to which the sample belongs
can be included in the observation in the case of patterns with
periodic behaviour. Within these models, we find:

• Clustering: this technique assigns each observation to
different groups or clusters based on their relative
positions in the sample space. The distances of the

samples to the centre of their cluster (centroid) or the
size and density of the clusters provide a metric that
can be used to assess the abnormality of a sample.
However, the anomalous and non-anomalous samples
need to be highly distinguishable, making it difficult
to identify collective or contextual anomalies using
these techniques [23], [25]. Some methods within this
category include K-Means or DBSCAN.

• Nearest Neighbour: These techniques are based on
the assumption that normal observations, compared to
anomalies, exhibit closer proximity to other observa-
tions or are situated in regions of higher density.

• Classification: These methods involve training a model
to differentiate between normal and anomalous samples.
However, it is necessary to have a sufficient amount
of labelled data for the algorithm to undergo training.
Examples of algorithms belonging to this category
include One-Class Support Vector Machine (OC-SVM),
K-means, hierarchical clustering, or Decision trees.

• Ensemble: These methods use a combination of simpler
algorithms to achieve better performance than each
algorithm would achieve individually. The ensemble
can consist of multiple instances of the same algorithm
or model, or it can be formed by different algorithms
working together [22]. Some well-known ensemble
models include Isolation Forest, Robust Random Cut
Forest, Adaptive Boosting, Gradient Boosting, and
Extreme Gradient Boosting.

4) DEEP LEARNING
These algorithms utilize neural networks for anomaly detec-
tion. Similar to machine learning algorithms, this type of
approach does not require assuming any specific distribution
or process responsible for generating the observations [24].
Within the realm of deep learning models, we find:

• Convolutional Neural Networks (CNNs): These neural
networks are commonly used in image processing
and object detection tasks. They operate by applying
mathematical convolutions on n-dimensional matrices
using a sliding kernel matrix.

• Autoencoders: This type of neural network produces
a simplified yet representative version of the input at
the output, enabling the reconstruction of the original
values. It is commonly employed by training the
network on non-anomalous samples and assuming that
anomalous values will result in higher reconstruction
errors, facilitating their detection.

• Generative Adversarial Networks (GANs): GANs
involve the training of two independent neural networks,
the generator and the discriminator, in a competitive
manner. The networks aim to optimize their respective
metrics by improving their outputs through iterative
training. In the context of anomaly detection in time
series data, the generator network is trained to produce
samples that resemble the input time series. The
discriminator network is then trained to differentiate

34406 VOLUME 12, 2024

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

between real samples and artificially generated samples
produced by the generator. Once both networks are
trained, the discriminator can be directly utilized for
anomaly detection (considering anomalies as artificial
observations), or the difference between the generated
and real samples can be used as a reconstruction
error [32].

• Recurrent Neural Networks (RNNs): These neural
networks employ feedback connections within their
internal layers. These connections enable the networks
to retain information across time, improving their
performance on temporal data. Among the common
recurrent layers in this type of network are LSTM (Long
Short-TermMemory) and GRU (Gated Recurrent Units)
[24], [33]. One of the advantages of these recurrent
architectures is their ability to not only adjust their
internal parameters during training but also alter internal
memory variables as they process observations during
regular usage. This allows them to store information
from processed observations that may be useful for
subsequent ones, which is particularly relevant in the
context of time series data, where observations often
exhibit dependencies on immediately preceding values.
These recurrent networks account for the temporality,
periodicity, and repetitiveness of anomalies, making
them potentially useful for detecting point anomalies,
contextual anomalies, and collective anomalies.

Due to the significant increase in computational capacity in
recent years, the utilization of technologies such as Machine
Learning and Deep Learning for large-scale data applications
has become feasible, demonstrating their successful perfor-
mance in a wide range of tasks. Currently, there is a need and
opportunity to develop automatic algorithms that can enhance
the capabilities of existing systems [24] and allow for more
efficient utilization of available human resources [27]. In this
study, we aim to explore the implementation of LSTM neural
networks for anomaly detection in time series of interactivity
time.

For some machine learning problems, it is important to
consider information from nearby time steps. In such cases,
recurrent neural networks (RNNs) have shown satisfactory
results [34], [35]. However, when there are long-term
dependencies, as in the case of this paper [24], traditional
RNNmodels are unable to effectively capture them [36]. This
is why Long Short-Term Memory Networks (LSTM) were
developed to address these issues [36]. LSTM networks are
designed to overcome the limitations of traditional RNNs and
are capable of modelling long-term dependencies in practice.

In summary, we have compiled the primary anomaly
detection methodologies from the literature, including their
respective advantages and disadvantages, in Table 2.

C. SUMMARY
In a remote desktop deployment, monitoring user QoE is
crucial. Tools like Slow-motion benchmarking or TeCLA
provide interactivity time metrics, but it is imperative to

conduct contextual work to define the typical interactivity
times for each specific deployment. However, the operation
of these services is highly dynamic, and it is not sufficient to
define static thresholds on interactivity time to determine if
the QoE is sufficient. Administrators require more advanced
systems for anomaly detection and trend identification. These
systems should not only focus on discrete interactivity times,
but also analyse the time series of interactivity experienced
by the user. Among the two literature options, we selected
TeCLA for extracting interactivity times in this study,
motivated by the advantages listed in Table 1.
The nature of the input data, whether numerical data

sets, server logs, user text strings, or images, substantially
influences the methods employed for anomaly detection or
trend identification in each respective field of study [24],
[37]. There is an obvious challenge in using algorithms
developed in one field for another [22]. Moreover, with the
surge in simultaneous real-time monitoring [38], [39] and
the unprecedented volumes of data, which now reach tens
of terabytes per day in a single system [24], [27], new
difficulties and limitations have emerged. In the specific case
of information systems, many of the metrics used exhibit
strong relationships with human behaviour patterns, creating
temporal dependencies and periodicities (daily, weekly,
monthly, yearly, etc.) [40], which complicates their analysis.
In recent years, these systems have been experiencing
constant shifts in volume and structure [41]. Additionally,
the near-daily deployment of new services has significantly
heightened the complexity of monitoring and alarming in
such environments.

Given these challenges, the use of machine learning
and deep learning solutions [42] has increased, enabling
automation of parts of the analysis process. With these
tools, data classification, temporal estimations, and anomaly
detection can be successfully developed. For machine
learning problems that necessitate information from nearby
time steps, RNNs have demonstrated good results. However,
in the presence of long-term dependencies, as in this
case, traditional RNNs are limited. For this reason, LSTM
networks were developed to overcome these limitations,
enabling the effective capture of long-term dependencies in
practice. Hence, based on existing literature and the specific
characteristics of the data in this article (time series of inter-
activity time), we chose to employ LSTM neural networks.

III. DEPLOYMENT OF INTERACTIVITY TIME
MEASUREMENTS
From the options discussed in the state-of-the-art analysis,
we have opted to utilize the TeCLA methodology for
extracting interactivity times. In this section, we provide
a more detailed explanation of how we implemented this
methodology in two real-world environments to gather data
for developing an anomaly detection model using LSTM
neural networks. It is important to note that while we
have selected TeCLA for extracting interactivity times, any
literature option, such as Slow-Motion Benchmarking, would

VOLUME 12, 2024 34407

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

be suitable as input for the LSTM model to be described in
subsequent sections.

A. TeCLA DEPLOYMENT
The TeCLA methodology can be deployed in two operating
modes:

• Active mode: allows the emulation of user interactions
from the thin client. It generates periodic keyboard or
mouse inputs, enabling the collection of interactivity
time metrics at regular intervals. This mode provides
greater temporal visibility and does not require direct
involvement from the user.

• Passive mode: This mode allows for capturing samples
of the interactivity time as the user interacts with a
remote desktop. The interactivity time extraction tool
runs in the background and only collects measurements
when the user interacts with the thin client using
the keyboard or mouse. This mode enables real-time
monitoring of the actual QoE for users in the deployed
scenario.

The suitability of each operating mode depends on
the characteristics of each environment and the level of
granularity required. In some cases, service administrators
may not have the possibility to deploy in passive mode due to
administrative reasons (security policies, connectivity issues)
or because they are not interested in detailed QoE information
for individual users in managed remote desktops. Instead,
their interest lies in understanding the average perceived QoE
of a generic user infrastructure. In such cases, the active mode
is more suitable, as it simplifies the deployment process and
provides higher temporal granularity.

Figure 1 presents the procedure to extract interactivity
measures. The only difference between the passive and active
modes is who triggers the interactions with the remote
desktop. In the active mode, the process would be repeated
periodically using an automator (e.g., every two seconds),
while in the passive mode, it would be the user who
determines when the next interaction occurs in their normal
usage pattern.

FIGURE 1. Procedure for obtaining measures of interactivity.

B. SCENARIO AND AVAILABLE DATASET
The use of both modes in different scenarios allowed
us to have a representative dataset of interactivity time.

We deployed the interactivity measurement tool in active
mode to evaluate andmonitor the remote desktop architecture
in a university environment. With over a month and a
half of continuous monitoring, we were able to study the
behaviour of the university’s Virtual Desktop Infrastructure
(VDI), which includes instances based on both Linux and
Windows [43]. Additionally, we deployed the measurement
tool in passive mode in a national parcel company to collect
QoE data from 22 real users across 11 different offices. Each
user connects from their office to a remote desktop located
in the central corporate data centre using Citrix [44] and
Windows RDP [45]. The user’s thin client has a specific
installation for this type of equipment (Windows 7 Embedded
Standard), and the offices are located at different distances
from the data centre. Both types of deployments served as
sources of information for the development of the dataset
in this paper. From a network standpoint, the offices are
organized in a star network configuration with connections
to the central virtualization server. Each office benefits from
its own independent internet access, which is shared among
all users within the office. Tomaintain the effectiveness of our
measures throughout both our experiments, we thoroughly
assessed the network’s available bandwidth and latency in
both scenarios, eliminating any potential issues related to
congestion or packet losses.

Since we opted to develop supervised models, it is
necessary to label the samples through a labelling process.
It is the analyst’s task to determine which time intervals
in the dataset should be considered as anomalies. For both
data sources (active and passive interactivity time time
series), we collaborated with the service administrators of
the remote desktops in both scenarios to identify periods that
the machine learning model should interpret as anomalies.
Incorrect labelling of the training and evaluation dataset
can lead to the model learning incorrect behaviours and
patterns. The administrators have access to other sources
of information on incidents, which helped them to identify
periods in the available time series where the QoE of the
remote desktop deteriorated.

Figure 2 and figure 3 represent an example of two time
series labelled in passive mode and active mode respectively.
The labelling was done by the service administrators, and the
difference in time between samples is evident in each mode.
In the active mode, the samples are approximately equispaced
every two seconds, while in the passive mode, the samples are
separated based on when the user interacts with the remote
desktop.

A total of 22 different users were available for the passive
mode dataset. We measured the available samples over a
period of 20 days. We collected 109,144 keyboard or mouse
employee’s interactions. In the case of the active mode
deployment in the university environment, we monitored
26 days, comprising a total of 1,322,969 samples. Table 3
provides an overview of both scenarios. We reduced this
dataset to include only the days that had anomalies in order
to have a representative dataset for training the model.

34408 VOLUME 12, 2024

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

TABLE 3. Summary of the samples available for training and evaluation
of the models we propose.

As we will discuss in later sections, the features used for the
proposed model take into account that the data comes from
two different environments (different network, virtualization
software, clients, and servers, etc.). We carefully selected
the features to eliminate such variability. The measurement
tool originally provided information on metrics related to the
state of the thin client, such as CPU usage, RAM memory,
transmitted and received bytes, and consumed bandwidth,
in addition to the interactivity time metric. However, these
quality of service (QoS) parameters were not the focus of our
study.

We divide the main dataset into training and evaluation
sets. In our evaluation, the dataset is randomly split by day
and by user after the data fusion process, where all days of
all users are concatenated. In this way, we assign each day
to the training set with a probability of 60%. We use the
remaining days for evaluation. We train the models with the
training set, and then we evaluate their performance using the
evaluation set. It should be noted that, due to the temporal
nature of the dataset, this splitting of samples must be done
while respecting the membership of samples to a specific
day. For example, if the dataset has 10 days, 6 days will
be used for training and 4 days for evaluation. All samples
from the 6th day will be included in the training dataset. This
splitting should be done precisely to avoid mixing samples
from different days, which could lead to the network learning
unrealistic temporal relationships.

From the total available days of active mode time series,
we prepared the training and evaluation sets while respecting
whole multiples of days as closely as possible. We allocate
60% of the samples to the training set and 40% to the
evaluation set. In this case, we used a total of 272,275 samples
for training and 165,504 for evaluation, resulting in a ratio
of approximately 62.19% to 37.81%. Within the training set,
administrators labelled a total of 759 samples as ‘Anomalous,’
while in the evaluation set, they labelled 499 samples.

For the passive mode dataset, once again, we prepared the
training and evaluation sets while respecting integermultiples
of days as closely as possible. We allocated approximately
60% of the samples to the training set and 40% to the
evaluation set. In this case, we used a total of 28,992
samples for training and 17,541 for evaluation, resulting
in a ratio of approximately 62.30% to 37.69%. Within the
training set, administrators labelled a total of 1,040 samples
as ‘Anomalous,’ while in the evaluation set, they labelled
474 samples.

The anomalies present in figures 2 and 3 seem easily
distinguishable. Traditional methods such as heuristic or

FIGURE 2. Example of labelling of passive mode interactivity time series.

FIGURE 3. Example of labelling of active mode interactivity time series.

statistical models would have no problem in correctly
categorising the represented anomalous samples. However,
the available dataset exhibits certain peculiarities that limit
the utility of such methods. The dataset contains contextual
anomalies where the value of a sample alone may not
determine its anomalous nature, as the figure 4 shows.
Additionally, we observe the presence of background noise
or non-anomalous periodic behaviours that can potentially
be confused with anomalous patterns, emphasizing the
importance of temporal context in our dataset. Given these
data characteristics and a thorough review of the literature,
we have chosen to employ recurrent neural networks,
specifically LSTM, as they account for temporal, periodic,
and repetitive anomalies, making them potentially useful for
punctual, contextual, and collective anomalies.

FIGURE 4. Example of labelling of a complex active mode interactivity
time series.

IV. INTERACTIVITY TIME ANOMALY DETECTION MODEL
A. MODEL STRUCTURE
In this section, we address the development of the machine
learning model for anomaly detection in time series of
interactivity time. We considered two main objectives in
the design. Firstly, we prioritize the development of models
that require a smaller number of features. The smaller the
dimension of the feature space (fewer different features),
the fewer observations are needed to cover the feature
space. Additionally, observations of the same class become
more compact. This phenomenon is known as the curse of

VOLUME 12, 2024 34409

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

dimensionality [46]. A smaller number of features requires
a smaller volume of data, thus reducing the time required
to generate a dataset for training the models. This shortens
the time required for deploying the analysis tools in new
environments. Secondly, we aim to develop a model that
accurately detects anomalies in time series of interactivity
time extracted in both active and passive modes.

The Figure 5 depicts the final structure of the machine
learning model we employed for anomaly detection in time
series of interactivity time. The diagram does not show the
internal details of the LSTM models. We developed this
structure to be applicable to both types of time series: active
mode and passive mode.

FIGURE 5. General diagram of the model for anomaly detection in time
series of interactivity time.

The input to the general system is the time series of inter-
activity time, denoted as tInteractivity. The structure consists
of two stages. The purpose of the first stage is to perform
a regression task, i.e., predicting values. Subsequently, the
model uses this prediction to internally calculate the error
by comparing it with the actual values. The error is then
used to determine whether the samples are anomalous. The
purpose of the second stage is to perform a classification task.
In the case of the objective of anomaly detection in time series
of interactivity time, it is a binary classification, indicating
membership in the ‘Anomalous’ class (value ‘True’) or ‘Non-
anomalous’ class (value ‘False’).

Figure 6 illustrates the detailed structure of the first stage.
The figure does not show the internal details of the LSTM
models. Stage 1 processes the time series x of interactivity
time. This stage receives a window of N samples (x[n+N]) of
interactivity time, and its objective is to estimate the average
of the next temporal window with a shift of 1 sample (i.e.,
a windowwith a new sample). For each window of N samples
of x, a new feature sample x ′ is generated. For each time
instant n, the mean of all samples from n to n+N is calculated
to form a new sample of x ′. The result is a vector of the mean
of each interactivity measure and the previous N-1 samples.
Next, this feature vector x ′ is standardized. Standardization
is a common practice in machine learning techniques that
facilitates algorithm convergence [35], [47]. It scales all
features to a similar range so that, regardless of their original
magnitude, they are comparable to each other. The result of
this transformation is a new distribution of samples x ′′ with
a mean µ = 0 and standard deviation σ = 1. To achieve
this, the mean of x ′ is subtracted and divided by the standard
deviation of x ′. The mean and standard deviation values must
be calculated during training and used during evaluation.

The standardized feature vector x ′′ is the input to the
LSTM network, which generates an output vector y. Each

FIGURE 6. Diagram of stage 1 of the model for anomaly detection in
interactivity time series.

element i of the vector y represents the estimation of the next
window with a shift of one sample (x̃i+1). Due to the previous
standardization, the result has a mean of 0 and a standard
deviation of 1. To obtain the vector of estimations for the
next windows (y′), the process needs to be reversed using the
original µ and σ values that were stored earlier.

Figure 7 illustrates the detailed structure of the second
stage. The figure does not show the internal details of the
LSTM models. Its objective is to generate an output vector o
whose elements are binary values to estimate the class
membership of the last sample in each interval.

The second stage receives as inputs the interactivity time
samples x and the vector y′ obtained from stage 1, referred to
as ‘prediction’ from now on. Using these inputs, the feature
matrix F is constructed, consisting of feature vectors fj where
j ∈ [0, 5]. The features employed in this second stage are:

• f0: Prediction
• f1: (Sample i) / Prediction
• f2: Mean(window[i-N,i]) / Prediction
• f3: Sample i
• f4: Sample i / Mean (window[i-N,i])
• f5: Sample i / Median(window[i-N,i])

Or expressed mathematically:

• f0 = y′

• f1 = x/y′

• f2 = µ(x[i− N , i])/y′

• f3 = x
• f4 = x/µ(x[i− N , i])
• f5 = x/Me(x[i− N , i])

FIGURE 7. Diagram of stage 2 of the model for anomaly detection in
interactivity time series.

34410 VOLUME 12, 2024

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

Each vector of the feature matrix F should be standardized
similarly to what was done in Stage 1. For each vector j
of F, the mean and standard deviation values from the model
training must be stored for evaluation purposes. The result
of this process is the matrix F′. The new feature matrix
serves as the input to the second LSTM network in the
architecture, which is designed to generate an output vector
o with values ranging from 0 to 1. Each element of o is then
subjected to a threshold (0.5) to determine itsmembership to a
specific class. In the case of the anomaly detection objective
in the time series of tInteractivity, the classification is binary,
indicating membership in the ‘Anomalous’ class (value > 0.5)
or ‘Non-anomalous’ class (value ≤ 0.5).
We implemented the proposed structure using Python

as the programming language. Specifically, we utilized
the built-in functionalities of Python, numpy [48], and
Pandas [49] for data management and processing. For the
implementation of LSTM neural networks, we employed
Scikit-learn [50] and Keras [51].

B. ADJUSTMENT OF MODEL PARAMETERS
In this section, we present the results obtained with the
classification system, as well as the methodology used in
the experiments. The experiments consist of four distinct
parts: a) processing the data to adapt it to the input format
of the network, b) randomly dividing the structured dataset
into training and evaluation sets for cross-validation, c)
constructing and training the models, and d) evaluating the
system. The processes of division, training, and evaluation
are repeated to ensure result consistency. Each repetition of
this sequence is referred to as an iteration.

We repeat the processes of division, training, and
evaluation multiple times using cross-validation to ensure
result consistency. We evaluate the results of the different
experiments and iterations using metrics commonly used in
the field of machine learning: Accuracy, Precision, Recall (or
sensitivity), and F1 score, defined in equations 1, 2, 3, 4,
respectively. All these metrics provide output values ranging
from 0 to 1.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F1Score = 2 ·
Precision Recall

Precision + Recall
(4)

For all the available datasets, the model performs binary
classification. In the case of detecting anomalous samples in
time series of interactivity (tInteractivity), Class C1 corresponds
to samples labelled as ‘Anomalous’. This is the positive
class, and its label value is ‘True’. Lastly, Class C2 is the
complementary class and corresponds to samples identified
as ‘Non-Anomalous’. This is the negative class, and its label
value is ‘False’.

TP is the number of true positives (samples that the
model classify correctly as anomalous), FP is the number of
false positives (samples that the model classifies incorrectly
as part of class C1, anomalous samples), and FN is the
number of false negatives (samples that the model incorrectly
classifies as the second class C2, non-anomalous samples).
The precision metric reflects the model’s ability to correctly
classify the total number of samples identified as positive
(belonging to class C1, anomalous samples). In other words,
it reflects the tendency to classify samples as belonging to
class C1. On the other hand, the recall metric reflects the
model’s ability to correctly classify samples as belonging to
class C1 when they are part of that class. The F1 score metric
is defined based on precision and recall and provides a way
to quantify both metrics together.

Due to the nature of the dataset, we opted to maximize
recall. We prefer the model to correctly classify as many
samples as possible as ‘Anomalous’ in the time series
of tInteractivity. Maximizing recall over precision means
preferring to identify a sample incorrectly as ‘Anomalous’
rather than labelling it as ‘Non-anomalous’. This decision
also aligns with the proportion of labelling in the available
datasets. The dataset is highly imbalanced. We have a total
of 106 samples out of 39,798 labelled as ‘Anomalous’ in the
case of the dataset obtained in active mode, and a total of
165 samples out of 19,628 labelled as ‘Anomalous’ in the
case of the dataset obtained in passive mode. Due to the
small number of samples belonging to the classes of interest,
we prefer the neural network to prioritize identifying them
correctly and not opt for the opposite behaviour. This way,
the model prioritizes the identification of the opposite class
and making more errors with the ‘Anomalous’ samples.

The proposed model consists of two LSTM networks, one
for each stage. Each network has two layers, an input layer,
and an output layer. We use the rectified linear activation
function (ReLU) for the regression task in the first stage
and the hyperbolic tangent activation function (tanh) for the
classification problem in the second stage. The number of
neurons used in both stages is 20. The number of neurons
affects the learning capacity of the network. Generally, more
neurons can learn more complex patterns but may require
longer training time. However, increased learning capacity
can lead to overfitting, where the network easily learns the
training data but struggles to generalize patterns and makes
incorrect classifications or predictions on the evaluation data.
We have experimentally adjusted the value of 20 neurons.
Lower values showed limited learning capacity, while higher
values resulted in unsatisfactory results on the evaluation
dataset.

Both stages require an output layer. We use a layer called
Dense, as described in the literature [52]. The purpose of
this layer is to be fully connected to all neurons in the input
layer. Depending on themachine learning problem, the Dense
layer may have a different number of neurons. For regression
classification, where the output value is only one, a single
neuron with a linear activation function (commonly used

VOLUME 12, 2024 34411

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

for regression problems) is sufficient. For the second stage,
which involves binary classification, the model could use
two output neurons, where each activated output indicates
membership in a specific class. However, it is possible to
reduce the number of neurons in the Dense layer to one.
If the output is activated, it can be interpreted as belonging
to one class, while its deactivation can be interpreted as
belonging to the opposite class. This decision simplifies the
implementation and reduces the computational complexity of
training.

For both stages, we use the Adam optimizer [53] instead
of the traditional stochastic gradient descent. Adam is
computationally more efficient and has lower memory
requirements. To promote convergence during training and
prevent overfitting, we employ techniques such as Early
Stopping [54] and Model Checkpoint [55]. These techniques
help monitor the model’s performance during training and
stop the training process if no further improvement is
observed or save the best model weights during training,
respectively.

V. EVALUATION
A. EVALUATION OF ACTIVE MODE INTERACTIVITY TIME
SERIES ANOMALY DETECTION
Figure 8 shows the evaluation metrics for different window
sizes (N) that constitute the input to stage 1 of the model.
The figure represents the results obtained by the model on the
evaluation dataset, averaged over 100 iterations. The results
obtained are satisfactory for any window size value. There
is a slight improvement in the results as the window size
increases. However, the results start to deteriorate fromN=20
onwards. Therefore, for the final configuration, we choose
this value as the optimal window size.

FIGURE 8. Average evaluation metrics for different window sizes in the
tInteractivity time series anomaly detection model in active mode.

Figure 9 shows the classification result on the time series
of the evaluation dataset for a window size of N=20. The
classification result is positive. However, we observe the
generation of false positives. To facilitate visualization, the
figure 10 shows a temporal zoom on these intervals of time
with anomalous samples

FIGURE 9. Classification result on the evaluation set of the time series of
interactivity times obtained in active mode.

FIGURE 10. Zoom of the classification result on the evaluation set of the
time series of interactivity times obtained in active mode.

The figure 10 shows additional classification of anomalous
samples. We collaborated with the service administrators of
the remote desktops to identify the periods that the machine
learning model should interpret as anomalous. However,
these samples were not labelled as ‘Anomalous’ during the
labelling phase, as they did not meet the administrators’
criteria. In a real-world scenario, they could be considered
anomalous. It is challenging for the analyst responsible for
labelling the dataset to determine the boundary between an
anomalous and a non-anomalous sample. The administrators
did the labelling carefully; however, the network interprets
that the samples represented in yellow are ‘Anomalous’ due
to similarities. In a real implementation, this suggestion could
be useful, and it would be up to the analyst to confirmwhether
it is a false positive or a true anomaly.

Figure 11 shows the confusion matrix for the evaluation
dataset, demonstrating the correct functioning of the architec-
ture. The model misclassifies only 11 samples out of a total of
499 as ‘Not anomalous’. In this scenario, the architecture is
more prone to generating false positives due to the complexity
of labelling, the decision to prioritize recall over precision,
and the imbalance in the dataset. The false positive error
amounts to 33 samples.

Finally, table 4 summarizes the evaluation metrics for the
evaluation dataset using a window size of N=20.

TABLE 4. Summary of the evaluation metrics of the evaluation set for
anomaly detection in tInteractivity time series obtained in active mode.

B. EVALUATION OF PASSIVE MODE TIME INTERACTIVITY
TIME SERIES ANOMALY DETECTION
Passivemode interactivity time samples are not evenly spaced
in time. The first stage performs a regression task, predicting

34412 VOLUME 12, 2024

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

FIGURE 11. Confusion matrix of the evaluation set for anomaly detection
in tInteractivity time series obtained in active mode.

the value of tInteractivity for the next window with a shift of one
sample. When the samples are close in time (approximately
2 seconds), the prediction is easier as the transitions between
sample values are smooth. However, in passive mode, the
time interval between samples is determined by the user’s
actions. There can be a few milliseconds or minutes between
two samples depending on the user’s activity. For example,
when editing a document, the time between samples may
be determined by the typing frequency. But if the user is
engaged in a less active task, such as reading a document,
the frequency of clicks or keystrokes may decrease. In these
scenarios, the prediction task becomes more challenging.
Two distant timestamps may not have similar tInteractivity
values as they are less correlated than two samples obtained
within a few seconds. To address this issue, we artificially
generate a dataset with a constant sample frequency using an
interpolation process.

Starting from the beginning of the dataset, every T seconds,
the stage 1 model introduces an interpolated sample based on
the mean value of the tInteractivity samples from the previous
T seconds. Figure 12 shows the new interpolated time
series. The interpolated samples should be excluded when
calculating the evaluation metrics. Only the classifications of
real samples are taken into account. However, it is important
to correctly label the added samples as the second stage of the
architecture will learn from the available samples, including
the interpolated ones. A sample is labelled as anomalous
if the analysts label any of the passive measures within
the sampling interval T as anomalous. Additionally, during
periods of inactivity in remote desktops (holidays, nights,
etc.), no interpolation was performed.

We performed a sweep of the interpolation interval T
to determine the most suitable value for this variable.
The figure 13 shows the sweep and the preference for
an interpolation interval of 4 seconds. The figure shows a
decreasing trend in the evaluation metrics as the value of
the interpolation interval increases. The figure represents

FIGURE 12. Zoom on the passive mode interactivity time series using an
interpolation method.

FIGURE 13. Average evaluation metrics for different temporal
interpolation intervals in the anomaly detection model for passive mode
time series of tInteractivity .

the results obtained by the model on the evaluation dataset,
averaged over 100 iterations.

Figure 14 shows the evaluation metrics for different
window sizes N that form the input to stage 1 of the model.
The figure represents the results obtained by the model on the
evaluation dataset averaged over 100 iterations. The results
are satisfactory for any value of N. The sweep shows a
positive trend as the window dimension increases. The best
model achieves the best result with a sliding window size of
N=20. Beyond this value, the results deteriorate.

FIGURE 14. Average evaluation metrics for different window sizes in the
anomaly detection model of tInteractivity time series in passive mode with
a interpolation interval of 4 seconds.

Figure 15 shows the classification result on the time series
of the evaluation dataset for a window size of N=20 with a 4-

VOLUME 12, 2024 34413

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

FIGURE 15. Classification result on the evaluation dataset of the time
series of interactivity times obtained in passive mode using interpolation
techniques.

FIGURE 16. Temporal zoom of the classification result on the evaluation
set of the time series of interactivity times obtained in passive mode
using interpolation techniques.

second interpolated data using the mean. The proposedmodel
is able of generalizing the training data to the evaluation data.
The figure 16 shows a temporal zoom of the same data where
we observe an absence of interpolated samples.

Figure 17 shows the confusion matrix for the evaluation
set and the correct functioning of the architecture. The model
incorrectly classifies 19 samples as ‘Not anomalous’ out of a
total of 474.

FIGURE 17. Confusion matrix for the evaluation dataset of anomaly
detection in time series of tInteractivity obtained in passive mode using
interpolation techniques.

Finally, the table 5 summarizes the evaluation metrics for
the evaluation dataset using T = 4 s and N = 20.
Finally, there are hardly any differences in the results

obtained by themodel between the data obtained in active and
passive modes. Despite the different measurement scenarios,
the features we proposed allow for the elimination of the
dependence on the environment, office, and users fromwhich

TABLE 5. Summary of the evaluation metrics of the evaluation dataset
for anomaly detection in tInteractivity time series obtained in passive
mode and interpolation techniques.

the interactivity measures are obtained. We demonstrated
that thanks to interpolation, the results remain satisfactory in
scenarios with data obtained in passive mode.

C. COMPARISON WITH OTHER ANOMALY DETECTION
MODELS
To the best of our knowledge, no literature study has
proposed an anomaly detection model for interactivity times.
In this section, we compare the proposed model with other
alternatives.

We used the dataset described in section III-B to compare
the results of different models of anomaly detection. The
Table 6 compiles the models that exhibited the best results.
For comparison, we employed the same evaluation metrics
described in the results of the LSTM model proposed in this
article (Accuracy, Precision, Recall, F1-measure). Although
all models display good Accuracy values, they encounter
challenges with the Recall metric. While the evaluated
models excel at determining when a sample is not anomalous,
they struggle to identify anomalies satisfactorily. We attribute
this phenomenon to the imbalanced nature of the data—there
are very few anomalous samples compared to non-anomalous
ones, posing a challenge formodel learning.Moreover, unlike
RNNs and specifically LSTM neural networks, these models
do not consider the temporal information of interactivity time,
resulting in the loss of valuable information for determining
when a sample is anomalous. The results in Table 6 highlight
the suitability of LSTM-based models for time series of
interactivity time.

The results in Table 6 highlight the suitability of
LSTM-based models for time series of interactivity time.

TABLE 6. Comparison with other anomaly detection models.

34414 VOLUME 12, 2024

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

VI. CONCLUSION
Interactivity time is the time the user perceives from when
they interact with the application until they obtain a graphic
response. In this paper, we develop and implement a model
for anomaly detection in time series of interactivity using
machine learning strategies. We extensively analysed the
state of the art of anomaly detection and to the best of our
knowledge, no previous work targeted this scenario due to
the novelty of the studied metric. Our proposal addresses
a topic especially relevant in light of the prevailing remote
work trend. For the development of the model, we leverage
information available through a measurement tool based on
TeCLA deployed in a university environment and a national
parcel delivery company. We propose a single and novel
architecture based on two LSTM networks that allows us to
achieve the main objectives of the project: anomaly detection
in time series of tInteractivity in both active and passive modes.

Our proposal approach successfully employs a reduced
set of 6 features for the implementation of the machine
learning model. We validate the model using over 165,504
samples in the active mode case and over 17,541 samples in
the passive mode case. The model demonstrates satisfactory
results for both active and passive operation modes. For
anomaly detection in time series of tInteractivity in the active
mode, the proposed model achieves an accuracy of 0.9997,
precision of 0.9367, recall of 0.9779, and F1 score of 0.9569.
In the case of anomalies in time series of tInteractivity in the
passive mode, the model achieves an accuracy of 0.9995,
precision of 0.9957, recall of 0.9873, and F1 score of 0.9915.
These results clearly outperform other anomaly detection
models that we have also analysed.

We bring to light crucial aspects that were previously
unknown for the metric of interactivity time. We emphasize
the importance of accurately labelling interactivity time
datasets, fine-tuning model features through temporal win-
dows, and underscore the need to interpolate time series in
passive mode to achieve satisfactory model results.

As part of our future directions, this study delves into
sample-by-sample anomaly detection, opening up avenues
for refining the proposed model to analyse sample windows.
Furthermore, recognizing the crucial role of accurate dataset
labelling, we envision an exploration of unsupervised solu-
tions as an important next step. The model we have developed
has the potential to serve as a valuable tool for validating
future implementations in this area.

REFERENCES
[1] H.Wang, R. Shea, X.Ma, F.Wang, and J. Liu, ‘‘On design and performance

of cloud-based distributed interactive applications,’’ in Proc. IEEE 22nd
Int. Conf. Netw. Protocols, Raleigh, NC, USA, Oct. 2014, pp. 37–46.

[2] A. Menychtas, D. Kyriazis, S. Gogouvitis, K. Oberle, T. Voith, G. Galizo,
S. Berger, E. Oliveros, and M. Boniface, ‘‘A cloud platform for real-time
interactive applications,’’ in Proc. CLOSER, Feb. 2011, p. 7.

[3] A. Bartik, Z. Cullen, E. L. Glaeser, M. Luca, and C. Stanton, ‘‘What jobs
are being done at home during the COVID-19 crisis? Evidence from firm-
level surveys,’’ SSRN Electron. J., vol. w27422, 2020.

[4] C. Carraher-Wolverton, ‘‘The co-evolution of remote work and expecta-
tions in a COVID-19 world utilizing an expectation disconfirmation theory
lens,’’ J. Syst. Inf. Technol., vol. 24, no. 1, pp. 55–69, Feb. 2022.

[5] COVID-19 and Remote Work: An Early Look At U.S. Data.
Accessed: Mar. 1, 2024. [Online]. Available: https://www.brynjolfsson.
com/remotework

[6] Teradici. (2020). Remote Work 2020 Report—The Separation of Work
and Place. [Online]. Available: https://connect.teradici.com/remote-work-
2020

[7] Teradici. (2021). Remote Work 2021 Report—The Separation of Work
and Place. [Online]. Available: https://connect.teradici.com/remote-work-
2021

[8] Cloud Gaming Market by Offering (Infrastructure, Gaming Platform
Services), Device Type (Smartphones, Tablets, Gaming Consoles, PCs &
Laptops, Smart TVs, HMDs), Solution (Video Streaming, File Streaming),
Gamer Type, Region Global Forecast to 2024, Markets and Markets, Pune,
India, 2021.

[9] A. Richter, ‘‘Locked-down digital work,’’ Int. J. Inf. Manage., vol. 55,
Dec. 2020, Art. no. 102157.

[10] Y. A. Wang, C. Huang, J. Li, and K. W. Ross, ‘‘Estimating the perfor-
mance of hypothetical cloud service deployments: A measurement-based
approach,’’ in Proc. IEEE INFOCOM, China, Apr. 2011, pp. 2372–2380.

[11] Y. Yeboah and X. Hei, ‘‘Evaluating the performance of cloud services in
a browser-based network measurement platform,’’ in Proc. 19th IEEE Int.
Conf. Netw. (ICON), Singapore, Dec. 2013, pp. 1–6.

[12] W. Wu and D. Shang, ‘‘Employee usage intention of ubiquitous learning
technology: An integrative view of user perception regarding interactivity,
software, and hardware,’’ IEEE Access, vol. 7, pp. 34170–34178, 2019.

[13] T. Hobfeld, R. Schatz, M. Varela, and C. Timmerer, ‘‘Challenges of QoE
management for cloud applications,’’ IEEE Commun. Mag., vol. 50, no. 4,
pp. 28–36, Apr. 2012.

[14] J. Arellano-Uson, E. Magaña, D. Morató, and M. Izal, ‘‘Protocol-agnostic
method for monitoring interactivity time in remote desktop services,’’
Multimedia Tools Appl., vol. 80, no. 13, pp. 19107–19135, Feb. 2021.

[15] F. Safaei, P. Boustead, C. D. Nguyen, J. Brun, and M. Dowlatshahi,
‘‘Latency-driven distribution: Infrastructure needs of participatory enter-
tainment applications,’’ IEEE Commun. Mag., vol. 43, no. 5, pp. 106–112,
May 2005.

[16] V. M. G. Abarca, P. R. Palos-Sanchez, and E. Rus-Arias, ‘‘Working in
virtual teams: A systematic literature review and a bibliometric analysis,’’
IEEE Access, vol. 8, pp. 168923–168940, 2020.

[17] J. Nieh, S. J. Yang, and N. Novik, ‘‘Measuring thin-client performance
using slow-motion benchmarking,’’ ACM Trans. Comput. Syst., vol. 21,
no. 1, pp. 87–115, Feb. 2003.

[18] A. M. Lai and J. Nieh, ‘‘On the performance of wide-area thin-client
computing,’’ ACM Trans. Comput. Syst., vol. 24, no. 2, pp. 175–209,
May 2006.

[19] A. Berryman, P. Calyam, M. Honigford, and A. M. Lai, ‘‘VDBench: A
benchmarking toolkit for thin-client based virtual desktop environments,’’
in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., Nov. 2010,
pp. 480–487.

[20] T. Nguyen, P. Calyam, and R. B. Antequera, ‘‘Benchmarking in virtual
desktops for end-to-end performance traceability,’’ in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage. (IM), Ottawa, ON, Canada, May 2015,
pp. 1268–1273.

[21] F. Alali, T. A. Adams, R. W. Foley, D. Kilper, R. D. Williams, and
M. Veeraraghavan, ‘‘Methods for objective and subjective evaluation of
zero-client computing,’’ IEEE Access, vol. 7, pp. 94569–94582, 2019.

[22] A. A. Cook, G.Misirli, and Z. Fan, ‘‘Anomaly detection for IoT time-series
data: A survey,’’ IEEE Internet Things J., vol. 7, no. 7, pp. 6481–6494,
Jul. 2020.

[23] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[24] M. Braei and S. Wagner, ‘‘Anomaly detection in univariate time-series: A
survey on the state-of-the-art,’’ 2020, arXiv:2004.00433.

[25] M. Ahmed, A. N. Mahmood, and J. Hu, ‘‘A survey of network anomaly
detection techniques,’’ J. Netw. Comput. Appl., vol. 60, pp. 19–31,
Jan. 2016.

[26] M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, ‘‘A review
of novelty detection,’’ Signal Process., vol. 99, pp. 215–249, Jun. 2014.

[27] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, ‘‘Outlier detection for
temporal data: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 9,
pp. 2250–2267, Sep. 2014.

[28] J. C. B. Gamboa, ‘‘Deep learning for time-series analysis,’’ 2017,
arXiv:1701.01887.

VOLUME 12, 2024 34415

J. Arellano-Uson et al.: Interactivity Anomaly Detection in Remote Work Scenarios Using LSTM

[29] N. A. Heckert, J. J. Filliben, C. M. Croarkin, B. Hembree, W. F. Guthrie,
P. Tobias, and J. Prinz, ‘‘Handbook 151: Nist/sematech e-handbook of
statistical methods,’’ 2002.

[30] J. Shi, G. He, and X. Liu, ‘‘Anomaly detection for key performance
indicators through machine learning,’’ in Proc. Int. Conf. Netw. Infrastruct.
Digit. Content (IC-NIDC), Aug. 2018, pp. 1–5.

[31] P. J. Rousseeuw and M. Hubert, ‘‘Robust statistics for outlier detection,’’
Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 73–79, 2011.

[32] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, and S.-K. Ng, ‘‘MAD-GAN:
Multivariate anomaly detection for time series data with generative
adversarial networks,’’ in Proc. Int. Conf. Artif. Neural Netw., vol. 11730,
I. V. Tetko, V. Kůrková, P. Karpov, and F. Theis, Eds. Cham, Switzerland:
Springer, 2019, pp. 703–716.

[33] J. Struye and S. Latré, ‘‘Hierarchical temporal memory and recurrent
neural networks for time series prediction: An empirical validation
and reduction to multilayer perceptrons,’’ Neurocomputing, vol. 396,
pp. 291–301, Jul. 2020.

[34] C. C. Aggarwal, ‘‘Neural networks and deep learning,’’ Springer, vol. 10,
no. 978, p. 3, 2018.

[35] K. Kawakami, ‘‘Supervised sequence labelling with recurrent neural
networks,’’ Ph.D. dissertation, Dept. Comput. Sci., Tech. Univ. Munich,
Munich, Germany, 2008.

[36] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[37] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, ‘‘Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2019, pp. 2828–2837.

[38] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, ‘‘Robust random cut forest
based anomaly detection on streams,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2712–2721.

[39] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, ‘‘Unsupervised real-
time anomaly detection for streaming data,’’ Neurocomputing, vol. 262,
pp. 134–147, Nov. 2017.

[40] H. Xu, Y. Feng, J. Chen, Z. Wang, H. Qiao, W. Chen, N. Zhao, Z. Li, J. Bu,
Z. Li, Y. Liu, Y. Zhao, and D. Pei, ‘‘Unsupervised anomaly detection via
variational auto-encoder for seasonal KPIs in web applications,’’ in Proc.
World Wide Web Conf. World Wide Web (WWW), 2018, pp. 187–196.

[41] D. Perdices, J. E. L. de Vergara, and J. Ramos, ‘‘Deep-FDA: Using
functional data analysis and neural networks to characterize network
services time series,’’ IEEE Trans. Netw. Service Manage., vol. 18, no. 1,
pp. 986–999, Mar. 2021.

[42] Markets and Markets. (2023). Deep Learning Market by Offering (Hard-
ware, Software, and Services), Application (Image Recognition, Signal
Recognition, Data Mining), End-User Industry (Security, Marketing,
Healthcare, Fintech, Automotive, Law), and Geography Global Forecast
to 2023. [Online]. Available: https://secure.livechatinc.com/

[43] X. Su, M. Wu, and J. Xu, ‘‘A novel virtual storage area network solution
for virtual desktop infrastructure,’’ in Proc. Int. Symp. Wireless Pers.
Multimedia Commun. (WPMC), Sydney, NSW, Australia, Sep. 2014,
pp. 204–208.

[44] Citrix—All in One Workspace Solution for Secure Access. Accessed:
Mar. 1, 2024. [Online]. Available: https://www.citrix.com/

[45] Windows Remote Desktop Remote Desktop Clients for Remote Desktop
Services and Remote PCs. Accessed: Mar. 1, 2024. [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/remote/remote-
desktop-services/clients/remote-desktop-clients

[46] L. Chen, ‘‘Curse of Dimensionality,’’ in Encyclopedia of Database
Systems, L. Liu and M. T. Özsu, Eds. Boston, MA, USA: Springer, 2009,
pp. 545–546.

[47] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, ‘‘Efficient backprop,’’
in Neural Networks: Tricks of the Trade. New York, NY, USA: Springer,
2002, pp. 9–50.

[48] C. R. Harris, ‘‘Array programming with NumPy,’’ Nature, vol. 585,
no. 7825, pp. 357–362, Sep. 2020.

[49] W. McKinney, ‘‘Data structures for statistical computing in Python,’’ in
Proc. Python Sci. Conf., 2010, pp. 56–61.

[50] F. Pedregosa, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn.
Res., vol. 12, pp. 2825–2830, Nov. 2011.

[51] F. Chollet, ‘‘Keras,’’ Tech. Rep., 2015. Accessed: Mar. 1, 2024. [Online].
Available: https://github.com/fchollet/keras

[52] V. L. Helen Josephine, A. P. Nirmala, and V. L. Alluri, ‘‘Impact of hidden
dense layers in convolutional neural network to enhance performance of
classification model,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 1131, no. 1,
Apr. 2021, Art. no. 012007.

[53] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun,
Eds. San Diego, CA, USA, May 2015.

[54] Y. Yao, L. Rosasco, and A. Caponnetto, ‘‘On early stopping in
gradient descent learning,’’ Constructive Approximation, vol. 26, no. 2,
pp. 289–315, Aug. 2007.

[55] F. Wang, G. Wei, Q. Liu, J. Ou, and H. Lv, ‘‘Boost neural networks
by checkpoints,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 19719–19729.

JESUS ARELLANO-USON received the Graduate
and M.Sc. degrees in telecommunication engi-
neering from the Public University of Navarre
(UPNA), Spain, in 2019 and 2021, respectively,
where he is currently pursuing the Ph.D. degree
with the Telecommunications, Networks and
Services Research Group. In 2018, he held a
scholarship with the Automatics and Computing
Department. He was a Research Assistant with
the Telecommunications, Networks and Services
Research Group, UPNA, from 2019 to 2021.

EDUARDO MAGAÑA (Member, IEEE) received
the M.Sc. and Ph.D. degrees in telecommuni-
cations engineering from the Public University
of Navarre, Pamplona, Spain, in 1998 and
2001, respectively. Since 2005, he has been an
Associate Professor with the Public University of
Navarra. In 2002, he was a Postdoctoral Visiting
Research Fellowwith the Department of Electrical
Engineering and Computer Science, University of
California at Berkeley, Berkeley. His main

research interests include network monitoring, traffic analysis, and
performance evaluation of communication networks.

DANIEL MORATÓ (Member, IEEE) received the
M.Sc. and Ph.D. degrees in telecommunication
engineering from the Public University of Navarre,
Spain. In 2002, he was a Visiting Postdoctoral Fel-
low with the Electrical Engineering and Computer
Sciences Department, University of California
at Berkeley, Berkeley. Since 2006, he has been
with the Public University of Navarre, where
he is currently an Associate Professor with the
Department of Electrical, Electronic and Commu-

nications Engineering. In 2014, he became amember of the Institute of Smart
Cities. His research interests include high-speed networks, the performance
and traffic analysis of internet services, and network monitoring.

MIKEL IZAL (Member, IEEE) received the M.Sc.
and Ph.D. degrees in telecommunication engi-
neering, in 1997 and 2002, respectively. In 2003,
he was a Scientific Visitant with the Institute
Eurecom, France, performingmeasures in network
tomography and peer-to-peer systems. Since 2013,
he has been with the Public University of Navarre,
where he is currently an Associate Professor. His
research interests include traffic analysis, network
tomography, high-speed next generation networks,
and peer-to-peer systems.

34416 VOLUME 12, 2024

