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ABSTRACT In semantic segmentation, the efficient representation of multi-scale context is of paramount
importance. Inspired by the remarkable performance of Vision Transformers (ViT) in image classification,
subsequent researchers have proposed some Semantic Segmentation ViTs, most of which have achieved
impressive results. However, these models often struggle to effectively utilizing multi-scale context,
disregarding intra-image semantic context, and neglecting the global context of training data, i.e., the
semantic relationships among pixels across different images. In this paper, we introduce the Sliding
Window Dilated Attention and combine it with the Spatial Pyramid Pooling (SPP) to form a novel
decoder called Sliding window dilated attention spatial pyramid pooling(SwinASPP). By adjusting the
sliding window dilation rates, this decoder is capable of capturing multi-scale contextual information from
different granularities. Additionally, we propose the Semantic Attention Block, which integrates semantic
attention operations into the encoder. And adopt our proposed supervised pixel-wise contrastive learning
algorithm, we shift the current training strategy to inter-image for semantic segmentation. Our experiments
demonstrate that these methods lead to performance improvements on the SanJiangYuanMouseHole dataset
and Cityscapes.

INDEX TERMS Deep learning, semantic segmentation,multi-scale context, semantic context, pixel contrast.

I. INTRODUCTION
Semantic segmentation is one of the fundamental tasks
in computer vision, which aims to assign a semantic
label to each pixel in an image. Fully Convolutional
Networks (FCNs) [1] are the pioneering work that treats
semantic segmentation as a pixel-level prediction task, and
since then, many subsequent works have been inspired
by FCNs.

Following the tremendous success of transformers in
the natural language processing(NLP), many scholars have
proposed incorporating transformers into visual tasks.
Dosovitskiy et al. [2] proposed vision Transformer (ViT) for
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image classification has achieved remarkable performance.
Subsequently, in order to demonstrate the effectiveness of
transformer in semantic segmentation, Zheng et al. [3]
proposed SETR, had achieved state of the art onADE20K and
Pascal Context. Currently, the mainstream method employs
a transformer backbone pretrained on ImageNet [4] as the
encoder, in conjunction with a decoder based on CNN
for finetuning on semantic segmentation task. CNN-based
decoder designs primarily focus on addressing the issue
of utilizing multi-scale contextual representations. In order
to integrate multi-scale contextual information, most of
these works incorporate atrous convolution [5] or pooling
operations into the Spatial Pyramid Pooling(SPP)module [6],
[7], [8]. Segformer [9] designs a lightweight MLP as the
decoder.
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FIGURE 1. Comparison between current transformer-based segmentation
model(left) and ours(right). MSGFormer by incorporating an additional
semantic layer within the encoder backbone to utilize semantic priors
and by employing a pixel-wise contrastive learning algorithm for
semantic segmentation. These simple modifications eventually yield
performance improvements.

However, CNN possess only a limited receptive field,
which only model the local dependencies relationships of
pixels when used as decoder, thereby neglecting long-range
dependencies to some extent. Although atrous convolution
can expand the receptive field, its scope is still limited. The
segmentation performance of Segformer [9] is excessively
reliant on the capacity of the encoder, whichmay compromise
the upper bound of the model’s performance. Therefore,
by analyzing the above situation, we argue that a major
issue with the current ViT for semantic segmentation is its
inadequate utilization of multi-scale contextual information,
thereby affecting performance. In order to overcome this
limitation, we propose a novel attention mechanism, termed
sliding window dilated attention. By setting varying dilation
rates r , we can capture global contextual information at
different granularities. Coupled with sliding window dilated
attention, a SPPmodule evolves into a sliding window dilated
attention spatial pyramid pooling(SwinASPP), similar to the
Atrous Spatial Pyramid Pooling(ASPP) [7] and Pyramid
Pooling Module(PPM) [10], which can utilize multi-scale
representations for semantic segmentation.

The method employing a pretrained transformer backbone
as the encoder and SwinASPP as the decoder for finetuning
still has limitations, as it is unable to utilize the semantic-level
contextual information within the images. Jin et al. [11] pro-
posed ISNet, which enhances pixel representation by aggre-
gating image-level contextual information and semantic-level
contextual information in the decoder structure. However,
ISNet is a CNN-based method that only incorporates
semantic-level context in the decoder, while the encoder
remains unchanged. To address the issues, we use the SeMask
Attention Block, which integrates semantic information into
the hierarchical vision transformer architecture and utilizes
semantic context to enhance the global feature information

captured by the transformer backone. We insert a semantic
layer after each stage of the transformer in the backbone,
and employ a lightweight semantic decoder to accumulate
semantic features from all stages and utilize our SwinASPP
decoder for the main pixel-level prediction.

Although we employ semantic-level context and image-
level multi-scale context information, they only consider
the local dependency relationships within a single image,
neglecting the ‘‘global’’ context of the entire dataset, i.e. the
semantic relationships between pixels across images. With
the remarkable success of contrastive learning in the field of
unsupervised representation learning [12], [13], it has been
demonstrated the effectiveness of utilizing global context
within training data to enhance performance. Motivated
by this, we propose a pixel-wise contrastive algorithm for
supervised semantic segmentation. Specifically, in addition
to utilizing pixel-wise cross entropy loss for solving pixel
classification, we employ pixel-wise contrastive loss to
calculate pixel-to-pixel contrast, enforcing the embedding
of pixels to be close to positive samples while pushing
away negative samples. As the pixel-level classification
information is provided during training, positive samples are
pixels belonging to a same class, while negative samples are
from different classes. In this way, global attributes in the
embedding space can be captured to better reflect the inherent
structure of the training data and achieve more accurate
segmentation predictions.

The contributions of this paper include three fold:
• We propose a Sliding Window Dilated Attention. By set-

ting different dilation rates and combining with the
SPP module, a transformer-based decoder is designed
to explore multi-scale context information for semantic
segmentation.

• We propose a SeMask Attention Block, which can incor-
porate semantic prior information into pretrained vision
transformer backbone, providing semantic context to the
encoder.

• Wepropose a supervised, pixel-wise contrastive learning
approach for semantic segmentation. This method
exploits the global context of the training data by
expanding the training strategy beyond individual
images to encompass multiple images. By calculating
pixel-to-pixel contrast, our method leverages semantic
relationships among pixels and between pixels and
semantic regions.

II. RELATED WORK
A. SEMANTIC SEGMENTATION
Semantic segmentation can be regarded as the extension
of image classification from image level to pixel level.
FCN [1] is a representative work in semantic segmentation,
which is a fully convolutional network capable of performing
pixel-level classification end-to-end. After that, in order to
achieve precise segmentation, researchers have continuously
improved the semantic segmentation CNN from various
aspects, such as: enlarging the receptive field [5], [7],
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FIGURE 2. The overall structure of network. After the unified transformer layer, we introduce a semantic layer with SeMask blocks Fig. 3(b)
to capture semantic context. Semantic maps at each stage are aggregated using a simple upsample + sum operation and supervised for
semantic context using weighted CE Loss. In the ASPP decoder, sliding-window dilated attention with dilation rates of r=1, 2, 4 is applied
to capture features at different granularities. The final output feature maps undergo two distinct processes: i) They are subjected to
a 1 × 1 convolution to reduce the channel dimension to Ncls, and supervised by CE loss for the network’s main prediction, and
ii) They are passed through a projection head to map high-dimensional pixel embeddings into 256-dimensional
ℓ2-norm feature vectors, which are utilized for calculating the contrastive loss.

[10], [14], [15]; supplementing boundary information [16],
[17], [18], [19], [20]; refining contextual information [17],
[21], [22], [23], [24], [25]; and incorporating attention
mechanisms in the decoder [26], [27], [28]. Recent methods
have demonstrated the effectiveness of Transformer-based
architectures for semantic segmentation [3], [9], [29], [30].
However, these methods still have shortcomings.

B. MULTI-SCALE CONTEXT INFORMATION
In order to enhance the pixel representation in semantic
segmentation networks, designing a reasonable context
information aggregation scheme is a common approach.
To obtain multi-scale contextual information, DeepLab [7],
[15], [31] proposes adopt pyramid dilated convolutions
with different dilation rates, PSPNet [10] performs spatial
pooling at different scales. References [17], [32], and
[33] utilizing the image pyramid method. SegNeXt [34]
leverages multi-branch deep atrous convolution to capture
multi-scale context, and employs Hamburger to further
extract global contextual information. MaskFormer [35]
transforms the problem of per-pixel classification into mask

classification, thus unifying semantic segmentation and
instance segmentation tasks. Mask2Former [30] introduces
masked attention to reduce computational costs and memory
usage, and utilizes multi-scale high-resolution features to
segment small objects. By enhancing the subtask framework
of MaskFormer [35], it evolves into a versatile image
segmentation framework. Recently, most Transformer-based
semantic segmentation methods adopt popular Semantic-
FPN [36] and UperNet [37] as the fundamental frameworks.
They incorporate hierarchical vision Transformers such
as [38], [39], [40], and [41] as feature extraction encoder.
In this work, we designed a Transformer-based decoder with
global attention to explore multi-scale contextual information
for semantic segmentation.

C. SEMANTIC CONTEXT INFORMATION
Zhang et al. [21] proposed a context encoding module
to capture and utilize the semantic contextual informa-
tion in images, which selectively emphasizes feature map
related to the category. OCRNet [24], ACFNet [42], and
SCARF [43], EMANet [44] model contextual relationships
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within specific semantic class region based on coarse
segmentation. References [11] and [45] proposed specially
designed modules that aggregate image-level and semantic-
level contextual information in the decoder to enhance pixel
representation. More recently, IDRNet [46] employs an
intervention-driven approach to transform pixel-level repre-
sentations into semantic-level representations. Subsequently,
it executes deletion diagnostics [47] procedure to model
the relationships between semantic-level representations.
These works are CNN-based, which captures the semantic
context in the decoder. In this work, we argue that the
approach mentioned above could lead to a potential loss of
semantic information during the encoding stage. Therefore,
we propose capturing semantic context during the encoding
stage of the Segmentation Vision Transformer.

D. GLOBAL CONTEXT INFORMATION OF TRAINING DATA
Recently, unsupervised contrastive learning [12], [13], [48],
[49] has been the most widely used method for learning
representations without labels. It only requires learning
to distinguish data in the abstract semantic feature space,
making the model not only more simplified but also more
generalizable. Subsequently, [50], [51], [52], [53] have also
demonstrated that label information can help contrastive
learning in image-level pattern pre-training. Although some
works [54], [55], [56] have addressed the contrastive learning
problem in dense prediction tasks, they typically consider
contrastive learning as a pre-training step for dense image
embedding, and calculate the contrast among pixels using
augmented versions of a same image, simply utilizing local
context within a single image. References [57] and [58] pro-
poses to mine the contextual information beyond individual
images to further augment the pixel representations. In recent
study, [59] have aggregated dataset-level contextual infor-
mation beyond the input images using a memory module.
We propose a pixel-to-pixel contrastive learning method for
supervised semantic segmentation, which explores the global
pixel relationships in the training data.

III. METHOD
In this section, we introduce the semantically masked and
pixel-wise contrastive transformer in detail. First, we describe
the overview of our transformer encoder. Then, we elaborate
our SwinASPP decoder. Finally, introduce the loss function
we used in our model, especially the contrastive loss will be
described in detail.

A. SEMANTICALLY MASKED ENCODER
Encoder has four different stages,each stage consists of two
layers: The transformer layer,which is Nf number of Unified
Transformer blocks Fig. 3(a) stacked together; The Semantic
layer, which is Nc number of Semantic Attention blocks
Fig. 3(b). The transformer layer is followed by a semantic
layer to form our SeMask layer.

In the process of training, the Transformer Layer outputs
is the inputs of Semantic Layer. The intermediate semantic
prior features and semantically masked maps Fig. 3(b) will
be returned by semantic layer. The semantically maskedmaps
from each stages are aggregated using the SwinASPP decoder
for final dense-pixel prediction. The semantic prior features
from each stages are aggregated using a lightweight upsample
and sum operation-based semantic decoder to predict the
semantic-prior for our model.

1) UNIFIED TRANSFORMER LAYER
It unifying convolution and self-attention in a concise
transformer encoder. In the shallow layers, it use convolution
neural networks to decrease computation redundancy. In the
deep layers, it use self-attention to capture long-range global
dependency. By stacking local and global Unified trans-
former blocks hierarchically, it can flexibly integrate their
cooperative capabilities to promote representation learning
while achieving a balance between computational complexity
and accuracy.

2) SEMANTIC LAYER
Different from the Unified Transformer layer, the importance
of the semantic layer is to model the semantic context, which
is used as a prior to calculate the semantic attention weights
to update the feature map according to the semantic prior
knowledge existing in the image. Within each semantic layer,
there are Nc SeMask attention blocks Fig. 3(b). In order to
reduce the computational expenditure of SeMask attention
block, the method of calculation refers to the window
self-attention mechanism of Swin transformer [41]. During
the training, the semantic block can use the semantic context
provided by the image in the encoding stage to generate
semantic prior features to guide the training of the encoder.
The feature map Z from the previous transformer layer
passes through the semantic block to generate MQ, MK ,
ZV . We obtain MK and MQ by projecting features into the
semantic space. The dimension of MQ and MK are N×S,
where S denotes the number of classes, and the dimension

FIGURE 3. SeMask block. As shown in (a), Nf Uniformer blocks are
stacked at each transformer layer, and Nc semantic attention blocks,
as shown in (b), are stacked in each semantic layer at every stage Fig. 2.
The output Z from the last Uniformer block is fed into the first semantic
attention block in the semantic layer.
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of ZV is N×C , where C is the embedding dimension.
MQ generates a semantic graph and calculate the semantic
attention matrix utilizing both MK and MQ. This matrix is
passed through softmax and used to update ZV , as shown in
Fig. 3(b). The Semantic attention equation can be defined as
follows:

SeAttention(MQ,MK ,ZV ) = SoftMax(MQMT
K )ZV (1)

We apply matrix multiplication between the feature
values and semantic attention weights. The resulting matrix
product is subsequently transferred through a linear layer
and multiplied by a learnable scalar constant λ for smooth
fine-tuning. Following a residual connection, we ultimately
obtain the adapted features. These features include abundant
semantic information, which we refer to as semantic masking
features. Subsequently, the semantic query MQ is used to
optimize the semantic prior graph.

B. SwinASPP DECODER
In order to incorporate multi-scale features, we utilize
the architecture of spatial pyramid pooling to combined
with sliding window dilated attention and get the novel
SPP module called SwinASPP. The structure contains five
branches including one shortcut connection, one image
pooling branch and three sliding window dilated attention
with r = (1, 2, 4). Then the results of the five branches
are concatenated together. A MLP layer reduce channel
dimension of fused feature map to 512, and then upsample to
1/4 of the image size, fuseswith the first stage of the encoder’s
output. Finally, a 1×1 convolution takes the feature to predict
the segmentation logits with H

4 ×
W
4 ×Ncls resolution.

1) SLIDING WINDOW DILATED ATTENTION
Conventional self-attention mechanisms possess a global

receptive field. However, they incur significant computa-
tional cost. To capture multi-scale contextual information
from diverse receptive fields while maintaining a balanced
computation complexity, we propose a sliding window hole
attention with varying dilation rates.

Kr = Swin(K , r)

Vr = Swin(V , r) (2)

SwinAttention(Q,Kr ,Vr ) = SoftMax(
QKr
√
d
)Vr (3)

where Q refers to query matrix, Kr and Vr refers to the key
and value matrix results after applying the sliding window
operation with the dilation rate r to K and V , respectively.

C. LOSS FUNCTION
In the training process, both the cross-entropy loss function
and pixel contrastive loss function are utilized. The total
loss LT is calculated as the sum of two pixel-wise cross-
entropy lossesL1,L2 and a pixel-wise contrastive lossLNCE

v .
Loss L1 is calculated based on the primary prediction from
the SwinASPP decoder, while loss L2 is derived from the

semantic prior prediction of our lightweight decoder. As the
cross-entropy loss function only explores the relationships
between pixels within a single image, it overlooks the global
context among the entire training dataset images. Therefore,
the pixel contrastive loss function is introduced to enhance
the intra-class compactness and inter-class discreteness of all
images. During training, pixels within the same class will
be continuously pulled closer together, while pixels from
different classes will be pushed apart.

1) CROSS-ENTROPY LOSS
The current semantic segmentation task assigning a semantic
class to each pixel in an image, treating it as a pixel-level
classification task. Specifically, let encoder-decoder pro-
duce a dense feature F ∈ RH×W×D. Then a segmen-
tation head gSEG maps F into a categorical logits map
O=gSEG(F)∈RH×W×|C|. We define our losses on O andM
as follows:

L1 =
1

H ×W

∑
i,j

Lce
(
softmax(O[i,j]), 1⊤

c̄
(
GT [ij]

))
(4)

L2 =
1

H ×W

∑
i,j

Lce
(
softmax(M[i,j]), 1⊤

c̄
(
GT [ij]

))
(5)

where [i, j] denotes the current predicted pixel, c̄ denotes the
ground-truth label of pixel [i, j], 1c̄ denotes for converting the
class label stored in GT into a one-hot format. F denotes the
main prediction of the network, andM denotes the semantic
prior prediction.

2) PIXEL-WISE CONTRASTIVE LOSS
a: PIXEL-TO-PIXEL CONTRAST
The cross-entropy loss function treats each pixel indepen-
dently for prediction, without considering the relationships
between pixels within the same image and different images.
To address this problem, we employ a pixel contrastive
learning approach that regularizes the embedding space and
explores the global structure of the training data. Essentially,
our contrastive loss computation involves training image
pixels as data samples. For pixel vwith ground-truth semantic
label c̄, the positive sample is defined as other pixels
belonging to class c̄, while the negative sample is defined as
the pixels not belonging to class c̄. The supervised pixel-level
contrastive loss is defined as:

LNCE
v =

1
|Pv|

∑
v+∈Pv

− log
exp(v · v+/τ )

exp(v · v+/τ ) +
∑

v−∈Nv
exp(v · v−/τ )

(6)

where v+ is an pixel embedding of positive sample forPv,Nv
refer to pixel embedding collections of the negative sample,
the range of temperature hyper parameters is τ > 0. Note that
the positive samples, negative samples and the current pixel
v are not limited to a same image.
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b: PIXEL-TO-REGION CONTRAST
In contrastive learning, memory bank is a key technique that
helps learn good representations by utilizing a large amount
of data during training. However, due to the segmentation
task setting with a large number of pixel samples, most of
them store all the training pixel samples directly, such as
traditional memory [60], which will significantly slow down
the training process. Maintaining a few latest batches in the
queue, such as [61], [62], and [63], is not an optimal solution
either, because the most recent batches contain only a limited
number of images, reducing the diversity of pixel samples.
Hence, we choose to create a pixel queue for each category.
For each category, we randomly select a small number of
pixels (i.e., U) from each image in the latest mini-batch and
add them to the queue with a size of T≫U. In practical
use, we find this strategy to be very effective, but the
undersampled pixel embeddings are too sparse to utilize only
a small amount of information from the image. Therefore,
we further construct a region memory bank that stores more
representative embeddings absorbed from semantic regions
of the image.

In particular, for a segmentation dataset with |C| semantic
classes, our regional memory is constructed with a size of
|C|×N×D, where D is the dimension of pixel embeddings,
and N is the size of the region memory. The (c̄, n)-th element
in the region memory is obtained by average pooling the D-
dimensional feature vectors of all pixel embeddings labeled
as class c̄ in the current image. Utilizing region memory
allows our pixel contrastive loss function to explore the
relationship between from pixel to region. When calculating
the Eq. 6 for the current pixel v belonging to class c̄, the stored
region embeddings with the same class c̄ are considered as
positive samples, while the negative sample is defined as
the region embeddings not belonging to class c̄. Hence, the
overall training objective is:

LT = L1 + αL2 + βLNCE
v (7)

where α and β are the coefficient. We empirically set
α = 0.4 and β = 0.2.

IV. EXPERIMENTS
A. DATASETS AND METRICS
1) MOUSEHOLE DATASET
In the grasslands of the Sanjiangyuan Region, rodent pest
is one of the factors accelerating grassland degradation. The
extensive digging, root excavation, and grass consumption by
rodents lead to widespread death of pasture. We employ the
MouseHole dataset to study the relationship between rodent
pest and grassland degradation, this dataset comprises 7,562
finely annotated RGB images captured in the Sanjiangyuan
Region of Qinghai Province, covering a total of four semantic
classes: eroded grassland around MouseHole, non-eroded
grassland around MouseHole, stone, and cow dung. All
images in the dataset have a resolution of 512×512. A total of
6,187 images were used as the training set, while 688 images

were divided into the validation set, and 687 images served
as the test set.

2) CITYSCAPES
CityScapes is one of the most challenging scene parsing
datasets containing 5,000 fine-annotated images with 19 cat-
egories. The dataset comprises 2,975/500/1,525 images for
the training, validation, and test sets, respectively.

3) METRICS
We report mean Intersection-over-Union (mIoU) over all
classes for evaluation.

B. IMPLEMENTATION DETAILS
1) TRAINING
All experiments presented in this section are imple-
mented using the MMSegmentation1 codebase on a server
with 8 NVIDIA GeForce GTX 1080Ti. We employ the
backbone UniFormer [38] and SwinASPP to comprehen-
sively validate the proposed algorithm. We adhere to the
conventions of [9] for training hyper-parameters. To ensure
fairness, we initialize backbone with pre-trained weights on
ImageNet [4], while the remaining layers being randomly
initialized. For data augmentation, we use scaling with a
ratio randomly sampled from (0.5,0.75,1.0,1.25,1.5,1.75),
color jitter and horizontal flipping. We randomly crop large
images and pad small images to a same size of 512 × 512
for MouseHole dataset and 768 × 768 for Cityscapes.
In order to train the model for semantic segmentation tasks,
we employed the AdamW [64] optimizer with a base learning
rate γ0.We adopt the polynomial annealing policy to schedule

the learning rate γ = γ0

(
1 −

Niter
Ntotal

)0.9
. A linear warm-

up strategy was used for 1,500 iterations. We set the base
learning rate γ0 to 0.00006, weight decay to 10−2 and train
for 160K iterations with a batch size of 16 for MouseHole
dataset and 8 for Cityscapes.

2) INFERENCE
To deal with varying image sizes during the inference,
we maintain the aspect ratio constant and resize the images
to the smaller edge resolution, and then rescale to the original
dimensions before calculating the evaluation metrics.

C. ABLATION STUDIES
1) SwinASPP DECODER
In order to prove that SwinASPP improves efficiency,
we compare it with DeepLabv3+ [31] and SegFormer [9].
To ensure a fair comparison, they utilized Uniformer [38]
as the encoder for both. Table 1 presents a comparison of
parameters, FLOPs, and mIoU. In Table 2, We investigated
the influence of various dilation rates on performance.

1https://github.com/open-mmlab/mmsegmentation

VOLUME 12, 2024 33549



P. Yang et al.: MSGFormer: A DeepLabv3+ Like Semantically Masked and Pixel Contrast Transformer

TABLE 1. Comparision of SegFormer and DeepLabV3+ with ours. ‘‘Ours’’
refers to the encoder using only Uniformer-S, while the decoder employs
SwinASPP.

TABLE 2. Ablation on dilation rates. The r = (1, 2, 4) is the optimal
setting.

2) SeMasK BLOCK
We conducted ablation studies on different variants of
the SeMask Block. We investigate the impact of semantic
attention and the number of SeMask blocks (Nc), reporting
results through single-scale inference on the MouseHole val
dataset. In Table 3, by replacing the Semantic Attention
Block with a simple self-attention block on the Uniformer-
S variant, it becomes evident that the simple attention does
not contribute to result improvement. This demonstrates the
effectiveness of our SeMask Block. In Table 4, we investigate
the impact of the number of SeMask attention blocks on
performance by varying the Nc values within each semantic
layer of the Uniformer-S variant. We observe that Nc =

[1, 1, 1, 1] is the optimal setting.

TABLE 3. Ablation on Semantic Attention. A simple self-attention block
result in performance degradation.

TABLE 4. Ablation on Nc . The Nc = [1, 1, 1, 1] is the optimal setting.

D. PIXEL-WISE CONTRASTIVE LOSS
We verify the design of our contrastive loss function.
In Table 5, our baseline employs Uniformer as the encoder
and SwinASPP as the decoder. We respectively incorporate
pixel contrast and region contrast, and observe consistent
performance gains (pixel contrast from 77.74% to 77.86%,
region contrast from 77.74% to 77.97%). Finally, the
combination of both forms of contrast yields improved
segmentation performance, highlighting the necessity of

TABLE 5. Ablation on pixel contrast and region contrast. They both
contribute to performance improvements, but their combination yields
even better results.

jointly considering pixel-to-pixel contrast and pixel-to-region
contrast.

E. MAIN RESULTS
1) MOUSEHOLE DATASET
Utilizing SeMask Uniformer as the encoder and SwinASPP
as our primary predictor during training, along with the
incorporation of cross-entropy and pixel-level contrast loss
functions, we achieved a leading performance of 78.3% on
the mIoU metric. The comparison of our results with those of
other models is presented in Table 6.

2) CITYSCAPES
We conducted experiments on the Cityscapes dataset and
reported the results in Table 7. The results show that our
model achieves a competitive performance with mIoU of
81.43%. Therefore, our approach can obtain better feature
representations for semantic segmentation.

FIGURE 4. Qualitative results on MouseHole-Val. The improved areas are
marked with red solid boxes.

3) QUALITATIVE RESULTS
In Fig. 4, we compare the qualitative results of SegFormer
andMSGFormer on theMousehole dataset. The Fig. 4 results
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FIGURE 5. Qualitative results on Cityscapes-Val. The improved areas are marked with yellow solid boxes.

TABLE 6. Performance comparison on MouseHole-Val. We report both
single-scale(SS) and multi-scale(MS) mIoU on MouseHole validation set.
We use the results from the official MMSegmentation trained model.

demonstrate that our MSGFormer generates segments that
are both more accurate (as shown in the second and fourth
rows) and more complete (as shown in the third row) in
complex grassland scenes. Fig. 5 shows that our approach
obtain significant improvements in challenging areas, such
as small objects and object boundary. This is because

TABLE 7. Performance comparison on Cityscapes-Val. All experimental
results are obtained under the input size of 768 × 768. We use the results
from the official MMSegmentation trained model.

our Transformer encoder can capture semantic context,
while pixel contrast enables discriminative representations,
retaining more detailed semantic information. The improved
regions are marked with solid boxes.

V. CONCLUSION
In this work, we observe several limitations in the current
Semantic Segmentation ViT models, including the lack
of an efficient decoder to utilize multi-scale context and
the disregard for rich semantic relations among pixels
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across different images. Additionally, direct finetuning of
the segmentation encoder failed to consider the image’s
semantic context comprehensively. Therefore, we propose the
Sliding Window Dilated Attention, integrated it into the SPP
to capture multi-scale contextual information from different
granularities efficiently. By means of pixel-wise contrastive
learning, we achieved cross-image category-discriminative
representations under supervised settings, learning global
context from the training data. We propose the Semantic
Attention Block, which utilizes semantic attention to capture
semantic context and enhance the semantic representation
of feature maps. Finally, we conduct experiments on the
MouseHole dataset of SanJiangYuan project and the public
dataset Cityscapes, our approach demonstrate improvements
in semantic segmentation performance. We believe that
the Transformer architecture proposed in this work holds
important reference value for future research in this field.
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