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ABSTRACT The convergence of Information Technology (IT), Operational Technology (OT), and Educa-
tional Technology (ET) has led to the emergence of the fourth industrial revolution. As a result, a new concept
has emerged known as Digital Twins (DT), which is defined as ‘‘a virtual representation of various objects
or systems that receive data from physical objects/systems to make changes and corrections’’. In the aviation
industry, numerous attempts have been made to utilize DT in the design, manufacturing, and condition
monitoring of aircraft fleets. Among these research efforts, real-time, accurate, fast, and predictive condition
monitoring methods play a crucial role in ensuring the safe and efficient performance of aircraft. Using DT
for condition and fleet monitoring not only enhances the reliability and safety of aircraft but also reduces
operational and maintenance costs. In this paper, the conducted studies on the applications of DT systems
for condition monitoring of aircraft units and the aerospace sector are discussed and reviewed. The aim
of this review paper is to analyse the current developments of DT systems in the aviation industry as well
as explain the remaining challenges of DT systems. Then Finally, future trends of DT systems along with
aircraft are presented. Among reviewed papers, most of them have used computational fluid dynamics, finite
element methods, and artificial intelligence techniques for developing DT models for aircraft. At the same
time, most of these analyses are dedicated to the failure and crack detection body of aircraft as well as engine
fault detection. Life prediction is another popular application for using DT in aircraft units that could help
the engineers predict the maintenance required for different parts of the aircraft. Finally, the application of
DT in marine, power systems, and space programs has been also reviewed and the lessons learned from them
have been translated to the aviation sector.

INDEX TERMS Computational fluid dynamic, deep learning, machine learning, real-time condition
monitoring, remaining useful life, structural health management.

I. INTRODUCTION
About 1900 annual aviation incidents were recorded in 1st
decade of the 21st century [1] while it was reduced in recent
years to about 1500 incidents per year that must be reduced

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

further. As reported in [2], 49% of crashes are related to
pilot error, 23% are related to mechanical failure, and the
remaining 28% are caused by other reasons such as weather
conditions, sabotage, bird strike, mid-air collision caused by
other aircraft, overloaded aircraft, ground crew error, etc.
As a result of this, condition, and fleet monitoring methods
(CFMM) play a significant role in reducing the chance of fatal
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FIGURE 1. The timeline of DT, from the beginning to present day, adapted
from [3].

crashes by managing engine failures, structural failures, fuel
starvations, wrong take-offs and landings, aircraft control,
navigation, etc. However, fatal crashes have still a high annual
number and must be much decreased. This high number of
incidents and crashes is because conventional CFMMs are
usually based on time-consuming and sometimes methods
with low accuracy that require the involvement of human
operators.

Conventionally, condition monitoring of aviation units is
divided into two main groups, on-flight methods, and off-
flight methods. The on-flight condition monitoring methods
usually use sensors and real-time data during the aircraft
flight mission while human operators or Artificial Intelli-
gence (AI) techniques are used for decision-making regarding
the health management of the aircraft. The most common
on-flight condition monitoring methods are:

• Engine health monitoring: in this method, sensors are
used to measure temperature, pressure, vibration, and
other critical parameters of aircraft to analyse engine
health, detect anomalies, and predict coming failures [4],
[5].

• Aircraft health and usage monitoring systems: this is a
real-timemethod tomonitor different components in air-
craft, including engines, gearbox, wheel, structure, etc.
The data gained by this method, during the flight, could
be used for future off-flight predictive maintenances [6],
[7].

• Structural health monitoring: for crack, fatigue, and
damage detection purposes during the flight, sensors
are used. Distributed sensing systems, wireless sensor
networks, fibre optic sensors, and strain gauge sensors
are the most conventional types for this purpose [7], [8].

• Oil debris monitoring: in this method, the oil samples are
gathered online and analysed. Then, they are analysed
for metal particles or contaminants which shows the
potential problems in aircraft [9], [10].

On the other hand, off-flight methods are performed when
the aircraft is in the airport or industrial maintenance site.
Here, different techniques are used to detect cracks and mal-
functions in the engine, structure, or electrical system of an
aircraft. At this stage, the aircraft would be repaired and ready
for the next flight. The most common off-flight condition
monitoring methods are:

• Ultrasonic testing: high energy acoustic waves are gen-
erated through pulser -receiver and transducer, with a
frequency ranging from 1 to 50 MHz. The aim of using
this method is to detect flaws, identify their sizes, and
estimate the material properties in presence of these
flaws [11], [12].

• Magnetic particle inspection: for surface and near-
surface flaw detection in ferromagnetic materials, this
method is used. This method consists of following steps:
component magnetization by direct current or electro-
magnetic induction, impose magnetic particles to the
surface, and using a trained inspector for detecting the
flaws [13], [14].

• Eddy current testing: To detect the flaws in electrically
conducted materials, this method is used. In this method,
a current is injected into the conductive material and
the impedance is measured. Then, based on a correla-
tion between current and the measured impedance, the
type, location, size, and the existence of defect could be
detected [15], [16].

• Photoelasticity testing: for visualization of stress distri-
bution in different components of aircraft, optical effects
of stress are investigated. However, because of its com-
plexity, sensitivity, and technological advancements in
other methods, photoelasticity tests are less common
now [17], [18].

• Coin-tap method: this is the most well-known vibration
test method where defect detection is conducted based
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on differences between the sound of defected and non-
defected zones. In this method, even the depth of the
defect could be measured [68], [69].

• Radiographic inspection: This method involves the
utilization of X-rays or gamma-rays. These waves pen-
etrate the material and show the internal condition of
the material and possible flaws. However, these methods
are costly and time-consuming, and there are safety
concerns about them [53], [70].

• Transient thermography: by feeding the energy heat into
the test object and using thermal images of the test
object’s surface, it could be conceived that the defects
create thermal impedance. Thus, this method could be
used for the sake of defect detection in different compo-
nents of aircraft [71], [72].

A comprehensive literature review on the comparison of
different condition monitoring methods of aviation units is
presented in Table 1 of the paper.

To find a compromise between accuracy, reliability, and
speed of decision-making during the condition monitor-
ing of aviation units, fundamental changes in conventional
condition monitoring techniques are required. The aim of
these changes should be optimal monitoring performance,
reduced downtime of devices, providing continuous insights,
and enabling predictive and prescriptive monitoring strate-
gies. These requirements are what Digital Twins would be
able to offer. Last recently and with the developments of
Cyber-Physical Systems (CPS) [73], [74], [75], [76], [77],
distributed computing [78], [79], [80], Artificial Intelligence
(AI) methods [81], [82], [83], [84], [85], Internet of Things
(IoT) [86], [87], [88], [89], and 5th and 6th generation
(5G) and (6G) Internet [90], [91], [92], [93], in aircraft sys-
tems, CFMMs could be conducted faster, more accurate, and
smarter, thus, the possibility of fatal incidents and crashes
could be reduced.

According to Technology Roadmap, published byNational
Aeronautics and Space Administration (NASA), DT is
defined as [94]: ‘‘DT is a highly accurate simulation of an
object, vehicle, or system that contains multiphysics, mul-
tiscale, and probabilistic models that gains the data and
information from the sensors implemented in physical object
and use them for control, design, condition monitoring, and
manufacturing purposes of the physical object’’. In 2014,
Grieves introduced the concept of ‘‘Digital twins’’ in a white
paper for production life cycle management [95]. After that
NASA and the U.S. Airforce used DTs for many of their
manufacturing processes, missions, etc. A brief history of
DTs is shown in Figure 1, adapted from [3].
There is another concept, related to theDT, which is Digital

Thread (DTH), which is defined as a data-driven structure
that make the connection between different generated and
stored information and data through DT, and let them be
flown continuously. The aim of DTH is to integrate different
data in one platform which results in seamless use and easy
accessibility of the data. DTH is a process with multistep for

the sake of complementation of DTs, over the entire lifecycle
of the physical entity. It contains all the information necessary
to generate and provide updates to a DT.

For further increase in accuracy, computational time, and
decision-making procedures, all these concepts have been
gathered into a new concept, known as Digital Twin (DT)
[96], [97]. The concept of DT could significantly enhance
the performance efficiency of CFMMs and further reduce
the possibility of crashes in the future. The DT concept has
been studied extensively and reviewed generally in literature
for aviation sector [98], [99]. However, the lack of extended
review on the application of DT for CFMM of aircraft and
other aviation units is lacking. Therefore, this paper aims to
present an extended review on the efforts conducted regarding
the application of DT in CFMMs for aircraft. To do this,
before delving into this topic, in section II of the paper,
a brief introduction is provided on DT, cyber-physical sys-
tems, IoT (Internet of Things), and their common features.
Then, sections III and IV involve with presenting the status
and challenges in the aircraft industry, as well as challenges
related to DTs and their associated infrastructures. Addi-
tionally, solutions for the application of DTs in the aviation
industry are presented. In the section V, future trends in the
aviation industry, such as electrified aircraft, hydrogen-based
aircraft, etc., are discussed. Furthermore, the future of DTs
and IoT is briefly explored.

It should be noted that the main contributions of this paper
could be listed as follows:

• Reviewing the condition monitoring methods for avia-
tion units, with respect to advantages and disadvantages.

• Introducing the concept of DT for aviation and review-
ing the most important aspects of the DTs.

• Presenting the most important industrial projects regard-
ing the applications of DTs in aviation sector.

• Reviewing more than 20 papers which present DT-based
schemes for condition and health monitoring of aviation
units and aircraft.

• Reviewing the papers in space, marine, and power
system sectors that used DT for condition monitoring
purposes. Then, tried to transmit their knowledge to the
aviation sector.

• Presenting the challenges of DT implementation for
aircraft, regarding their different aspects.

• Reviewing the future trends in electric aircraft, DT sys-
tems, and DT-electric-aircraft.

Methodology of Literature Review
The research conducted in this paper has been carried

out based on a systematic literature review, based on what
is proposed in [100]. The aim of this literature review is
characterization of DTs for condition monitoring purposes.
The data and information have been collected until the end
of December 2023. For finding these information Google
Scholar, and Google search engine have been reviewed and
all papers, books, etc. have been stored. After gathering the
data related to the application of DT for condition monitoring
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TABLE 1. Review on condition monitoring methods in aviation units.

of aircraft and other mentioned applications, the following
research questions have been answered to form this paper.

A. What was the purpose of using DT?
B. Why the related research used DT instead of conven-

tional methods of condition monitoring?

C. How DT was implemented in related research and what
kind of modelling has been used for DT implementation,
intelligent or conventional modelling?

D. What was the gap of the related research?
E. What was the lesson learned from the research.
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FIGURE 2. The illustration of a DT for an aircraft system.

II. DIGITAL TWINS: DEFINITION, HISTORY, AND
APPLICATIONS
Although due to the variety of applications for DT, different
definitions have been presented for them, all these defini-
tions have three common characteristics, physical object,
virtual models, and data-based connection of these two
domains [101].

In an aircraft, the Digital Twin (DT) concept is illus-
trated in Figure 2, which comprises five crucial components:
the physical domain, sensors, data processing units, virtual
models, and data lines. Sensor units receive data, prepro-
cess it by filtering out erroneous information and managing
large datasets, and then transmit this data to the virtual
domain/models. Within the virtual models, an analysis is
conducted to make desired decisions or estimate required
values. Subsequently, these decisions and estimations are
sent back to the physical object to effect changes. These
changes can pertain to the design or pre-design stages of the
aircraft or can be used for monitoring the performance of the
object or system. They may also be utilized to send a series
of commands to manufacture machines or assembly lines.
According to [102], each DT must have seven characteristics
that are:

• High fidelity: High fidelity means that DT must have
an extremely high accuracy in performance, appearance,
and subsystems. As a matter of fact, such accurate DT
could help the designers, engineers, and operators to
design, monitor, manufacture, and control the physical
system/domain with high reliability and minimum pos-
sibility of failures.

• Dynamic and Self-evolving: Since the physical
domain/object changeswith respect to time, theDTmust
have also the same characteristics and must be adapted
with respect to the changes of the physical object. These
changes could be in structure, characteristics, perfor-
mance, or in control systems.

• Identifiable: Each physical asset of an object or system
must have its own specific DT to evolve and change over

time. For instance, in an engine, the geometrical models,
manufacturing models, monitoring models, estimation
models, design models, etc. must be different and iden-
tifiable from each other. Thus, if there is a need to make
changes in some part, just the related information is
changed, and the rest remains constant.

• Multiscale and multi-physical: Each DT must be capa-
ble of concluding macroscopic properties such as shape
size, tolerance, etc. and must conclude microscopic
properties such as surface roughness or intermolecular
forces. On the other hand, DTs ought to present all char-
acteristics of physical objects such as thermal, electrical,
mechanical, magnetic, economic, and their couplings.
This capability is known as multi-physical and increases
the accuracy and reliability of results.

• Multidisciplinary: DTs are the fusion of multiple dis-
ciplines such as computer science, machine science,
electric and electronic engineering, control engineer-
ing, mechanical engineering, and industrial engineering.
This means that beyond each decision for a system,
multiple considerations related to different disciplines
are considered.

Hierarchical:DTs model different components of a whole
system with different levels of priorities, concerns, limita-
tions, and trade-offs. For instance, in an electric aircraft,
there are different levels of DTs. DT of propulsion units,
DT of engine units, DT of drive train, etc. Each one of these
components comes with different priorities such as weight,
safety, reliability, efficiency, and even temperature.

With respect to the last property of DT and according
to [103], Figure 3 is presented as an example to show the
different hierarchical levels of DT in an aircraft. The unit
level of DT in an aircraft consists ofmaterials, equipment, and
components that together form a system such as propulsion,
protection, drivetrain, etc. In the upper level, there are two
types of systems, the whole system which is here an aircraft
and all systems of an aircraft, known as the sum of subsys-
tems. At the last level and the top layer, there is a DT that
concerns the whole life cycle of an aircraft including, pre-
design, design, manufacture, control, monitoring, prediction,
health management, disposal, etc. such as those conducted in
[104], [105], [106], [107], [108], and [109].
DT has been used in many fields of industries such as

power systems [110], [111], [112], [113], oil and gas energy
systems [114], [115], healthcare sector [116], [117], [118],
marine industry [119], [120], [121], smart cities [122], [123],
[124], agriculture [125], [126], [127], environmental protec-
tion [128], and construction [129], [130], [131]. According
to [132], the market of DT in the year 2020 was only about
3.1 BN and this value is predicted to be 48.2 BN in 2026.
On the other hand, until the end of 2022, 75% of industries
will be using IoT as a basic platform for DT [132]. The
communication path initiates the existence of IoT to enable
fast data/command transmission while for integrated calcu-
lation into physical assets, Cyber Physical Systems (CPS)
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FIGURE 3. Different hierarchical levels of a DT for aircraft.

FIGURE 4. The correlation of CPS, IoT, and DT.

are required. Figure 4 presents the exact relation between
IoT, CPS, and DT. CPS is defined as multiple computers
connected to each other and interacting with the physical
world through sensors, actuators, and feedback loops [133].
Reactive computation is one of the most important features
of DTs that relies on asynchronous utilization of computa-
tional resources for a real-time and extremely fast response
system. Another significant characteristic of CPS is concur-
rency whichmeans usingmultiple computation strategies and
processes at the same time to achieve a desired goal [134].
CPSs usually contain four layers, as shown in Figure 5. The
first layer is related to the physical object which could be a
component, the whole system, or even a series of systems.
This layer sends the data and information to computation
units to decide or apply the changes. The second layer is
responsible for fast and real-time data/command transmission
that receives the data from the physical layer and commands
from the computation layer. This layer could consist of 5G
internet stations, WiFi access points, or some sort of industry
switches. The third layer is responsible for performing cal-
culations, data management, and decision-making that must
contain computers, data centres, and servers. Finally, there is
a terminal layer that is responsible for executing or starting
the whole process of CPS [135].
IoT is another term that must be defined that is used

in the body of DTs to make data transmission faster and

FIGURE 5. The layer-based structure of CPS, adapted from [134].

real-time. IoT is defined as ‘‘a dynamic global network infras-
tructure with self-configuring capabilities based on standard
and interoperable communication protocols where physical
and virtual ‘Things’ have identities, physical attributes, and
virtual personalities and use intelligent interfaces, and are
seamlessly integrated into the information network’’ [136].

III. DIGITAL TWINS IN THE AVIATION INDUSTRY
A. LITERATURE REVIEW ON THE APPLICATION OF DT IN
AIRCRAFT
The first steps of using DT in aviation systems started by
NASA when it used DT to design maintenance strategies
and malfunctions prediction in an aircraft, to reflect the real
condition of aircraft. The utilized DT was able to optimize
the performance of the aircraft, estimate faults in advance,
and help operators understand the faults better and provide
efficient solutions. In this regard, the U.S. Airforce dedicated
a $20 million budget to research and develop a DT for F-35
fighters. The aim of using DT for the fighters was to improve
manufacturing efficiency and reduce cost. An interesting
point of this work is the utilization of a digital thread system
for supporting the made decision, regarding unsatisfactory
products which resulted in improvements of multiple engi-
neering processes. Airbus also participated in the competition
of DT application in aircraft, in 2011, where the A350XWB
assembly line contained DT. This line participated in manu-
facturing many airplanes such as A330, A380, and A400M.

GKN Aerospace in partnership with General Electric (GE)
and the Centre for Modelling & Simulation (CFMS) are
investing on the development of a DT for their manufac-
tured aircraft [137]. The aim is to reduce time inefficiencies
and traditional physical prototyping costs [138]. Airbus has
a wide digital transformation program to design, manufac-
ture, and support the next generation of aircraft produced
by Airbus. Also, the timeline of industrial production rates,
operating performance of aircraft, and customer satisfaction
would be increased by using DT, in the next generation of
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aircraft. It is estimated that the implementation of DT in
A321XLR aircraft would 30% reduce the fuel burn. Also,
the Future Combat Air System (FCAS) is another DT-based
project of Airbus that would not only improve the defence
technology of Europe but also will improve the spillovers
into the civilian world [139]. German Airlines, Lufthansa,
has developed a new DT-based project, known as AVIATAR
which is an aircraft fleet usingDT. The aim of this project is to
use previous fleet management solutions, and data related to
science and engineering to provide a full range of integrated
digital services and products for its airline [140]. Boing is
also using the DT for the digital design of the T-7A Red
Hawk which is the first aircraft, satellites, and assets which
are designed completely using DT-based methods. By using
DT for this aircraft, the quality of the 1st product 75% while
80% of assembly time was reduced and finally, after 36 hours
aircraft experienced its first flightmission [141]. Boing is also
using DT for other products such as 737 MAX, 777X, and
787 for their production quality increase and digital life cycle
assessment [142]. KLM, Royal Dutch Airlines, is another
aerospace industry that uses 900,000 views of 104 DT to
reduce the travel movements of crew, enhance the customers’
services, and reduce the carbon footprint [143]. There are also
other real-world projects on the application of DT in aviation
units, such as the Northrop Grumman industry that is devel-
oping the DT for Bombardier CRJ700 [144], SAFRAN [145],
and Honeywell [146].
It should be noted that conducted studies have been divided

into two groups. The first group is related to the investigations
and studies that used conventional modelling methods such
as finite elements, equivalent circuits, etc. while the second
group of studies have used artificial intelligence techniques
for estimating and characterizing the behaviour/reaction of
aircraft.

1) DIGITAL TWINS BASED ON CONVENTIONAL MODELING
METHODS
The very high speed of aircraft in landing and take-off
conditions and the level of stress on the tire could cause a phe-
nomenon called a flat spot. Flat spots could result in wearing
out of the tire and increase the possibility of the tire blowing
up. To perform such a process, in [147], firstly experimental
data of tire characteristics against ideal and non-ideal landing
were acquired based on the performed tests on the tire in the
United States Air Force 168-inch internal drum dynamometer
(168i) and the aircraft 1 (A1). The performed experimental
tests aimed to present different ranges of sink rate, tire profile,
and yaw angles to increase the comprehensiveness of the
tests. After that twomethods (linear, and nonlinear) were used
to calculate the touchdown wear response surface of the tires.
Equations (1) and (2) express the relation between touch-
downs wear response surface and sink rate, tire profile, and
yaw angle for each linear and nonlinear method, respectively.
where, SR is sink rate, TC is tire condition, θYaw is yaw angle,
Ci is constant value, P is pressure, Fx (x) is drag force in

FIGURE 6. DT for tire health management in aircraft landing gear,
adapted from [147].

x direction, and FZ (x) is drag force in Z direction. Thus,
by accessing these models for the wear mechanism of tires,
the DT process needs to be developed and implemented for
A1 aircraft. To do this, firstly flight scenarios are considered
and selected. After that, based on sink rate, tire condition,
yaw angle, and touchdown speed, DT must calculate the
touchdown wear response surface. After that probability of
aircraft failure due to touch down is evaluated and based
on the probability of aircraft failure and historical data the
permission of the flight mission is published or cancelled.
At last, after adding the field results of the mission, the DT
model is updated according to flowchart Figure 6.

TWLM = C1SR+ C2TC + C3θYaw + C4 (1)

SWRflux = A
∫
Fx(x)

P
FZ (x)

dx (2)

DT is used in [148] to increase the estimation accuracy
and to reduce the prediction errors conducted for condition
monitoring of a whole quadcopter with 3D printed frame,
Pixhawk flight controller, NTM Prop Drive 28-36 750Kv
motor, and APC Slow Flyer 10 × 4.7 propellers. Different
models were used to characterize the performance of the
quadcopter under different flight missions. The propeller sys-
tem was modelled by blade element momentum theory [149]
and the equivalent circuit model was used to characterize the
operation of the brushless DC (BLDC)motor. BLDCmotor is
used in quadcopters to receive the DC power from the battery
and propeller to provide the required rotational movements
of the blades. By applying these models, the speed of the
quadcopter was determined based on the weight of the device
during the mission. The important aspect of this study was the
fact that the proposed models for the propeller and electric
motor were updated after each flight by changing the value of
calibration factors. Calibration factors are a set of variables
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FIGURE 7. The updating procedure of the models used in the virtual
domain to monitor the condition of the quadcopter during missions [149].

that were considered in related models of each component
to make the characteristics of the virtual twin more like the
physical twin. The diagram of such an updating process is
illustrated in Figure 7.
Electrohydraulic servo-valves are usually modelled and

simulated by means of FE-based computational fluid dynam-
ics. The applications of such modelling methods for sys-
tems that require a fast solution are questionable [150].
To overcome this issue, in [151] a fast, adequately accurate,
numerical, and semi-empirical formulation was presented
to characterize the behaviour of the electrohydraulic actu-
ator used in aircraft. The model was developed so that
the real-time condition monitoring of the actuator system
becomes conductible through DT. The proposed model used
as a fast and accurate model of the actuator and valves is
shown in the block diagram of Figure 8. In this figure, PSR
is the supply differential pressure, CLK is leakage coefficient,
Gp is the pressure gain, xSS is the saturation spool displace-
ment, xS is the spool displacement, QJ is the working flow,
andGQ is the flow gain. Also, in thismodel, actual differential
pressure is calculated based on equation (3):

P12 = xSt
PSR

max (|xS | , xSS) + GPQCLK xSS
(3)

where, the xSt is the equivalent spool displacement, and the
GPQ is the pressure to flow gain ratio. By applying this model,
the root mean squared error (RMSE) of the predicted P12
was less than 0.1%. This means that the value of P12 was
calculated with high accuracy and was in good agreement
with the results of computational fluid dynamic analysis. As a
result of this study, the proposedmethod was capable of being
used as DT where a fast and real-time fluid dynamic compu-
tation was needed. As a further step, the ANN-based models
could be also applied to further reduce the computation time
while the accuracy can be maintained or even enhanced.
The ANN models are capable of being adapted based on the
requirements that one may have for fluid dynamic analysis.

FIGURE 8. The block diagram used to characterize the electrohydraulic
behaviour of understudied actuator, adapted from [151].

The ANN-based models could even adapt themselves to fit
more to the flight conditions, based on their feedback loop.

The Environmental Control System (ECS) is obligated
to control the airflow through the cabin of an aircraft that
consist of multiple complex subsystems and procedures. Any
failure in this system results in malfunction and inappropriate
operation of the aircraft and reduces the required time for
maintenance, known as unscheduled maintenance. The ECS
depends on many flight conditions such as the weight of the
aircraft, and weather conditions during flights, and it depends
on many other factors such as type of manufacturing, type of
materials used in aircraft, etc. [152]. In [153], a DTmodel was
proposed to perform the ECS of any aircraft based on real-
time/experimental data to avoid the consequences of ECS
failure. The proposed method has three significant properties,
i) the component-based library of the devices engaged in the
ECS procedure, ii) the capability to model degradations of
components, and iii) the inclusion of the environmental and
weather conditions such as humidity in the ECS procedure.
By applying such a smart ECS procedure, the impact of
flight, manufacturing, and environmental conditions, known
as experimental data, was considered in the ECS procedure of
the B737-400 aircraft. Firstly, the data related to temperature,
pressure, mass flow, valve angle, and efficiency are acquired.
After that, the results and data are divided into two major
groups, faulty data, and healthy ones. Then, in fault mode,
the data are used to simulate the characteristics of different
components to gain their degradation factor and after the fault
detection in any of the subsystems, the used models would
be updated. This procedure is shown for the whole ECS in
Figure 9. The results of such DT implementation in B737-
400 aircraft were discussed in three different cabin zones,
cockpit, forward cabin, and aft cabin and for three different
temperatures, 5oC, 18oC, and 30oC. After the simulation, the
temperature and pressure for different components such as
compressor, turbine, heat exchanges, air conditioner, etc. are
obtained.

The cost of fuel that is used for running the engines of
aircraft in addition to the manufacturing, repair, and overhaul
(MRO) cost are the main sources of direct aircraft costs.
All these considerations together define as engine fleet man-
agement, by cost optimization. To avoid complexities and
reduce the risk of failures, in [154] a DT-based diagnosis and
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FIGURE 9. The ECS failure diagnosis procured by means of DTs in B737-400, Boing aircraft, adapted from [149].

prognosis method was proposed. The important part of this
method was the provided multilevel model of the engine and
its components and the DT was used to analyse the failures,
predict the remaining useful life of all engine components,
and change the engine working conditions based on the mis-
sion specifications. The fleet management data were updated
based on the received information of the CFM56-5C commer-
cialized engine of Airbus A340-300 aircraft. The DT consists
of three sub-layers, at the first layer, a model for the engine
cycle was adapted based on experimental and historical data.
In this layer, based on the CFD method, the characteristic of
different components of an understudied engine is discussed
when they are under off-design conditions. The next and
second layer of the DT model uses mean-line models to
extend the components map beyond the areas that are difficult
to reach and calculate by CDF. Finally, there is a third layer
which is the library of CFD models of each component such
as the Fan and Booster section, High Pressure Compressor
(HPC), Combustion Chamber, and Turbine section. By apply-
ing such a DT-based model, parameters such as maximum
temperature of booster versus HPC inlet temperature, temper-
ature of high-pressure compressor, temperature distribution
on blades, Mach number distribution, and cost of flight per
engine flight hour are obtained. By accessing these values, the
cost optimization of the engine could be done under realistic
constraints and trade-offs. Again, the computation speed of
the CFD method is questionable and due to the accessibility
of data, the modelling in each layer could be conducted by
AI techniques to reduce the computation time without loss of
accuracy and generality.

MRO, as one of the most crucial steps in the aviation indus-
try, includes heavy and difficult manual efforts that initiate
challenges such as non-repeatable processes and low produc-
tivity. The MRO process of fan-blades is not excluded from

challenges since the current grinding process is conducted
manually by expert workers. Manual MRO of fan blades is a
slow, difficult, and dangerous process that includes numerous
grinding force parameters. To make this process simple and
repeatable, reference [155] proposed an automated grinding
procedure based on DT and robots for fan blades, as shown
in Figure 10. By applying this method, the MRO could be
conducted in a repeatable, simple, and automatic manner.
As shown in Figure 10, the proposed method consists of
four general steps. The very first step was the acquirement
of the fan-blade condition during the grinding process by
taking pictures with different methods such as hyper-spectral
cameras, lasers, surface topography, and an RGB-D camera.
The next step was known as the Markovian-based Surface
Region Processor (MSRP) as an algorithm used for sens-
ing the surface condition of fan-blade under grinding and
to apply the appropriate grinding force. In the third stage,
virtual particles for fan blades are generated based on the
particle information resulting from the previous stage. Here,
the physical surface of the fan blade was defined as the sum
of particles in the Cartesian reference frame and then, the
virtual particles were used to form a virtual surface of fan
blade. Now, in the fourth step, the DT comes into play as the
key stage of the automated MRO procedure. DT is used for
four significant duties. The first duty is to consider grinding
constraints and limitations such as surface roughness, gen-
erated heat during grinding, and prohibition of deteriorating
the innermost composite layer of fan-blade. The next duty is
calculating and presenting the grinding parameters such as
the speed of the grinding wheel at each time step, material
removal rate, wheel angle, and the maximum applied force
to the surface. After the computation of grinding parameters,
DT ought to model and characterize the fan blade in each time
step to analyse the operability and health condition of the fan
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blade. At last, the whole control of the grinding process and
the iterations that are needed for a completely reconditioned
fan blade have been conducted by DT. Thus, the automated
grinding process has been accomplished successfully and
could enable a repeatable and simple grinding procedure.
However, the performance and the condition of fan-blade that
have gone through manual grinding must be compared to
verify the privilege of this method. Also, economic consid-
erations must be considered when comparing automated and
manual grinding methods.

2) DATA-DRIVEN DIGITAL TWINS
The structural health monitoring (SHM) could help the deci-
sion makers to decide whether the aircraft can make another
flight or needs to be repaired for the next mission. Due to
variety of aircraft-related parameters such as different man-
ufacturing methods, different material properties, mission
conditions, etc., the SHM should not be conducted similarly
based on information and data for all aircraft. The important
aspect of SHM is that it is performed based on real-time
and accurate data received by sensors of aircraft. Usually,
the SHM is conducted based on pure-mathematical-physical
models and systems that require a massive computation time
and advanced computation resources [156], [157]. To over-
come this issue, in [158], a dynamic Bayesian neural network
(DBNN) was used to monitor the wing health condition of an
aircraft. The DBNN is used for detecting crack growth on the
leading edge of the wing as shown in Figure 11.

To fulfil the required task, four goals were aimed to be
achieved, i) information homogenization ii) the flight of
virtual aircraft with the same condition of the real one,
iii) uncertainty reduction, and iv) predictive monitoring of
cracks on the wing. To achieve these goals, DBNN was used
as a promising technique that can model all uncertainties,
and information inhomogeneity by using different types of
random variables such as discrete and continuous variables
belonging to different probabilistic distributions. Numerous
uncertainties were modelled by DBNN such as those that
exist in finite element (FE) methods, those related to crack
growth characteristics, load uncertainty, and crack length data
uncertainty. Thus, and by considering these uncertainties,
the inputs of the DBNN are selected to be load, bolt loose-
ness, anchor point position, stress range, elastic/plastic zones,
crack length before the current time step, stress intensity
factor, crack characteristic in current time, geometric and
material properties, and shape factor in plastic zone. After
implementation of such DBNN, and for 10000 time-steps
with different loadings, the length of the crack and its rate of
growth resulted that could help the diagnosis and prognosis
of the health condition of the wing. This model can be used
also for health monitoring of all structural and non-structural
parts of the aircraft which could be the aim of future research.
As the next step, a comparison needs to be performed for
different aircraft with different flight conditions, different
sensors, and different geometrical and material properties

to show how theses parameters may change the diagnosis
and prognosis results. Finally, one other uncertainty could be
added to the model to increase the accuracy and efficiency
of the model which is the probability of data loss during
measurement and transmission.

Another application of DTs for SHM was presented
in [159] that uses Guided Wave Response (GWR), Finite
Element (FE) method, and Genetic Algorithm (GA) to detect
the cracks at the body of aircraft. FE analysis is conducted
on 2024-T3 aluminium plates to investigate their dynamic
characteristics under different aerodynamic loads by means
of Abaqus®/Explicit. These aluminium plates are 300 mm
in height, 150 mm in width, and 1 mm thick while five
and a half-cycle Hanning-window excitation signal with
50 kHz frequency is applied to these plates to perform the
frequency analysis. Afterwards, to avoid the model inaccu-
racies and extremely long simulation times, the maximum
time-step must be calculated for FE analysis as expressed in
equation (4):

1tmax =
1

20fmax
(4)

where, fmax is the maximum frequency in which simulations
are going to be performed.

The next step is using the GA optimization method to
characterize and predict the crack behaviour based on four
variables, namely Xr and Yr which show the crack centre
location, crack size 2ar, and θr which defines the orientation
of crack. Firstly, based on four variables, an arbitrary location
and size is considered for the damage or crack and an FE is
built based on the arbitrary crack. After that, a wave propaga-
tion analysis (WPA) is conducted to calculate the response of
all N sensors installed at the understudied region. Then, the
objective error function, shown in equation (5), is calculated
to determine the accuracy of the predicted crack location.

∅ =

[
N∑
i=1

(Esdc − Ssdc)2
] 1

2

(5)

where, Esdc is the reference response related to the real crack
while Ssdc is the calculated response. If the objective function
is higher than relative tolerance, a new location is dedicated
for crack and previous iterations would repeat until the con-
vergence terms are fulfilled.

Three different case studies are defined to assess the capa-
bility of the proposed method for different crack locations,
near sensors, near actuator, and between actuator and sensor.
The results show the coordination of the crack could be
estimated with 1% to 7% error for different case studies,
while this value for size of the crack is about 2% to 8% and
for crack orientation is about 3% to 9%.

Another objective of using DT is to predict the physical
behaviour of different components based on the historical
data and information of the simulations. For this purpose,
in [160] and [161], a data-driven model was created based
on the values of sensors. The proposed method offers a
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FIGURE 10. The automated MRO process of fan-blades based on DTs and robots, adapted from [155].

FIGURE 11. The area of crack growth detection proposed by [158].

solution to the problem of updating the model in the virtual
domain. The proposed method was tested for a 12ft wingspan
unmanned aerial vehicle. For this vehicle, the DT models of
different components were created based on reduced-order
FE analysis. After manufacturing the real twin of the aircraft
and implementing the sensors, an FE-based model was cre-
ated by Akselos Integra modelling software [162], to detect
the health changes in the structure of the aircraft. After
the simulation results those sensors’, data were fed into a
machine-learning model to update the data-driven model
based on flight mission conditions. As a result of applying
such a model, the DT re-plans the flight mission based on
the received data of the structural damage so that the lowest
aerodynamic load is applied to the damaged region of the
aircraft. However, one needs to consider proposing a DT
model that not only predicts the characteristics of the aircraft
but also can consider all uncertainties in in-flight mission
conditions, in characteristics of materials, in abrupt failure of
engines, etc.

The proactive and predictive maintenance methods are
now replacing the reactive methods, especially in aerospace
applications. This is because these methods reduce the main-
tenance cost and downtime of aircraft while their lifetime,
safety, and productivity are enhanced [163], [164]. UsingDTs
for this purpose not only increases the prediction accuracy
and reduces the possibility of aircraft failures but also could
end upwith a solid predictionmethod that is updated based on
the information of the flight mission for a specific type of air-
craft [165]. For this purpose, in [166], a DT concept based on
Bayesian interference was used to predict the structure life of
an aircraft. To do this, two important efforts were conducted,
firstly, the Bayesian interference method was implemented
that could integrate all heterogeneous data which originate
in FE methods, historical data, and data received by sensors
and use them to predict the remaining useful life of aircraft
body. Secondly, a discussion was also added to the paper
that illustrated the implementation procedure of the proposed
method into a real-time DT. For this purpose, the follow-
ings are fed into the DT as inputs to predict the remaining
life of the aircraft body, i) load conditions such as aerody-
namic pressure and ground loads that could result in cracks
and holes, ii) material properties such as Poisson ratio and
Young’s modulus, the geometry of the aircraft to be used in
FE method, iii) historical data of flight mission of the aircraft
in same class, and iv) pre-defined failure threshold. Based
on Paris law [167] and by using the flowchart of Figure 12,
crack detection and remaining useful life prediction could be
conducted. After applying this method to two case studies,
the results shown that the predicted/calculated results follow
the same trend of the real data of remaining useful life,
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FIGURE 12. The crack detection and remaining useful life prediction
procedure in structure of an aircraft, adapted from [166].

as show in Figure 13. Although the trend of the predicted
values is in very good agreement with real values, the point-
to-point accuracy could be further increased by application of
artificial intelligence methods. These methods could replace
the Bayesian interference system, Paris law, and FE method
to increase the accuracy, computation speed, and adaptability
of the prediction method. Also, Individual Aircraft Tracking
(IAT) programs are one of the most important components
of DT-based condition monitoring systems in aircraft. IAT
programs aim to detect and predict the possible crack growth
in an under-observation area of aircraft structure to avoid
any crashes of aircraft. In [166], the IAT program for crack
detection in F-16 aircraft is presented and compared with
other crack detection methods to show the importance of
application of a real-time and adaptable structural monitoring
method. For the sake of applying an IAT program at F-16,
these aircraft are equipped to flight-data recording systems
of multiple types such as Flight Loads Recorder, Mechanical
Strain Recorder, Crash Survival Flight Data Recorder, and
Crash Survivable Memory Unit. These devices could be used
in combination with the proposed method of [166] to increase
the accuracy, computation time, and adaptability of the pre-
dictions. As discussed before, preventive maintenance is an
important step to ensure the safe operation and performance
of aircraft units.

In [168], a novel methodwas proposed for aero-engine pre-
ventivemaintenance, the term ‘‘aero-engine’’ is defined as the
engines ofmilitary aircraft with high thrust that offer a sudden
climb and high ‘‘G’’ loads during manoeuvre, as defined
in [169]. The proposed model is identified based on the his-
torical data of aircraft operation andmaintenance information
of engines. In this regard, it should be mentioned that by
applying such a method protective operation of aero-engine

and health management of understudied engine is accessible.
To do this, a model consisting of four sub-models was pro-
posed which are data driven model (DDM), multi-parameter
asset mapping (MPAM), model verification (MV), and deep
learning-based model (DLM). In DDM, three important tasks
are completed, firstly data is collected from sensors and after
that bad data and noises are removed and time or frequency
conversion are done. At last, parameters and features of
data are extracted. After that the data is shared to MPAM
phase, that is the stage in which DT is applied. In this stage,
information of operation, maintenance, and the device infor-
mation are used to accurately simulate the characteristic of
aeroengine in a virtual space. After that the real results and
the simulated ones are compared in MV phase to make sure
that DT is performing with the highest possible accuracy.
Lastly, a long short-term memory (LSTM) neural network is
used to train a model with the capability of predicting any
requirement for maintenance. The proposed model has a high
accuracy in predicting the required maintenance in compar-
ison to other methods such as K-nearest neighbors (KNN),
deep convolutional neural networks, catBoost, and genera-
tive adversarial networks. The RMSE value of the proposed
method is about 13.12 while this value for methods is about
20.46, 18.5, 16.91, and 15.8, respectively. The reduction of
RMSE value shows that the predicted values for maintenance
time are more trustable and increase the reliability of the
aeroengine.

Unmanned aircraft systems use UAVs as their main com-
ponents for numerous goals such as defence, traffic control,
security of cities, and for plant protection in agricultural
systems. The data acquired by UAVs and during a flight
mission are transmitted through the internet to ground con-
trol units and after that commands and control decisions
are made in these ground units and again transfer to the
UAVs through internet. Then, these commands are sent to
the physical equipment of UAVs to make the desired change
or perform the required tasks. The interaction of internet,
control systems, and physical elements of UAVs offers a high
opportunity for taking the advantages of DTs for control, pro-
tection, and commanding the UAVS, as proposed by [170].
According to [170], an airspace is divided into flight infor-
mation area, control area, restricted area, dangerous area,
flight restricted area, and routes. In [170], the combination of
Convolutional Neural Network (CNN), autonomous wireless
network, and DTs was used for safe performance of UAVs
inside the non-restricted and non-dangerous zones. In other
words, by doing this, no UAV can enter the safe flight zone
of other UAVs and other aircraft and the safe flight of UAV
was guaranteed by considering the obstacles, routes, etc.
As illustrated in Figure 14, the safe zone of aircraft Ai is a
circle around its current position and when another aircraft
enters this safe zone, the Ai must have sufficient time to
react to this and modify its path. Here, CNNs receives the
flight data of an aircraft through the wireless communication
system and based on pre-defined rules and historical data,
modifies the route of the aircraft, and sends the information
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FIGURE 13. The predicted remaining life by the Bayesian interference
system versus the real values, adapted from [166].

FIGURE 14. The conflict areal model that DTs are used to solve, adapted
from [170].

of the new route back to the aircraft. Although the proposed
method was very novel and capable of controlling the AI
so that it can fly safely and without any possible crashes,
there are some considerations to make. One of them is the
fact that all safety zones of aircraft are non-identical, and an
index needs to be defined to clarify different safety zones
for different aircraft. Also, the impact of air traffic and other
airspace limitations must be considered to make this method
applicable, especially for manned aircraft where any failure
results in catastrophes.

Another consideration of the fleet management process
is exact and accurate fault/failure detection that can jeop-
ardize the optimal fuel consumption. The most challenging
issue of such a detection process is the large number of
data that needs to be processed and the different types of
engines that necessitate models which could be adapted based
on these differences in engine structure. To overcome these
issues, in [171] a DT-based diagnosis and health manage-
ment system was proposed that consists of multiple stages.
The first stage is dedicated to abnormality detection and
failure quantification, the next stage is about physic-based
simulations according to the Monte Carlo model, and the
last stage is related to the data-driven models of engines.
To perform the fault diagnosis stage, firstly, the engine’s
data are collected and fed into the algorithm, as shown in
Figure 15, however, the gathered data must be corrected
and normalized before the diagnosis process is initiated. The
correction and normalization process are conducted based on

FIGURE 15. Fault diagnosis and engine isolation algorithm based on.

the healthy condition of a specific or baseline engine. The
whole process is discussed in detail in [172]. Afterwards,
the corrected data are compared with the expected value of
a healthy engine and if their differences exceed a threshold
value, the abnormality/fault in the engine is probable and
thus, the faulty engine is isolated. In the next stage, the fault
signatures reproduction of engine components is conducted
by using the DT of the engine. After that, for each signature,
a correlation the function is dedicated and the component
with the highest value of the correlation function is isolated.
It must be noted that to increase the accuracy of the engine
DT, 1000 different case studies with different efficiencies and
flow capacities are considered based on Monte Carlo simula-
tions. This procedure was applied to the engines of a fleet
in two manners. In the first approach, the data is normalized
according to a baseline engine and in the second one, the data
is normalized based on the specific engine of the fleet. In the
first approach, only 5% of faults are detected correctly while
this value for the second approach is 98.2%. This reference
has also taken advantage of ANNs to classify the faults with a
surprising result in fault detection. If ANNs are used based on
the first approach, 57.4% of faults are classified and detected
correctly while this value for the second approach is 100%
which means all faults and abnormalities are detected and
classified correctly.

Table 2 shows a summary of the most important conducted
efforts regarding the application of DT for condition moni-
toring of aircraft and other aviation units.

B. LESSONS LEARNED BY OTHER INDUSTRIES
In [173], a novel fault diagnosis method based on DT was
proposed for rotating machinery that suffers a fault in the
rotor side. The first part of the DT is the real-time and
experimental data that is received by smart sensors. Then,
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TABLE 2. A summary of the most important studies on the utilization of DT in aviation units.

FIGURE 16. The control loop for noise filtering of sensed signals, adapted
from [174].

there is an analytical model that is used to simulate the
behaviour of rotating machines under different conditions.
Finally, a particle swarm optimization method is used to
minimize the error between the simulation data and experi-
mental data. The most important feature of this method is the
capability of modelling uncertainties and nonlinear dynam-
ics of the rotor. The proposed model could be used in the
samemanner for fault diagnosis of aircraft engines. However,
under such circumstances, there is a need for restructuring the
DT model and the model of electrical machines to cope with
the mechanical engines of aircraft. Another fault detection
method based on real-time DT for a 1.8 kW and 208 Vwound
rotor induction machine is proposed in [174]. The significant
aspect of the proposed model that can be used for aircraft
and aviation industry, is the filtering procedure of data noises.
The block diagram of Figure 16 is used to filter the noises of
signals with a transfer function of equation (6).

In Figure 16, θ is the noisy signal, θ̂ is the filtered sig-
nal, and in equation (6) Kp is the gain of the proportional
(P) controller and Ki is the gain of integral (I) controller.
By applying such DTs, proposed by [171] formulation, the
condition monitoring of aircraft could be conducted based on
more accurate data and because of this the performance of the
condition monitoring method would be improved.

ADT-based algorithm for fault detection and identification
of photovoltaic (PV) systems has been proposed in [175] that
enables the protection of PV units and control of the related
power converters. At the fault detection part, the aim is to
reduce the error between measured outputs and estimated
outputs of the whole system. To do this, a threshold value
is defined to enable the model to detect the faulty condition
out of a normal operational mode. On the other hand, the
type of fault must be also identified by taking three important
steps, residual analysis for fault signatures, fault signature
calculations, and fault identification logic. As a result of
these steps along with the previous one, the fault could be
detected in the body of PV units and the type of fault is
identified to make a reliable protection decision. The very
same methodology could be used in the aircraft system for
two purposes, fault detection in different parts of the aircraft
such as engine, structure, electrical system, etc. and to make
the appropriate choices for protection of the aircraft against
these faults and abnormalities. Also, deep learning-basedDTs
can be used as fault detectors in aircraft and other aviation
systems, especially future electric aircraft, as one is proposed
for fault detection of smart grids [176].

H (s) =
Kps+ Ki

s2 + Kps+ Ki
(6)

A novel condition monitoring method based on finite ele-
ment method (FEM) and ANNs has been proposed in [177]
for ship hull structures to locate the damaged part of the ship
structure. To do this with FEM, firstly the strain values of the
whole structure are acquired from the sensors and after that,
a random guess is made on the position of the damage. After
that FEM is used to gain the Von-Misses stress distribution
and then the value of Von-Misses stress is fed into an error
function. By minimization of the error function, the exact
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location of structural damage can be located, the minimiza-
tion process is conducted in this paper by means of NSGA II.
After the FEM is used, the outputs of FEM-based simulations
train the ANNs. ANNs are used to detect the damaged side of
the structure and are used to gain the damaged location. The
very same methodology can be used also as SHM methods
of aircraft to increase the computation speed of the damage
location process. By implementation of the proposed method,
the whole body of aircraft could be analysed to locate any
possible damage on its body, in a fast, reliable, and real-time
manner. To do this, some justifications on the properties of
structural materials, the geometry of the problem, mission
conditions and considerations, and the basic FEM is required.
Another application of DTs in the marine industry has been
offered by [178] ANNs to predict the combustion behaviour
of propulsion engines. For this purpose, different components
of propulsion systems such as air compressors, cylinder units,
fuel pumps, propeller shafts, etc. are modelled through ther-
mal, dynamic, and mechanical equations and the final output
is used as the input to the ANN model. This can be also used
in propulsion units of aircraft while just related equations to
the aircraft dynamic must be changed, and concerns related
to the aircraft must replace the limitations of ships. Another
application of DTs has been presented in [179] to control the
quality of the critical components of ships during manufac-
turing. The very same method can be also used in aircraft
manufacturing, maintenance, and overhaul stages to reduce
the risk of failures and crashes during flight missions.

DT has been used in [180] for analysing and evaluating
the State of Charge (SOC) and State of Health (SOH) of
lithium-ion batteries used in spacecraft. These battery packs
are important components in any spacecraft and their perfor-
mance degradation must be analysed in real-time to enable
the power management of the spacecraft. To do this, a general
algorithm has been used, as shown in Figure 17, for both
SOC and SOH. The SOC is analysed by using Kalman Filter
- Least Squares Support Vector Machine (KFLSSVM) and
SOH is analysed through Auto Regression Model-Particle
Filter (ARMPF). The very same algorithm could be used for
the health management of engines in aircraft systems as a
replacement for the SOH problemwhile the other method that
has been used for SOC of the battery pack could be used as
the electrical power manager inside the cabin. Another SOH
monitoring method based on DTs and satellites is presented
and introduced in [181] based on the data-driven object-
oriented declarative modelling language Modelica. Then,
these data are fed into a decision tree-based algorithm to
diagnose faulty situations in satellites.

IV. THE CHALLENGES OF USING DIGITAL TWINS IN
CONDITION MONITORING OF THE AVIATION INDUSTRY
A. SENSOR’S PROPER FUNCTION
Sensors are the link between the real system and the vir-
tual domain that receive the data from the real domain
and send them to the virtual model. Failures and errors in

FIGURE 17. SOC and SOH management algorithm.

sensors may not be tolerated since any failure in sensors
results in wrong information about aircraft, consequently a
wrong decision, and thus, a catastrophic crash. So, to avoid
these consequences and outcomes of sensor errors, there
are some challenges that must be recognized and then
addressed. The very first challenge is corruption and loss
of data due to the imperfect operation of sensors, wirings,
and receivers [182]. The loss or corrupted data results in
wrong decision-making about the operation condition of air-
craft, making false protective actions, etc. To avoid data
loss, many methods have been proposed in literature such
as K-nearest neighbours [183], Delaunay triangulation [184],
multichannel singular spectrum analysis [185], and compres-
sive sensing [186]. By applying these methods, the value
of loss/corrupted data could be estimated and as a result,
the possibility of wrong decisions is minimized. Another
challenge of sensors is related to the accuracy that they offer
for measuring a specific quantity. Consider a sensor that is
used to measure the temperature inside the engine and send it
to the virtual domain for protective issues. Assume that the
real value of temperature is about 400.556 Fahrenheit and
the threshold value for some protective actions is designed to
be about 400.55. Under such circumstances, there is a need
for a sensor unit that is capable of measuring temperature in
up to three decimal places to avoid any failures in aircraft
engines. The required accuracy up two to three decimal places
necessities using some specific type of sensor with a specific
operation condition, and a higher purchasing cost in compar-
ison to the same sensor with a measurement capability of just
two decimal places. Another challenge is the performance of
sensors under harsh operational conditions such as extremely
high temperatures for sensors inside the combustion engines,
the high pressure and cold environment for sensors on the
body of aircraft and outside of the cabin, etc. Under such
harsh conditions, the appropriate performance of sensors
might be decreased, and the measured value have a large
amount of inaccuracy to avoid this, a specific range of sensors
for such conditions is required that could operate with high
performance and reliability without loss of accuracy. Finally,
there is a calibration process for sensors that could take less
than hours to more than tens of days. Calibration refers to a
series of processes that adjust the sensors so that they illus-
trate and receive data error-free and with the highest possible
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accuracy. Numerous methods and procedures are defined for
making sensors calibrated which are discussed in [187].

B. DATA SCIENCE AND DATA PROTECTION
data science is the common point of three fields of science,
namely computer science, mathematical science, and busi-
ness knowledge. The most important task of a data scientist is
extracting useful information from received data by sensors
and deciding, strategic planning, etc. [188]. By digitalization
of aircraft control, design, management, maintenance, over-
haul, etc. through DTs, data science and data scientists are
gaining a high-valued position. In aviation units, especially in
the CM of aircraft and due to the sensitivity CM process, data
scientists must be capable of making the most appropriate
choices without any risk of aircraft failure or crash. The first
challenge that they must face is the problem of the large
amount of data that is received andmust be handled, known as
big data. Usually, big data is defined based on 4V parameters
which are Volume, Velocity, Variety, and Veracity, volume
concerned with the fact that data is generated constantly and
without any pause while velocity refers to the fast nature
of data generation, especially for DT applications. Variety
is related to the fact that data are generated by multiple
sources and in different types such as voltage signals, health
conditions, etc. and veracity concerns about the quality of
data received by DT [189], [190]. The other challenge that
data scientists must face is related to the security and protec-
tion of data. Data security must protect the databases against
cyber-attackers, ransomware is a kind of malware designed to
deteriorate data, and data theft [191]. Data security becomes
even more sensitive when DTs are used for condition mon-
itoring of aircraft and any kind of data theft, cyber-attacks,
and malware could jeopardize the safe operation of aircraft
and threaten the lives of passengers [192].
Overfitting of AI-based methods is a statistical phe-

nomenon that takes place when a function with the same
inputs results in a different output. This reduces the accuracy
of the training, testing, and validating process and causes
a high value of error between real data and the estimated
one [193]. As mentioned before, due to the nature of DTs for
aircraft and imperfections in sensor functionality, overfitting
is highly possible in virtual domain, especially if they are
modelled by AI-based techniques. Overlearning is another
phenomenon that originated in imposing large amounts of
data into a machine learning-based model and because of this
model may present some inaccurate and non-reliable results
that cause the system operator to make wrong decisions.

C. REAL-TIME DECISION-MAKING AND COMPUTING
During the application of DT-based solutions to industrial
manufacturing processes, the need for control and com-
pliance with Quality of Service (QoS) specifications, e.g.,
in terms of maximum allowed latency or minimum reliability,
was widely recognized [196]. This is of central and crucial
relevance also in the case of DT for aircraft condition and fleet

monitoring situations, where a fundamental requirementmust
be granted at execution time. This is to guarantee an upper
bound on the maximum latency allowed for the operation
series: in-the-field

IoT data collection, IoT data filtering/aggregation/transfer
to the digital twin, digital twin data processing and decision
making, generation of a consequent control/reconfiguration
command, and received of the command at the in-the-field
associated actuators (full control loop).

The technical challenges related to guaranteeing QoS for
real-time decision-making and IoT data processing of DT
are exacerbated by the fact that DT almost always runs on
virtualized computation, storage, and networking resources
that are due to the widely recognized scalability and eco-
nomic motivations. For instance, in the EU H2020 IoTwins
project, guaranteeing the latency for communication and also
the processing of industrial IoT data for automation control
by industrial DT were widely investigated [197]: controlling
and managing latency over virtual networks and distributed
Docker containers require advanced orchestration capabil-
ities and a holistic view of network quality management,
message queue prioritization, and microservice invocation
(e.g., Function as a Service invocation in a serverless execu-
tion environment [198]); novel middleware should consider,
in a synergic way, network acceleration techniques (e.g.,
RDMA, DPDK, XDP, and TSN-compliance whenever avail-
able in the deployment environment), edge cloud computing
opportunities (see Section IV-E), message-oriented protocols
with high-efficiency prioritized queues, and differentiated
invocation mechanisms for local processing functions (e.g.,
based on dynamic library loading, WASM, or the more tradi-
tional posix_spawn API) [196].
Some recent research work in literature has started to

explore the technical challenges. So far, this was mainly con-
ducted by considering the opportunistic usage of edge cloud
resources to improve latency and jitter [199], [200]; these
potential advantages in terms of latency and jitter started to
be recognized as the key factor for wide adoption of the edge
cloud computing programming paradigm [201]. Although
the coordination and coupling of different prioritization
mechanisms is not a recent issue, with the recent advent
of next-generation networking, it has gained an increased
research interest. The need for concatenation of mechanisms
has been considered as a primary problem that is presented
at different levels of the stack to build a complete feedback
control loop, e.g., when applied to industrial automation,
since the earliest distributed systems. To tackle the issues
of resource orchestration and partitioning while guaranteeing
QoS levels at the edge, reference [202] proposed DRAGON:
this reference describes some implementation insights about
DRAGON and evaluates its performance compared with
traditional orchestration approaches. The introduction of
middleware for the concatenation of QoS-aware mechanisms
is a frequent design pattern applied in the literature to reduce
complexity [203]. In [204], the authors proposed a technique
to couple priority and reservation based QoS management
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mechanisms, at the operating system and network layers,
through distributed object computing middleware. In [205],
the authors presented a middleware built on CORBA to
provide distributed soft real-time applications with a uni-
form Application Programming Interface (API) to reserve
heterogeneous resources with real-time scheduling capabil-
ities in a distributed environment. This solution introduced
uniform interfaces to support the reservation of CPU, disk,
and network bandwidth on Linux systems. Even if Serverless
computing and Function-as-a-service (FaaS) platforms are
relatively novel, some platform improvements have already
been proposed in the literature to achieve better FaaS per-
formance and in particular latency reduction [206], [207],
[208]. Some papers have proposed the deployment of server-
less platforms on edge nodes to achieve better QoS [206].
The usage of different invocation methods to speed up
function startup has been proposed as the exploitation of
cross-compiling to achieve faster executables. For example,
in [207], the authors proposed Faaslets, an isolation abstrac-
tion that exploits WebAssembly to achieve good isolation
and fast function startup; they have also proposed an addi-
tional optimization with a mechanism to restore from already
initialized snapshots that resulted in platform improvement
throughput and tail latency. In the proposed project Catal-
yser [208], the authors presented a serverless sandbox system
to enhance function startup and isolation. To provide a fast
startup, Catalyser exploits a checkpoint mechanism to skip
initialization and a new OS primitive to reuse the state of the
running sandbox; this results in a relevant reduction of the
startup time of function invocations (i.e., less than 1 millisec-
ond in the best cases).

D. MODELING ISSUES
Modelling is the beating heart of the DTs in aircraft units
that reflects the exact characteristics of the aircraft or its
components in a virtual domain. Modelling could be per-
formed based on three methods, White Box Model (WBM),
Grey Box Model (GBM), and Black Box Model (BBM).
This section is dedicated to the challenges and advan-
tages of each one of these modelling methods. WBMs also
known as conventional models are a type of modelling that
characterize the behaviour of aircraft, engine, wings, etc.
by means of well-known and accepted methods such as
FEM, Equivalent Electrical and Thermal Circuit (EETC),
Finite Difference Method (FDM), Volume Element Method
(VDM), etc. WBMs are usually accurate and reliable while
their computation speed is much lower than other types of
modelling. However, with advancements in distributed com-
putation and edge computation, their speed could be further
increased [209]. Figure 18 shows the commonly used soft-
ware packages used for aircraft modelling.

Unlike WBM, in BBMs, outputs are estimated based on a
previously acquired knowledge of data without any physical
interpretable nature. BBMs are usually ultra-fast, adaptive,
and re-trainable against new situations while their most sig-

nificant disadvantage is their highly dependence nature on
data. This means that any data corruption, bad data, lack
of data, etc. could result in inaccuracy and falsely made
decisions [210]. GBM has been proposed to overcome both
issues ofWBMandBBMs that take advantage of bothmodels
to correlate between inputs and outputs. This means that
both physical logic and data science are used to characterize
the behaviour of understudied components. These kinds of
models are the most appropriate types of models for being
used in DTs due to their high accuracy, adaptability, fast
estimation nature, reliable results, etc.

E. THE 5G SUPPORT FOR DIGITAL TWINS IN THE CLOUD
CONTINUUM
To minimize latency and improve data locality, there is an
emerging trend in designing, implementing, and deploying
distributed DT, capable of running in the so-called cloud con-
tinuum [197]. In this context, the cloud continuum is the set
of distributed nodes, spanning from data centre cloud nodes
and ETSI Multi-access Edge Computing (MEC) nodes in
the 5G infrastructure to industrial gateways, fog networking
routers, and even IoT devices. Usually, DTmay be distributed
so that they can run a first training phase for determining
their data-driven model at traditional data centre nodes; once
the model is trained, DT can run even on either industrial
gateways or MEC nodes to access IoT-generated data more
locally and efficiently, possibly by generating control and
reconfiguration commands in the proximity of their actuators;
in addition, distributed DT on industrial gateways or MEC
nodes can continue the training/learning process also locally,
via emergingmachine learning techniques such as refinement
learning [211] and federated learning [212].

In the perspective of running DT in the cloud continuum,
the role played by wireless technologies is essential with i)
extremely low latency and ii) local edge computing facilities.

On the one hand, 5G and Beyond 5G (B5G) net-
working offers a significant evolutionary step in terms of
Ultra-Reliable and Low-Latency Communication (URLLC)
with even the possibility to specify, to some extent, guarantee
predictable performance [213]. In fact, 5G and B5G specifi-
cations include the requirement for the network infrastructure
to expose its performance toward an end-to-end orchestrator
so that the end-to-end service can be configured; accordingly,
this end-to-end orchestration is the same sketched above
and envisioned by DT in the cloud continuum for holistic
resourcemanagement. To develop 5G and B5G radio network
solutions, the industry and standardization are pursuing two
technology tracks that are ongoing in parallel. One builds
on an evolution of the 4G Long-Term Evolution (LTE) radio
interface and the other builds on a New Radio (NR) interface.
Long-Term Evolution (LTE) has been standardized in 3GPP
Release 8 in 2008 and has been enhanced in every new
standard release. Starting from Release 15, LTE introduces
URLLC and addresses the corresponding 5G requirements.
The LTE evolution can be introduced into existing LTE
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FIGURE 18. The different software used for different purposes in aircraft systems, adapted from [194], [195].

networks and spectrum allocations: it provides 5G function-
ality in a backwards-compatible way, which means that new
LTE-evolved devices can make use of novel 5G features,
while old LTE devices can continue to operate within the
same LTE system with the legacy capabilities. NR, in con-
trast, is not restricted by backward compatibility, and can
address design opportunities for a lean design. For latency
minimization, the primary radio design choices and innova-
tions that were included in the 5G standard specifications
relate to waveform optimization, improved resource access
strategies/mechanisms, and optimized channel access. Addi-
tional details about the related mechanisms and protocols
may be found in [213]. Note that, with those improvements,
the guaranteed upper bound for the radio access network
latency that can be achieved in 5G varies from 0.25ms to
3.2ms depending on the employed URLLC configuration.

On the other hand, the European Telecommunications
Standards Institute (ETSI) MEC specification provides a fun-
damental contribution to the open and standard realization
of the cloud continuum concept, by offering a virtualization
platform and architecture integrated into the 5G/B5G network
infrastructure, thus representing an essential element for cur-
rent and future distributed DT. In fact, according to ETSI,
MEC offers ‘‘IT service environment and cloud-computing
capabilities at the edge of the mobile network, within the
Radio Access Network (RAN) and near mobile subscribers’’
[214]. Examples of MEC applications include caching of
contents to deliver to customers, tracking of devices, and
hosting of decentralized DT for motion control and industrial
automation. According to ETSI [215], the general entities
involved in the MEC architecture are structured based on
three levels: the upper one is the MEC system level, which
has a global visibility on the MEC architecture and therefore
coordinates every block in the levels below. In the middle,
the MEC host level includes MEC host and MEC host level
management. The MEC host is an entity that includes the

platform and the virtualization infrastructure used to run the
MEC and provides network, processing, and storing virtual-
ized resources dedicated to MEC-hosted applications such as
DT.MEC services are provided and consumed byMEC appli-
cations or the MEC platform itself. Some examples are the
Radio Network Information (RNI), which gives information
on the radio network state, the location service, which gives
location-related information, and the bandwidth manager ser-
vice, which helps in prioritize and handle traffic. Containers
or virtual machines run as well in the MEC host: typically
distributed digital twins run on containers, e.g., to locally
execute anomaly detection based onmachine learningmodels
initially trained on the cloud. At the bottom of the stack,
various transmission entities such as the 5G infrastructure and
local/external networks may be present according to the ETSI
architecture.

F. THE SENSITIVITY OF CM IN AIRCRAFT
Except for CM, as mentioned before DTs could be used
in the pre-design, design, manufacturing, maintenance, and
overhaul stages of an aircraft. In these stages, any failure
in DT could result in malfunctions in the structure of the
aircraft before the flight mission that could be diagnosed
while this is not the case for DTs that are used during flight
missions and for CM purposes. Any failure or error in the
virtual domain, decision-making process, sensors, wirings,
etc. results in malfunctions of aircraft during a flight mission
and this could result in explosions, crashes, and many other
tragedies. This is the most challenging issue for using DTs as
the main component in decision-making, condition monitor-
ing, protecting, and controlling of aircraft. Thus, for such a
sensitive goal, the DT model must be error-free and with the
highest possible accuracy while it must be also real-time. The
real-time nature of DTs is the most important characteristic of
the virtual domain that enables an ultra-fast response to any
kind of changes, failures, faults, etc. during a flight mission so
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that it protects aircraft against any possible damages, crashes,
and component failure.

V. FUTURE TRENDS
A. FUTURE TRENDS FOR ELECTRIC AIRCRAFT
During the last few years, the rate of daily flight missions
has increased significantly initiating an extensive increase in
fossil fuel combustion. Thus, a large amount of greenhouse
gases was released into the Earth’s atmosphere, and this has
intensified global warming and emissions. To overcome this
issue along with the challenge of shortage of fossil fuels, sci-
entists have proposed restructuring the aircraft systems [216],
[217]. One of the proposed structures is the electrification
of aircraft drivetrain by using electrical devices. Under such
circumstances, to reduce the power loss and voltage drop, the
generated power is converted to DC voltage by using power
electronic devices and then electrical energy is delivered to
electrical motors, operating as the main part of propellers.
In this region, DC power is again converted into AC bymeans
of power electronic devices [218]. The expressed structure
was the structure of a hybrid electric aircraft while there is
also another type of aircraft, known as full electric aircraft in
which batteries and fuel cells replace the electrical generators
and directly feed the electrical energy to propellers [219].
There have been many successful prototypes manufactured
for electric aircraft that are discussed in detail in [219] while
the most successful and most researched is NASA N3-X
turboelectric distributed aircraft [220], [221]. Although elec-
tric aircraft offer a wide range of solutions to challenges of
emission and pollution, the power density of conventional
power devices is still lower than expected. Thus, supercon-
ductors have been proposed as cryogenic counterparts of
conventional power devices with a much higher power den-
sity, 5x to 10x higher than conventional power devices [222],
[223]. However, the need for the cryogenic environment for
proper and safe operation of cryo-electrified aircraft [224] has
put doubts on using superconductors in aircraft drivetrain.
This is because cooling systems usually have a high spe-
cific mass, low reliability, and high purchasing costs [225].
To resolve this issue, another concept has been also added to
the re-structuring process of aircraft, known as cryogenic fuel
aircraft, where combustion engines operate with fuel like Liq-
uid Hydrogen (LH2) [227]. As reported in [228] and [229],
LH2 is used as a cryogenic coolant fluid for superconducting
devices and cryogenic power converters and after that the LH2
is warmed up or vaporized during heat loads, it is injected
in combustion engines as fuel, or it is stored in fuel cells.
This type of aircraft presents high-power density for electrical
systems, a low specific mass for cryogenic systems, and low
emission and pollution for aircraft as shown in Figure 19.

B. FUTURE TRENDS IN DT
Among the several envisioned trends for the DT of the future,
for condition and fleet monitoring, three primary lines of
evolution are identified.

Firstly, digital twins are going to have more and more
‘‘twins’’ in a strict sense and not only digital models or digital
shadows. According to precise technical definitions, a digital
model is just a digital representation of a physical system, not
exchanging data flows with the real world (e.g., the physical
model of a wing or the electrical model of a circuit). On the
contrary, a digital shadow is a digital representation of a
physical system capable of receiving data flows from the real
world to refine, either statically or dynamically, its model in
the cyber world (e.g., digital shadows can exploit IoT data
flows from sensors and machine learning to define/refine
their models). Digital twins are more than digital shadows
in the sense that they can interact with the real world via
bidirectional data flows, not only to refine data-drivenmodels
with IoT data at runtime but also to command actuation
feedback by possibly intervening on the conditions of the
physical world (e.g., reconfiguration of a production line in
prescriptive maintenance or modification of fleet paths).

The second relevant trend to highlight is the evolution of
distributed digital twins towards being hybrid, i.e., employ-
ing synergically their double nature of both model-driven
(exploiting mathematical/physical models of the physical
object counterpart) and data-driven (exploiting machine
learning-oriented models, fed by IoT data initially or during
full-service provisioning). Only with this double nature of
model-driven plus data-driven, future hybrid digital twins
will be able to achieve the level of precision and accuracy
that are needed in several critical vertical domains, such as
aircraft condition and fleet monitoring. Note that hybrid digi-
tal twins may exploit iterative cycles to refine their combined
model-driven plus data-driven representations of physical
counterparts, thus producing successive generations of digital
twins evolving towards always better precision.

Finally, the third envisioned trend is towards being more
and more distributed, thus taking full advantage of all
the opportunities made available by the cloud continuum
concept. Distributed execution on edge nodes, as already
mentioned, will be central for more efficient control of
QoS parameters and better compliance with privacy/security
requirements via localized exploitation of local IoT data.
This stress on distributed execution will benefit and leverage,
in turn, the emergent trend towards innovative distributed
techniques for machine learning, such as federated learning.

In future, DT would be more efficient and more reliable
through the improvements of the machine learning and deep
learning methods. One of the future advancements of the
AI-based techniques is Explainable AI (XAI). In this con-
text, XAI is defined as the series of actions that make the
decision making by AI techniques. This would build trust
in community while ensuring the accountability. To develop
XAI, there are two important phases. The first phase is related
to understanding the model where stakeholders cross check
the model during training. This is done to make sure that
accuracy of the model is as high as expected. Understand-
ing usually consists of debugging, bias detection, scientific
understanding, robust model creation, and auto model cre-

99824 VOLUME 12, 2024



A. Sadeghi et al.: DTs for Condition and Fleet Monitoring of Aircraft

FIGURE 19. The overall structure of hydrogen-superconductor-based aircraft, adapted from [226].

ation. Second phase is explaining phase where AI model is
developed and implemented for real-time application. Here,
the decision-making process would be clarified for the end
users trying to explain them how the decision is made [230].
Another upcoming trend for AI-based techniques is Gen-
erative AI (GAI). which is defined as systems that take
the advantage of deep learning methods for contents like
human generation where these contents should be a response
by humans/machines, where ChatGPT is the best example
of GAI [231].

DTs are currently implemented in part of the complex
systems or just a system without any consideration of other
dependent systems. In future, DTs should be used for very
complicated systems or for the whole procedure. For this
purpose, they should have scalability, interoperability, expan-
sibility, and fidelity. In this context, scalable DTs are those
that based on the research object, the data and the contents
are changed. Interoperability is referred to the interaction
capability of different models in DT that are used for
same/different purposes, such as maintenance or monitoring.
The reconfiguration capability of DTs regarding the struc-
tural, physical, etc, changes in main system is also defined
as expansibility. For the sake of creating an DT for a complex
system, firstly system should be divided to multiple subsys-
tems. Then, subsystems should be divided to different tasks,
models, requirements, factors, etc. After that, information
fusion happens, where all information gathered from different
sources and subsystems. Then, associations are scaled, and
context coupling happens, Finally, a complex digital twin
would be created [232].
Another upcoming trend for DTs is the concept of Virtual

Manufacturing. This is referred to the use of computer-based
models and simulations for design, test, and manufac-
ture of the products, without they manufactured physically.
Indeed, VM leverages on technologies like AI, IoT, and
big data analysis. VM reduces the manufacturing costs for
all companies that participate in manufacturing a device,
this includes design, test, and manufacturing companies.

VM also increases the efficiency of the products and the
manufacturing lines. This is done by reducing the amount of
waste, increasing the productivity, etc. Another positive fact
about VM is that they reduce the ‘‘time to market’’ index
for products. It means that by using VM, companies can
start to sale their products in marker, sooner, compared to
physical manufacturing processes. This would also increase
the quality and safety of the product s by monitoring the
manufacturing lines, controlling the anomalies that happen
during the manufacturing, etc [233].

Augmented Reality (AR) is accounted as a technology
that use digital information of a real world to improve the
user’s perception of the world. AR can be used for navigation
applications where the related apps could show the virtual
directions to the user to guide her/him to the destination. It can
be also used for training and education purposes in sensitive
applications like surgery on human body [234]. Then, there
is Virtual Reality (VR) where it is defined as the re-creation
of the current real world through digital items like images,
videos, models, etc. In this manner, instead of observing the
consequences of some act, one can experience it in digital
world. Generally, there are three types of VR, non-immersive
VR, immersive VR, and semi-immersive VR. Finally, there
is Mixed Reality (MR) where the real-world scenarios are
superimposed to the digital elements of the models through
a real-time connection. This would allow the real-time con-
nection between physical and digital connection in DTs, in a
real-time manner [235].

The recent advancements on IoT and DT have emerged
the existence of a new concept as ‘‘Edge Computing (EC)’’.
Since the number of that must be analysed, in IoT and DT,
is too much. EC is accounted as one of the most important
future trends for DT and IoT technologies. The idea behind
EC is to do all data processing, computations, and storage of
data to the edge of networks, instead of clouds. As a result of
this, data transmission time and response time are reduced as
well as the reduction of the pressure on the shoulders of the
bandwidth [236].
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C. FUTURE OF DT IN ELECTRIC AIRCRAFT
One of the future trends related to the using of DTs for electric
and cryo-electric aircraft is performance prediction of the
electric devices. For this purpose, AI-based DTs will be used
to replace the FEM-based methods. The DTs, in this regard,
could be used for condition monitoring of electrical devices,
anomaly prediction, fault location, etc. Another future appli-
cation of DT in electric aircraft is controlling the power
electronic devices to ensure their safety of operation. To do
this, the cooperation of the power electronics and AI-based
techniques could not only control the power electronic device
but also could be used to monitor its temperature, anomalies,
etc. DT would be used also for decision making tasks to con-
trol and guide the electric aircraft. Also, the decision-making
responsibilities related to energy source management in elec-
tric aircraft would be handled by DTs.

Health monitoring of passengers during a flight is another
future trend for DTs in aviation units. This is accessible by
using the biometric sensors that could be implemented in
aircraft seats or cabin surfaces. Then, in a real-time manner,
data of these sensors are collected and processed through AI-
based techniques. After data analysis, the health profile of
the passenger would be acquired. In any case that passenger’s
health profile become anormal, the In-Flight Services would
help the passengers, DT would be also used for training
and testing the pilots where this can reduce the chance of
crashes and human errors. For this purpose, DT could be
used scenario-based flight simulations, where a wide range of
realistic scenarios are created to help the training procedure
of pilots. It can be also used to familiarize the pilots with the
cockpit.

VI. CONCLUSION
Exact and fast monitoring of the aircraft units could reduce
the risk of jeopardizing the passengers’ lives and decrease
serious economic damages to aviation fleets. Recently,
a novel concept has been applied to the monitoring process
of aircraft units, known as Digital Twins (DT) which is a
virtual domain that is simulated exactly as the real twin
works. By applying DTs to the aviation units, the control,
decision-making, condition monitoring, and management of
aircraft could be performed faster and more reliably com-
pared to conventional monitoring methods. This paper aims
to review the most important efforts in using DT for condi-
tion and fleet monitoring of aviation units. For this purpose,
firstly, the introduction section proposes the necessity of
using DT in aircraft conditions and fleet monitoring. Then,
in section two of the paper, the DT concept is completely
established and defined. Afterwards, in section III, the efforts
and achievements related to using DT for aircraft systems
have been analysed, and these studies have been categorized
based on their virtual models that could be based on artificial
intelligence techniques or conventional modelling methods.
In the second stage of section III, the lessons learned for DT
technology from other industries have been reviewed and how

these lessons could help us in the aviation industry. Section IV
was dedicated to the current challenges of both aircraft and
DT systems and lately, section V was presented to show the
future trends in the DT field and aviation industry. The most
important highlights of this review paper could be shortlisted
as follows:

• Among the published papers, approximately 10 papers
have used the conventional modelling methods for DT.

• Artificial intelligence techniques have been used in
12 papers for condition monitoring purposes of DT.

• The DT-based condition monitoring methods, reviewed
in this paper, are mostly dedicated to fault/failure diag-
nosis in the body of the aircraft or for controlling the
aircraft.

• Crack detection and Life prediction on wings are of the
most discussed topics, regarding using DT for condition
monitoring.

• Marine, power systems, and space programs also have
used the DT for condition monitoring purposes.

• Sensors, real-time decision-making, data safety, and 5G
support seem to be current obstacles for using DT in
condition monitoring of aircraft.

It should be mentioned that in future DT-based systems
will play a critical role in condition monitoring of aircraft,
with respect to growing trends in electrification, and digital-
ization of aircraft. In this regard, it should be stated that the
future trends related to electric aircraft has been discussed in
‘‘Future Trends’’ section. Also, the future trends of DT-based
systems have been discussed in this section.

The future of electric aircraft tends towards the
cryo-electrification of drivetrain where liquid hydrogen is
used as fuel as well as the coolant of the superconducting
devices. By having this combination, the hybrid electric
aircraft is accessible. On the other hand, DT-based systems
would take the participate more in monitoring, manufactur-
ing, and maintenance of aircraft units that could reduce the
risk of failures and crashes.
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