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ABSTRACT This paper presents a set of benchmarks to evaluate the performance of Fuzzy Rule Interpola-
tion (FRI) methods under various challenging conditions. FRI methods are widely used for handling sparse
fuzzy rule bases and reducing decision complexity. Despite lacking overlap with the antecedents of any rule
in the rule bases, FRI can still produce a conclusion. To unify the requirements of FRI methods, several
conditions have been proposed. Among these, the convex and normal fuzzy set condition and the Piece-wise
linearity condition are the most common. In this paper, we introduce new benchmark scenarios for testing
FRI methods. These benchmarks aim to serve as a reference for evaluating and comparing the accuracy and
effectiveness of FRI methods. By using these benchmarks, researchers can compare different FRI methods
and identify areas for improvement in the field of fuzzy inference.

INDEX TERMS FRI benchmark, interpolation techniques, fuzzy rule interpolation, fuzzy interpolative,

benchmark scenarios.

I. INTRODUCTION

Traditional fuzzy systems are based on a comprehensive
fuzzy rule base that covers all conceivable input scenarios
to generate meaningful results. However, it is often the case
that incomplete sets of rules exist, regardless of whether they
are based on input from human experts or on automated
procedures. This fact implies that traditional fuzzy inference
systems may not be well suited to situations with a limited
number of fuzzy rules and where the input does not match any
of the rule antecedents. To reduce this challenge, the Fuzzy
Rule Interpolation (FRI) concept was developed.

FRI provides a pragmatic solution that provides reasonable
results, even if the system contains a few fuzzy rules. FRI can
detect the critical fuzzy rules required for inference and has
the potential to streamline complex fuzzy models character-
ized by an abundance of rules.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato

FRI is a valuable tool in situations where there is a lack
of comprehensive expert knowledge or difficulty obtaining
datasets. Using FRI is important to enhance the efficiency of
complex classical fuzzy inference systems by identifying the
important rules.

FRI was applied in different fields, such as control systems,
prediction models, and decision-making. In [1], a creative
method was presented to precisely target the detection of
IoT-Botnet attacks within IoT smart environments. This
method applied the adaptation of the LEast Squares-based
FRI (LESFRI) technique [23].

Also, FRI methods were applied within the field of Intru-
sion Detection Systems (IDS) [3]. This investigation included
the implementation of the FRI-IDS model as a means of
detecting Distributed Denial of Service (DDoS) attacks.

Similarly, another strategy was proposed for the detection
of different intrusions using FRI techniques. In [2], a sys-
tem for recognizing facial expressions was designed, which
classified and identified seven distinct facial expression types
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using the FRI concept. Also, in [4] the fuzzy decision model
proposed for the selection of tourist hotel locations was cre-
ated. This model proved the practicality and efficacy of the
proposed B-FRI approach in the context of assessing and
supporting decision-making for hotel location selection.

In [31], a new detection mechanism for multi-step attacks
was introduced by the authors, utilizing FRI methods in
a fuzzy automaton framework. The proposed mechanism
demonstrated an impressive 97.836% detection rate. Notably,
it not only identified multi-step attacks but also detected
them in stages, particularly in cases where the planned
attack was not fully developed, resulting in reduced poten-
tial harm. In [32], the authors presented an abnormality
detection approach leveraging Fuzzy Rule Interpolation
(FRI) along with Simple Network Management Protocol
(SNMP) Management Information Base (MIB) parameters.
This method streamlined the detection process by eliminating
the time-consuming raw traffic processing component, which
typically requires extensive computational resources.

In [33], the authors introduced a fuzzy inference-based
anomaly-based intrusion detection system for detecting
DDoS attacks. The utilization of a fuzzy inference system
aimed to move beyond binary decisions, addressing issues
associated with the limitations of IDS alert system awareness.
In [37], a novel phishing website attack detection method
was presented by the authors, mitigating problems linked to
knowledge-based representation and binary decision issues.
The proposed detection method, implemented using the
Incircle-FRI method, was evaluated on an open-source
benchmark phishing website dataset. The results demon-
strated competitive accuracy, achieving a 97.58% detection
rate, and effectively reducing false alerts.

Despite the many FRI methods proposed since 1991, the
use of the FRI concept was not important due to the insuf-
ficiency of its practical application in different fields. The
reason is the lack of comprehensive benchmarks and char-
acteristics through which one can distinguish and compare
interpolation methods.

The authors discussed in the literatures [7], [26], and [34] a
general set of conditions for the FRI concept, where the com-
parison between interpolation methods was based on a set of
specific examples. Our objective in this paper is to construct
comprehensive benchmark scenarios (as a framework) that
will be created to be a base for classifying and comparing the
FRI methods.

The main contribution of this paper is summarized as
follows:

« Introducing various benchmark scenarios that serve as a
guide for evaluating FRI methods and identifying their
strengths and weaknesses.

o Analyzing the proposed benchmark scenarios to stan-
dardize the evaluation process and help researchers
assess the accuracy and effectiveness of FRI methods
under various challenging conditions.

o These benchmark scenarios are valuable for advancing
the field of fuzzy inference and improving the perfor-

mance of FRI methods in real-world applications.
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o These benchmark scenarios can serve as a standard ref-
erence for facilitating FRI methods classification and
comparison.

This paper is organized as follows. Section (II) defines
the notion of a complete - incomplete rule base and back-
ground related to fuzzy rule interpolation. Section (III) gives
characteristics of the presented FRI conditions. Section (IV)
presents the suggested set of benchmarks for evaluating the
FRI methods. Experiments of the benchmarks will be pro-
vided in Section (V). Section (VI) presents conclusions.

Il. PRELIMINARIES AND BACKGROUND RELATED TO
FUZZY RULE INTERPOLATION

Fuzzy expert systems leverage imprecision and partial truth
to mimic human reasoning, often employing approximate
reasoning. Such systems involve linguistic variables, fuzzy
rules, and a fuzzy inference method. Linguistic variables
help interpret expressions, while fuzzy rules link input and
output variables [6]. The fuzzy inference strategies use these
rules to process new input (observation) data via approxi-
mate reasoning. The essential components include fuzzy rule
bases, storing knowledge for inference, and a mechanism for
computing outputs based on input and rules.

One popular approach is the Compositional Rule of Infer-
ence (CRI), seen in Mamdani’s or Sugeno’s fuzzy logic
controllers. However, CRI is effective with dense rule bases
covering the entire problem space, making sparse or incom-
plete rule bases challenging. Sparse rule bases may result
from incomplete knowledge or the desire to reduce system
complexity. CRI fails when input observations lack overlap
with available rules, highlighting a limitation in handling
sparse rule bases.

The Fuzzy Rule Interpolation (FRI) is an advanced infer-
ence mechanism for fuzzy rule-based systems, particularly
when dealing with sparse rule bases. FRI addresses the limi-
tations of the CRI by manipulating rules similar to unmatched
observations, allowing for reasoning in situations where a
complete rule base is impractical. FRI can interpolate out-
comes with sparse knowledge, making two key contributions:
facilitating reasoning on sparse rule bases and potentially
simplifying dense rule bases through system computation
reduction.

Fuzzy interpolative reasoning is an inference technique for
sparse fuzzy rule-based systems. It is obvious that the number
of fuzzy rules significantly affects the execution time of the
fuzzy rule-based system, where the sparser the fuzzy rule
bases of the system are, the faster the execution of the system
is. In this situation, the input universe of discourse is covered
completely by fuzzy rule bases through fuzzy interpolative
reasoning methods. When an observation occurs, a conse-
quence can be derived using fuzzy interpolative reasoning
techniques.

The schema of the fuzzy rules represented in Fig. 1 is an
example of complete rule bases, which are defined as follows:

Rulel: If (Inputy is A1and Input, is By) Then (Output is C1)

Rule2: If (Inputy is Ayand Input, is By) Then (Output is Cy)
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Rule3: If (Input, is Ajand Input, is By) Then (Output is C1)

Rule8: If (Input, is Ajand Input;, is By) Then (Output is C1)
Rule9: If (Inputy is Ajand Input, is By) Then (Output is C1)

New Observation:
If (Input| is A1and Inputy is B>) Then (Output is Cy)

Fig. 1 describes the relationship between inputs and out-
puts via complete rule bases in the fuzzy rule-based system
as represented (Rulej, Rules, ........ , Ruleyg). Thus, there
are three rules (Ruley, Rules, and Rules) that cover the new
inputs, such as new observation 1 and new observation 2.
Hence, one of the traditional inference systems (MAMDANI
or SUGENOI) could be used to calculate the conclusion.

input2

The Fuzzy Rules.
If (Antecedents (A, B)) Then (onsequences (C))

Rule 7 Rule 8 Rule 9

if A& By then C, || if Ay & B then C; |[if Ay & By then Cy

Rule 5 Rule 6

if A & B, then C, || if A, & B, then C, ||if A; & B, then C;

Rule 1 : Rule2 Rule 3

Input (Ante:

if A; & By then C, || if Ay & B, then C, |[if A; & B, then C,

new observation 2

A1 A2 A3
Input (Antecedent) 1

>
»

input1

new observation 1

FIGURE 1. Dense fuzzy rule based system.

Fig. 2 describes the incomplete fuzzy rules in the fuzzy
rule-based system: In this case, the classical compositional
rule of inference cannot give a conclusion because there are
no rules covering the new inputs, such as (new observation 1
and new observation 2).

The schema of fuzzy rules shown in the example in Fig. 2
is represented as follows:

Rulel: If (Inputy is Ajand Input, is B1) Then (Output is C1)
Rule3: If (Inputy is Azand Input, is By) Then (Output is Cy)
Rule7: If (Inputy is Ajand Input, is By) Then (Output is C1)
Rule8: If (Input, is Ayand Input, is By) Then (Output is C1)

Rule9: If (Input, is Azand Input; is By) Then (Output is C1)
New Observation:

If (Inputy is Ayand Inputy is By) Then (Output is C1)

In this case, traditional inference methods cannot give any
conclusion because the new observations] or new observa-
tions2 are not covered by any of the current fuzzy rules in the
system.
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The Fuzzy Rules.
If (Antecedents (A, B)) Then (onsequences (C))

Rule 7 Rule 8 Rule 9

if A1& By then C || if Ay & By then Cj | fif Ay & By then Cs

***: Norules

Rule 1 Rule 3

Input (Anfecedent) 2

if A; & B, then C ifA; & B, thenC,

new observation 2

Al : A2 A3
Input (Antecedent) 1

»
>
input1

new observation 1

FIGURE 2. Sparse fuzzy rule-based system with overlapping between
fuzzy sets.

In another scenario where traditional inference systems
fail to yield conclusions, occurs when the system encom-
passes all fuzzy rules (complete fuzzy rules). Despite having
complete fuzzy rules, the classical compositional rule of
inference becomes incapable of concluding due to a gap
between fuzzy sets, illustrated in Fig. 3. This gap derives from
non-overlapping triangular fuzzy sets. Therefore, no rule ade-
quately encompasses new inputs, such as new observation 1
and new observation 2.

input2
": The Fuzzy Rules.
If (Antecedents (A, B)) Then (onsequences (C))
Rule 7 Rule 8 Rule 9
B3 if A4& B3 then Cy if Ay & By then C | [if A3 & By then C53
~
] Rile 4 Rule 5 Rule 6
@
E B2 ifA, & By then C, if A, & B, then C,||if A; & B, then C5
8
PR —El : Gap between fuzzy rules
s
: <
£ 5 Rule 1 : Rule 2 Rule 3
2 g. B1 ifA & BythenCy | |ifA,&Bythen Cy|[if Ay & By then C,
2 = :
2
A1 i A2 A3 -
* Lt
Input (Antecedent) 1 inputt
new observation 1

FIGURE 3. Gab between fuzzy sets (no-overlapping) with complete fuzzy
rules.

Different FRI methods have been proposed in the litera-
tures, including linear interpolation, extension KH [14], [15]
central point-based interpolation, Conservation of the Rela-
tive Fuzziness interpolation (CRF) method [17], Improved
Multidimensional modified «-Cut interpolation (IMUL)
method [22], an enhanced «-Cut based fuzzy interpolative
reasoning approach, which is based on the slopes of fuzzy
triangular shape has been introduced. These methodologies
enable direct deduction of conclusions from observations.

Additionally, several methods aim to improve the outputs
by addressing potential issues such as abnormal conclusions
in KH linear interpolation. The VKK method is a modifica-
tion of the KH FRI, which was suggested by Vass et al. [20]
The conclusion in this method can be computed based on the
distance of the center points and the widths of the «-cuts,
rather than the lower and upper distances.
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The stabilized KH (KHstab) approach is proposed by
Tikk et al. [8] to address and exclude the abnormality con-
clusion. This method has used the inverse of the distance
between antecedents and observation, where all flanking of
the observation will be used in computing the conclusion.
Another modification of the original KH method is called
The Modified «-Cut based Interpolation (MACI), which was
presented by Tikk and Baranyi [19], MACI transforms fuzzy
sets into vector descriptions, then calculates the conclusion,
and finally, transforms back to the initial space.

On the other hand, some of the FRI methods require
a two-step process to determine the conclusions. These
approaches first generate an approximate fuzzy rule through
specific similarity principles and then employ an approximate
transformation to provide the conclusion.

For instance, there are several methodologies used for
interpolation in the literature, including the Generalized
Methodology (GM) [9], Polar Cuts (POC) [21], Least
Squares (LES) [23], Vague Environment (VE) [25], and
the Fuzzy Interpolation in the Vague Environment (FIVE)
approach [24]. For Convex and Normal Fuzzy Sets (CNF),
another method known as Incircle-FRI has been devised [18].
For all rules and observations, Incircle-FRI involves
the production of CNF and PieceWise Linearity (PWL)
outcomes [12], [16].

The author in [40] introduced Dynamic Fuzzy Interpola-
tion based on Rule Assessment (RAD-FRI), which enhances
the sparse rule base by incorporating high-quality interpo-
lated rules. RAD-FRI improves the similarity function by
considering the location of rules in a sparse rule base and
filtering unused interpolated rules. The authors in [41] pro-
posed a rough-fuzzy rule interpolation method to improve
decision-making systems by including further uncertain
information, enabling the implementation of fuzzy reason-
ing systems with incomplete rule bases. In [42], a novel
FRI approach is described, which is based on mapping the
structural patterns within a given fuzzy rule base onto a
mathematically isomorphic data space such that the essential
information embedded in the original rule base can be effec-
tively captured, represented, and analyzed.

In [43], a new FRI approach is presented that uses density.
The proposed method adaptively selects the closest rules that
are within a certain range of the unmatched inputs, thus
assuring the selected rules have high similarity to the inputs.
In [44], an extended version of the Incircle FRI is introduced
using a modified weight measure calculation and a shift tech-
nique. This weight measure estimation and shift ratio enabled
the ability of extrapolation to be conducted implicitly, which
also improved the performance results of the algorithm in the
presence of multiple fuzzy rules and multidimensional priors.

IIl. CHARACTERISTICS OF FUZZY RULE INTERPOLATION
CONDITIONS

FRI addresses the challenge of sparse fuzzy rule-based
inference, but designing such systems requires careful
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consideration of multiple factors to ensure successful imple-
mentation. To evaluate and compare different techniques
based on common principles, it is crucial to establish a set
of criteria. Existing literatures (e.g., [8], [10], and [34]) has
defined various criteria and properties from different perspec-
tives when applying the FRI concept.

These criteria aim to ensure that FRI methods can produce
different results as noted in the literatures [9], [11], and [13],
where they produce normality and convexity conclusions,
preserve multicollinearity, apply with different types of mem-
bership functions, deal with multidimensional environments,
it reduces computational complexity.

Meeting most of these criteria with problem-specific
parameters should result in a practical fuzzy rule interpolation
technique. As a starting point for comparing and assessing
FRI approaches, significant conditions have been presented
to help unify FRI methods. Important FRI characteristics
include the following:

A. AVOIDING THE INVALID CONCLUSION (NORMALITY)
FRI methods must, as a basic requirement, produce valid
conclusion fuzzy sets, which implies that the resultant mem-
bership value must fall within the [1, O] range and that only
one membership function value should be associated with
a single element of the conclusion. Based on the research
presented in [19] and [30], this condition may be expressed
as a set of limitations in FRI techniques that use «-Cut.
Suppose Xj(j = I,...,n) is the input part and Y is the output
part, the Cartesian product of the input part can be represented
by X = X1 X X2 X...xX,. A fuzzy rule (IF-THEN) described
by R;: if Ai1 AN A A-- - A Ajp, then B;, where antecedents part
Aj; € F(X;), consequents part B; € F(Y), and F(Z) define all
fuzzy subsets of Z. The Cartesian product of antecedents part
(n-dimensional) Aij, (j = 1,...,n) of rule R; can be indicated as
A(;). The membership function of fuzzy set Ae F(Z)is valid if
it satisfies certain constraints based on «-cuts as shown in (1).

Vo, 1 <oy € (0,1] :inf{Ay} < sup{Ay} and
inf{Aq1} < inf{Au2) and
sup{Aq2} < sup{Aq1} (1)

where “inf” refers to the lower endpoints and “sup” refers to
the upper endpoints of the real -cuts of the fuzzy sets.

According to the conclusion of mapping /, indicated by
B* = I(A*)e F(Y) will be a valid fuzzy set for any A* € F(X),
the correctness of the mapping may be ascertained. Further
details and benchmarks related to this point can be found
in [12], which demonstrates all notations of CNF condition.

Further details about the CNF benchmark examples related
to this condition can be found in [12]. In which the authors
proved all notations of the CNF condition and collected some
cardinal rule-base and observation examples according to
the first FRI method (KH FRI). Based on corollaries and
equations that have also been set up to examine the normality
of the fuzzy conclusion.
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Fig.4 illustrates the goal of this condition, which is not to
obtain a normality conclusion as shown by (B*).

n The and Observation fuzzy sets The Consequences and Conclusion fuzzy sets

FIGURE 4. The condition of the invalid conclusion.

B. CONSERVATION ON THE LINEARITY SLOPES (PWL)
When the fuzzy sets used in the fuzzy rules are preserved
on the linearity, the approximated sets must retain this char-
acteristic. Consequently, inferences drawn from such rules
and observations must adhere to a piecewise linear format as
noted in the literatures [9], [11], and [13].

To ensure strict adherence to this condition, any fur-
ther interpolation beyond calculation using odd points alone
should be avoided (for more details see [28], [29]). To obtain
a comprehensive understanding of this requirement, it is rec-
ommended that all notations of the piecewise linear condition
be reviewed, along with examples, as demonstrated in [16].

The authors in [16] presented benchmark scenarios that
were constructed to assess the KH FRI’s compliance with
PWL requirements, serving as a reference for evaluation and
comparison with other FRI methods. These scenarios were
created based on various equations and notations related to
the PWL property, highlighting the problematic aspects of
the KH FRI method, and constructing benchmark examples
for testing other FRI methods against situations that do not
meet the linearity condition for KH FRI. In the study, nec-
essary and sufficient notations and equations demonstrating
the PWL property for the KH FRI method were determined,
discussing the relationship between linear approximation and
real function conclusions. The paper compared several FRI
methods (KHstab, VKK, FRIPOC, and VEIN) based on PWL
benchmark examples. The results indicate that the KH FRI
does not satisfy the PWL property. Among the methods com-
pared, KHstab and FRIPOC suffer in preserving PWL, while
the VKK and VEIN methods generally succeed, except for
some benchmark examples with minor deviations in linearity.

Qs
g

Approximation
conclusion

Consequent

Q
o

b11

FIGURE 5. The condition of the linearity slopes of the fuzzy sets.

Fig. 5 shows the difference between the approximation
conclusion and the real conclusion.
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C. THE RELATIONSHIP BETWEEN THE ANTECEDENT AND
CONSEQUENT FUZZY SETS (CONTINUITY)

According to the membership functions, the most common
and simple ones used with the FRI concept are singleton,
triangular, and trapezoidal fuzzy sets. Suppose that we have
the fuzzy rules:

Ri:A; —> B{,Ry: Ay —> By, and R3: A3 — B3

As described in Fig. 6, the antecedent fuzzy sets are
represented by triangular fuzzy sets, the consequences are
represented by singleton fuzzy sets, and there is a new obser-
vation represented by triangular fuzzy set; therefore, based
on the definition and continuity property, if the observation
fuzzy set is similar (as the same type) to the antecedent fuzzy
sets, then the conclusion fuzzy set should be similar to the
consequence fuzzy sets.

The definition related to the continuity property between
fuzzy sets of (antecedent and observation) and (conse-
quences and conclusion), as mentioned in [26] and [30],
is described as follows: The fuzzy set Z, it will be by FSZ:
F(Z) x F(Z) — (R). Then, for any (A, Ay, A*) € F(X),
if FSy(Ax, Aj1)> FSx(A¥, Ap), then FSy(I(A*), Bi1)> FS, (A%,
Bpp), where R;;: Ajj — Byj (j=1,2) refer to the two-rules from
the rule-base (R).

Many scientists often focus solely on the scenario of this
principle, which is when the observation exactly matches a
rule antecedent. This case is generally referred to as rule base
compatibility. In the field of logic, the principle of similarity
is equivalent to Modus Ponens (MP) and is considered a hall-
mark of model continuity represented by the fuzzy-relation
of the rule-base [27]. Fig. 6 shows the similar degree between
observation and conclusion.

The Antecedents and Observation fuzzy sets

1 1

05 A 05
Al A2 A3 % B1
10 20 30 40 50

0
0 60 o 10 20 30 40 50 60 70

The Consequences and Conclusion fuzzy sets

FIGURE 6. The condition of the mapping between antecedent and
consequent.

D. THE FUZZINESS OF THE APPROXIMATED CONCLUSION
(FUZZINESS)

Suppose the knowledge base provides certain information
from fuzzy input data. In that case, a precise conclusion can
be expected if all the consequences of the rules considered
during interpolation are from a singleton fuzzy set. Regarding
this condition, as demonstrated in the literature [26], there are
two opposing viewpoints on this issue.

Case 1: If (A*) is a singleton fuzzy set, then the deduced
conclusion I(A*) should be a singleton fuzzy set, as shown in
Fig. 7.

Case 2: If all fuzzy rules (antecedents, consequents, and
observation) (I) contributing to the calculation of the conclu-
sion I(A*) and the observation (A*) are singletons, then I(A*)
should also be a singleton, as shown in Fig. 8.
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FIGURE 7. The condition of the fuzziness of the approximated result for
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FIGURE 8. The condition of the fuzziness of the approximated result for
(case2).

E. THE STABILITY OF APPROXIMATION (STABILITY)

In this property, the goal is to approximate the relationship
between the antecedent and consequent universes to the high-
est possible degree. This approximation should be stable
and separate from the position of the measure points, with
confluence towards the compared function as the number of
measure points approaches infinity. This condition ensures
that the shape of the observation is identical to that of the
conclusion, resulting in a stable and accurate approximation
as illustrated by Fig. 9.

The Antecedents and Observation fuzzy sets

The Consequences and Conclusion fuzzy sets
1 1
At o
05 05
Al A2 A3 B3

0 il ¥y

0

0 5 10 15 220 25 30 3B 40 45

1)@
B
B2
0 % 5 10 15 2 25 N B 4 45 50

FIGURE 9. The condition of the stability of approximation.

F. THE FUZZY SETS OVERLAPPING (OVERLAPPING)

A competent fuzzy rule interpolation approach must be able
to account for rules in which antecedents and consequences
have overlapped. This implies that the method works in
problem domains where neighboring fuzzy rules have cer-
tain common constituents. Fig. 10 describes the overlapping
property and the location of the observation between the
antecedents and consequences.

and Conclusion fuzzy sets

The and Observation fuzzy sets The Con

B1 B2

FIGURE 10. The condition of the overlapping between fuzzy sets.

G. EXTRAPOLATION CAPABILITY (FUZZINESS)

A method employing mapping / is considered suitable for
extrapolation when it can generate a conclusion for an obser-
vation located in an extrapolative position. If observation A*
located so that A;; and Aj, exist such that (Aj; < A* < Ajp),
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then FRI is applied based on rules Rj; and Rjp to obtain
the conclusion. Otherwise, when all rule antecedents A;
(i=1,...,r) either precede or are preceded by A*:

Vi< e [1,r] IA* < Aj orA; < A* )

On the other side, if every rule antecedent either pre-
cedes or follows A* in the observed sequence, signifying the
absence of A* positioned between any antecedent pairs, the
prerequisites for applying FRI based on extrapolation are not
fulfilled as shown in Fig. 11.

This difference in positioning plays an important role in
determining the method’s capability to extrapolate conclu-
sions for observations situated between antecedents or if its
applicability is restricted to scenarios, where observations
exactly align with specific antecedents.

The Antecedents and Observation fuzzy sets

1 1
N A
05 05
A A2 A
xv
10 20 30 40 50

0
0

The Consequences and Conclusion fuzzy sets

g
B1 B2 B3
Yy
10 20 30 40 50

60

FIGURE 11. The condition of the extrapolation of the observation.

IV. THE SUGGESTED SET OF BENCHMARK SCENARIOS
FOR EVALUATING THE FRI METHODS

Many FRI methods have been developed over the past decade,
but most of them have weaknesses. Researchers in fuzzy
interpolation attempted to address these deficiencies and
issues in these methods to identify and improve recurring
problems in evaluating FRI methods. The authors highlight
several shortcomings in prior research. These include:

Lack of Comprehensive Conditions in FRI Analysis:
Approach-oriented papers, such as those referenced in [10],
[19], and [26], are criticized for introducing new FRI con-
cepts without providing comprehensive conditions in the
Fuzzy Rule Interpolation (FRI) analysis. The conditions they
present are deemed insufficient to fully justify the proposed
approaches or aspects.

Limited Scope in Summarization-Oriented Papers:
Summarization-oriented papers, exemplified by [11], [34],
[38], and [39], are faulted for offering brief summaries that
predominantly focus on specific aspects of FRI. These sum-
maries are considered lacking in coverage and depth, making
them susceptible to criticism on similar grounds. Insufficient
Evaluation Criteria: The evaluation criteria used in prior
research are mentioned as lacking in some cases. For instance,
[19] is noted for its analysis and comparison of MACI’s
general applicability, complexity, approximative power, and
fuzziness of conclusion, indicating that these criteria might
not be comprehensive enough.

Limited Methodological Exploration: Some
summarization-oriented papers, including those by Jenei [26]
and Baranyi et al. [ 10], are criticized for a lack of methodolog-
ical exploration. The focus on applicability, consistency, and
shape-preservation is noted, but the authors argue that these
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aspects are part of a summarization approach rather than a
comprehensive exploration of methodologies.

The authors in this paper introduce new benchmarks and
conditions for testing FRI methods. These benchmarks aim to
serve as a reference for evaluating and comparing the accu-
racy and effectiveness of FRI methods; thus, researchers can
identify areas for improvement in the field of fuzzy inference.

We selected specific fuzzy rules and fuzzy set configura-
tions based on extensive analysis of the inherent challenges
in FRI methods. The construction of benchmark scenarios
is a crucial aspect of our evaluation framework. Moreover,
during our analysis to generate the scenarios, the following
properties will be considered to create the benchmarks:

« Positioning of Observations:

Examines where observations lie concerning rule bases, con-
sidering possibilities such as in-between, partial overlap,
or alignment with existing rules.

« Range Values of Antecedent and Consequent Com-

ponents:
Considers the range values of Antecedent (ANT) and Conse-
quent (CON) components, providing insights into the scope
and variability of these components within the FRI system.

o Number of Rule Bases:

The rationale for evaluating the number of rule bases in fuzzy
rule interpolation is to comprehend the complexity inherent in
both the antecedent and consequent parts of the system. The
quantity of rule bases serves as a metric that guides the alloca-
tion of resources, helping to allocate computational capability
and memory efficiently. Additionally, the insights derived
from assessing the number of rule bases play a key role
in informing modeling decisions and contribute to achiev-
ing optimal performance and accuracy in the interpolation
process.

o Dimensionality of Input and Output Variables:
Examines the dimensionality of input and output variables,
offering insights into the complexity and multidimensional
nature of the FRI scenarios under evaluation.

o Degree of Fuzziness for Fuzzy Sets:

Evaluates the degree of fuzziness associated with the Left-
Side and RightSide fuzzy sets, providing a measure of the
uncertainty or imprecision incorporated into the FRI method.

o The type of Fuzzy Sets:

The selection of types of fuzzy sets relies on the nature of
the issue, the available information, and the desired level
of granularity and flexibility in modeling uncertainty. These
shapes (triangular, trapezoidal, or singleton) offer a balance
between interpretability, simplicity, and significance in catch-
ing and describing imprecise information, allowing fuzzy
logic systems to effectively capture and process uncertain
information in various applications, such as control systems,
decision-making, and pattern recognition.

In summary, these properties encompass various aspects
crucial for constructing comprehensive benchmark scenar-
ios, offering a nuanced evaluation of FRI methods under
diverse conditions. In the following, we present the proposed
benchmarks based on all the above-mentioned properties as
follows:
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A. BENCHMARK SCENARIOS OF THE “CONTINUITY”
CONDITION

This condition (Condition (IV-A)) encompasses four stan-
dardized scenarios (Scenario (1) - Scenario (4)) formulated
and carefully constructed to serve as a benchmark for com-
parison, mainly focusing on the continuity condition. These
scenarios contained variations in the dimensionality of the
inputs and outputs and used different membership functions
for each part of the inputs and outputs. The specific char-
acteristics for each benchmark example are represented by
input values, output values, and the number of rules for each
scenario as of the condition (IV-A):

Condition (IV-A) - Scenario (1)
Ar=[59 12 15], A=[21 25 27 31], A=[37 41 43 47], Bi=[4], B=[8], B+~=[16],
A’=[151719 21], and Fuzzy Rules are A1 =B1, As —Bs

JAAVAVEEIN

Condition (IV-A) - Scenario (2)
Ar=[59 12 15], A=[21 25 27 31], As=[37 41 43 47], Bi=[5 10 15], B=[21 26
31], Bs=[37 42 47], A’=[20 24 28 32] , and Fuzzy Rules are A1 =B1, A3 —Bs

A ALEAAA

Condition (IV-A) - Scenario (3)
Ai=[4], A>=[8], As=[16], Bi=[59 12 15], B=[21 25 27 31], Bs=[37 41 43 47],
IA=[12], and Fuzzy Rules are A1 —B1, As —=Bs

TIEEAAA

Condition (IV-A) — Scenario (4)
A1=[5 8 12 15], A=[21 24 28 31], A15=[37 40 44 47], An=[5 10 15],
A»=[21 26 31], A»=[37 42 47], B1=[10], B=[30], Bs=[50], A"1=[16 17 19 20],
IA2=[32 34 36] , and Fuzzy Rules are An and Az—-B1, A1z and A»—Bz, A1

RITAWAR FAWAYTAY

5
™

B. BENCHMARK SCENARIOS OF THE “FUZZINESS”
CONDITION
The fuzziness condition comprises several standard scenarios
used for evaluating the preservation of fuzziness in FRI meth-
ods. These scenarios are intended to investigate the behavior
of FRI techniques in maintaining the fuzziness of the input
and output fuzzy sets. The specific details of each scenario,
including the properties of the input and output components
and the number of rules, are provided below:

The first approach (IV-B1) of the fuzziness condition is
related to when the observation is a singleton fuzzy set.

VOLUME 12, 2024



M. Alzubi et al.: Comparative Analysis of FRI Techniques Across Various Scenarios

IEEE Access

The second approach (IV-B2) of the fuzziness condition
is related when the observation and consequent are singleton
fuzzy sets. Both approaches (IV-B1) and (IV-B2) consist of
four scenarios, each featuring distinct fuzzy sets and shapes.

The First Approach (IV-B1) of the Fuzziness Condition

Condition (IV-B1) — Scenario (1)
Ai=[4], A>=[8], As=[16], Bi=[5 10 15], B>=[21 26 31], B:=[37 42 47], A=[14],
and Fuzzy Rules are A1 —B1, As —Bs

—
A3
81 82 83
2 % s 1w 15 2 3 ® 3 ® &

Condition (4.2-A) - Scenario (2)

A=[510 15], A>=[21 26 31], As=[37 42 47], B:=[3 8 12 17], B-=[23 28 32 37],
Bs= 43 48 53 58 A= [34] and Fuzzy Rules are A1 —Bi1, As —Bs

A1 A2

Condition (IV-B1) — Scenario (3)
Ar=[9 14 16 21], A=[30 35 40], Bi=[9 15 21], B=[30 34 36 40], A'=[25] , and
Fuzzy Rules are A1 —B1, A2 —B2

FANVANIEANTAN

Condition (IV-B1) - Scenario (4)
Au=[3 8 12 17], A=[23 28 32 37], A1—[43 48 53 58], An=[3 8 12 17], An—[23
2832 37], An=[43 48 53 58], Bi=[3 8 12 17], B=[23 28 32 37], B:=[43 48 53
58], A1=[20], A2=[39], and Fuzzy Rules are: (An and A21—B1), (A and
A»-Be), (A1iz and Ax—Bs).

TAVAVAGTAWAIIAY
WAWAWAN

6

Condition (IV-B1) - Scenario (5)
An=[51015], A1=[21 26 31], A15=[37 42 47], Ax=[5 10 15], A»=[21 26 31],
Axs=[37 42 47], A»=[510 15], A»=[21 26 31], As=[37 42 47], B1=[5 10 15],
B=[21 26 31], Bs=[37 42 47], A"=[18], A"=[26], A'=[34], and Fuzzy Rules
are: (An and Az and As—B1), (A1z and A» and A»—Bz), (Ais and Ax and

Ax—B3)
‘
08 A.Z
b
A22
"
02 A21 A23 X
. .
¥y

% 5 1 1 2 25 ® % @0 5 0

C. BENCHMARK SCENARIOS OF THE “STABILITY”
CONDITION

This requirement comprises four standard scenarios designed
for the stability condition, which simulate the stability of
the observation with a conclusion. Three scenarios are rep-
resented by (1-D) input and (1-D) output, and one scenario
is described by (2-D) input and (1-D) output. The specific
details of each scenario, including the properties of the input
and output components and the number of rules, are provided
in condition (IV-C):
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The Second Approach (IV-B2) of the Fuzziness Condition

Condition (IV-B2) — Scenario (1)
A=[5 10 15], A==[21 26 31], A=[37 42 47, Bi=[4], B=[8], B==[16], A'=[34],
and Fuzzy Rules are A1 —B1, As —Bs

LA ALAIL

Condition (IV-B2) — Scenario (2)
Ai=[9 15 21], A>=[30 34 36 40], B:=[15], B=[35], A*=[25] , and Fuzzy Rules

are A1 —>B1, Az -B2

Condition (IV-B2) - Scenario (3)

An=[3 812 17], Az=[23 28 32 37], A1s=[43 48 53 58], Ax=[3 812 17], An=[23
28 32 37], An=[43 48 53 58], Bi=[10], B:=[26], B-=[42], A1=[20], A=[39],
and Fuzzy Rules are: (Air and A21-Bz1), (A2 and A2—Bz), (As and A2s—Bs).

' A 1 A
i A
/A_H\ /:z\ /:\ /:\ /:\ /:\
)J 1 2 20 0 50 w0 ' ‘cc 0 20 0 40 50 0
\
0

B1 B3 ‘
Condition (IV-B2) - Scenario (4)
Au=[5 10 15], Aw=[21 26 31], Au=[37 42 47], A=z=[5 10 15], A==[21 26 31],
An=[37 42 47], Ax=[5 10 15], A==[21 26 31], A==[37 42 47], Bi=[10], B:=[26],
Bs=[42],
A"=[18] , A2=[26], A+=[34], and Fuzzy Rules are: (An and Az and Az~
B1), (A2 and A2 and A»—B2), (A1 and As and Az—Bs)

82

B2

o8 1
06
04
02 Al

D. BENCHMARK SCENARIOS OF THE “OVERLAPPING”
CONDITION

In cases where the input and output fuzzy sets are overlap-
ping, this condition is suitable to check the validity of the FRI
methods. Four scenarios are designed to check this condition;
three of them are described in case (1-D) input and (1-D)
output, and one scenario is described by (2-D) input and (1-D)
output. The specific details of each scenario, including the
properties of the input and output and the number of rules,
are provided in condition (IV-D):

E. BENCHMARK SCENARIOS OF THE “EXTRAPOLATION”
CONDITION

In cases where the observation is outside the range of the input
part (antecedent), it is called the extrapolation condition. This
condition (Condition (IV-E)) contains five standardized sce-
narios (Scenario (1)-Scenario (5)) developed and carefully
created to perform as a benchmark for comparison. These
scenarios contained variations in the dimensionality of the
inputs and outputs and used different membership functions
for each part of the inputs and outputs. The specific attrib-
utes for each scenario are represented by input values, output
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Condition (IV-C) — Scenario (1)

Condition (IV-D) — Scenario (1)

Ai=[381217], Az—[23 28 32 37], As=[43 48 53 58], Bi=[5 10 15], B=[21 26 31],
Bs=[37 42 47], A , and Fuzzy Rules are A1 =B, As —Bs

AV WATAWAWA

Condition (IV-C) - Scenario (2)
A=[5 10 15], A==[21 26 31], As=[37 42 47], Bi=[10], B=[26], B:=[42], A=[16 18
20], and Fuzzy Rules are A1 —B1, A2 —Bz, As —Bs

AW AL

0 0
) 5 20 25 2 3% % o 5 1 15 2 25 3 3 40 45 &

B3

Condition (IV-C) - Scenario (3)
A=[5 10 15], A=[25], A==[35 40 45 50], Bi=[5 8 10 13], B2=[25 30 35], B==[50],
A'=[27 29 31], and Fuzzy Rules are A1 —B1, A2 —B2, As —=Bs

1‘} 2 A 1
os| 0s
A1 A3 % B1 B2
Bi=[5 8 12 15], B=[21

Condition (IV-C) - Scenario (4)
An=[10], A=[30], A15=[50], Az=[10], A»=[30], A25=[50],

24 28 31], Bs=[37 40 44 47], A"=[16 18 22 24] , A2=[36 38 42 44], and Fuzzy
Rules are: (An and A2-B1), (A2 and A2—-Bz), (A and A2—Bs).

i ]

A2 At3

At Az Az

0 15 ) 25 »

Az

values, and the number of rules for each scenario of the
condition (IV-E):

V. EXPERIMENTS OF THE BENCHMARK SCENARIOS

In this section, we present a comprehensive evaluation of
multiple FRI methods utilizing the suggested benchmark
scenarios. The evaluated methods, including KH [14], [15],
KHSTB [8], MACI [19], IMUL [22], CRF [17], FIVE [24],
VKK [20], GM [9], POC [21], LES [23], VEIN [25], and
INCIRCLE [18], were subjected to strict checks based on
specific benchmark scenarios. Each method’s performance
was analyzed in terms of its adherence to the benchmark
scenarios, allowing for a detailed comparison. These bench-
marks aimed to provide a thorough understanding of each
method’s strengths and weaknesses in handling diverse FRI
scenarios.

The FRI toolbox was developed in a MATLAB envi-
ronment by Johanydk et. al. in [35] and in an OCTAVE
environment by Alzubi et. al. in [5]. The main purpose of the
FRI toolbox is to unify various FRI methods, which played
a crucial role in facilitating the evaluation methods. The
current version of the FRI toolbox is available to download
in [36]. It includes the following methods: KH, KH Stabi-
lized, MACI, IMUL, CRF, VKK, GM, FRIPOC, LESFRI,
and INCIRCLE. The package of the FRI toolbox contains
software with a graphical user interface, providing easy-to-
use access [7].
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Ai=[0 10 15 25], A>=[20 30 35 45], As=[40 50 55 65], Bi=[4], B=[8], Bs=[16],
A’=[1523 30], and Fuzzy Rules are A1 —B1, A2 —Bz, As —Bs

"
2 0 0 0 [ o 2 4 6 8 W 1 W 1 W 2

Condition (IV-D) - Scenario (2)
A=[0 12.5 25], A=[15 27.5 40], As=[30 42.5 55], Bi=[0 10 15 25], B=[20 30 35
45], Bs=[40 50 55 65], A*=[30 35 40] , and Fuzzy Rules are A1 —B1, A2 —B>, As -
Bs

81 83

At A2 A3
B2

"

1

0s 05

A1 A2 A3 81 B2 83

o

Condition (IV-D) — Scenario (3)
Ai=[0 12.5 25], A>=[15 27.5 40], Bi=[0 12.5 25], B>=[15 27.5 40], A*=[20] , and
Fuzzy Rules are A1 =B1, A2 —=B2

A

Al A2 B1 B2

s 10 15 ) 2 E) 3 w % s 10 15 E) 2 E) 35

Condition (IV-D) - Scenario (4)
An=[0 10 15 25], A12=[20 30 35 45], A15=[40 50 55 65], Az1=[0 10 15 25], A»=[20
30 35 45], Ax=[40 50 55 65], B1=[0 12.5 25], B=[15 27.5 40], Bs=[30 42.5 55],
A"=[22.5], A=[42.5], and Fuzzy Rules are: (An and A2z1—B1), (A2 and Az—)|
B2), (A1s and A2—Bs).

1 . 1 .
A1 A2

05 05

“ 81 B2 B3

A. EXPERIMENTS OF FRI METHODS BASED ON THE
BENCHMARK SCENARIOS OF THE “CONTINUITY”
CONDITION

Table 1 provides a comprehensive overview of how differ-
ent FRI methods fare in meeting the continuity mapping
between rule-base parts condition. This helps researchers
and practitioners to make informed decisions when selecting
appropriate methods for specific applications.

The table indicates that the MACI method success-
fully met all conditions for all four benchmark scenarios,
demonstrating its robustness. On the other hand, the LES
method fulfilled all conditions except for scenario (IV-A.2),
showing a minor limitation in this specific case. As for
the IMUL method, it failed to meet two benchmark sce-
narios, namely scenario (IV-A.1) and scenario (IV-A.4),
displaying areas where improvement is needed. Similarly,
the CRF method struggled to meet the conditions for
all benchmark scenarios, suggesting significant shortcom-
ings. In contrast, several other methods, such as KH,
KHSTB, FIVE, VKK, GM, POC, VEIN, and INCIRCLE,
showed mixed results in fulfilling the conditions for the
benchmark scenarios, highlighting the variability in their
performance.
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TABLE 1. Summary of the evaluation FRI techniques according to
benchmark scenarios of the continuity condition (IV-A).

Scenarios of the Continuity Condition (IV-

A)
Sce

. Sce Sce Sce

n?)rl nari | nari | nari
o (6] (o)

Methods (/I\V]_ av- | av- | av-

)' A2 | A3 | A4
) ) )
KHM40s] ¢ X v ¢
KHSTBE! ¢ x N ¢
MACI! v N N v
IMULPY X N N X
CRF!" x X X X
FIVE? N ¢ x ¢
VKK ¢ x N N
GMP! v ¢ ¢ N
POCR"] N ¢ N N
LES®! N N N v
VEIN!! X ¢ X ¢
INCIRCLE!"® R N x RN

A sign () indicates that the condition is fulfilled, a sign (o) indicates
that the condition failed, and a sign (o) indicates that there is no
result or there a problem with conclusion.

B. EXPERIMENTS OF FRI METHODS BASED ON THE
BENCHMARK SCENARIOS OF THE “FUZZINESS”
CONDITION

Table 2 shows the evaluation summary of the current inter-
polations’ methods according to the fuzziness benchmark,
where the conclusion must preserve the same ratio of fuzzi-
ness on the left and right sides.

The conclusion based on Condition (IV-B1) can be
expected if all the consequences of the rules taken into
consideration during the interpolation are singleton-shaped,
i.e., the knowledge base produces certain information from
fuzzy input data. The table shows that MACI, KH, KHSTB,
and VEIN failed to preserve the degree of support for fuzzy
rules in all benchmark scenarios. Table 2 describes some
FRI methods that passed in some scenarios and failed in
others to apply this benchmark, such as the IMUL, POC,
LES, and VKK methods. Regarding the FIVE method is only
successful in scenario (IV-B1.4). CRF, GM, and INCIRCLE
methods were able to preserve this Condition (IV-B1) in all
benchmark scenarios.

Table 3 shows the evaluation summary of the current FRI
methods based on the benchmarks for condition (IV-B2),
where the conclusion must preserve the same ratio of fuzzi-
ness on the left and right sides.

Based on the evaluation results for all scenarios
(IV-B2.1)—(IV-B2.4)., all methods except for KH, KHSTB,
and VEIN fulfill the preservation of fuzziness conclu-
sion condition (IV-B2). KH and KHSTB failed to fulfill
the condition, especially in those scenarios that contain
multi-dimensional inputs and different shapes, such as tri-
angles and trapezoids. The FIVE method has succeeded in
one scenario (IV-B2.3); other scenarios have no results, and
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TABLE 2. Summary of the evaluation FRI techniques according to the
benchmark scenarios of the fuzziness condition (IV-B1).

Scenarios of the Fuzziness Condition (IV-B1

Scen Scen Scen Scen Scen

ario ario ario ario ario

WIS av- | av- | av- | av- | av-

Bl.1) | B1.2) | B1.3) | Bl.4) | BL.5)
KH[14][15] % ¢ ¢ X %
KHSTBI[8] X ¢ ¢ X X
MACI[19] X X X b3 b3
IMUL[22] N % % % N
CRF[17] N N N B B
FIVE[24] ¢ ¢ ¢ N ¢
VKK[20] X ¢ ¢ N N
GM[9] ¢ N N N N
POC[21] x % % N N
LES[23] x X ¢ v v
VEIN[25] ¢ ¢ ¢ X ¢
INCIR]CLE[18 N N N N N

A sign () indicates that the condition is fulfilled, a sign (o) indicates
that the condition failed, and a sign () indicates that there is no
result or there a problem with conclusion.

TABLE 3. Summary of the evaluation FRI techniques according to the
benchmark scenarios of the fuzziness condition (IV-B2).

Scenarios of the Fuzziness Condition (IV-B2)

Scenari Scenari Scenari Scenari
Methods o (V- o (IV- o (IV- o (IV-
B2.1) B2.2) B2.3) B2.4)

KH[ 14][15] ¢ ¢ ¢ ¢
KHSTBE! ¢ ¢ ¢ ¢
MACI™ v v v v
IMULE v v v v
CRF[ v V v v
FIVER" ¢ ¢ v ¢
VKK v v v v
GMP” v v v v
POCE! v v v v
LES®! N ¢ v v
VEIN®] ¢ ¢ x ¢
INCIRCLE™ v v v v

A sign (V) indicates that the condition is fulfilled, a sign (o) indicates
that the condition failed, and a sign (o) indicates that there is no
result or there a problem with conclusion.

the LES method has no result in one scenario (IV-B2.2).
According to the IMUL, CRF, VKK, GM, POC, and Incircle
methods have been successful in all scenarios, as shown in
Table 3.

C. EXPERIMENTS OF FRI METHODS BASED ON THE
BENCHMARK SCENARIOS OF THE “STABILITY”
CONDITION

Table 4 explains the evaluation summary of the current FRI
methods according to the stability condition (IV-C), where the
conclusions must be stable even using different membership
functions in both input and output parts.
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Condition (IV-E) - Scenario (1)
Ar=[10], A==[30], A==[50], Bi=[10], B=[25], Bs=[45], A'=[55] , and Fuzzy
Rules are A1 —»B1, A2 =B As —Bs

A '
At

A3 B3

o0s

A2 82

Y
0

o 0 P % m m w %0 5 o % m s % ® w0 s %
Condition (IV-E) - Scenario (2)

A| [510 15], A>=[21 26 31], As=[37 42 47], B1=[4], B=[8], Bs=[16], A’=[0.52
, and Fuzzy Rules are A1 —Bi1, As —Bs

IAAAL |

[
o 5 10 15 20 25 3 35 4 4 S 0 2 4 6 8 10 12 14 16 18 2

Condition (IV-E) - Scenario (3)
A=[10], A=[25], Bi=[5 10 15], B=[21 26 31], B=[37 42 47], A=[5 7 11],
and Fuzzy Rules are A1 —B1, A2 —Bz, As —Bs

SWAAWAY

o
o 5 10 15 20 25 30 3B 40 45 5 O 5 10 15 20 25 30 35 4 45 0

Condition (IV-E) - Scenario (4)

A1 [381217], A2=[23 28 32 37], As=[43 48 53 58], B1=[5 10 15], B=[21 26
], B==[37 42 47],, A"=[13 14 15] , and Fuzzy Rules are: A1 —B1, As —Bs

VAVAVAVAWAWAY

Condition (IV-E) - Scenario (5)

An=[51015], A=[21 26 31], A15=[37 42 47], Az=[5 10 15], A»=[21 26 31],
Axs=[37 42 47], Ax=[510 15], Ax=[21 26 31], Ax=[37 42 47], B1=[5 10 15],
B=[21 26 31], Bs=[37 42 47], A"=[16], A"=[35], and Fuzzy Rules are: (Au
and Ax»-B1), (A2 and A»—Bz), (A1 and A2—Bs).

P
0s A A /\
oL

6

o

1
A3

According to the results, IMUL is the only successful
method in all four scenarios of the benchmarks of the stability
condition (IV-C). Meanwhile, the INCIRCLE method suc-
ceeded in three scenarios but failed in one scenario (IV-C.2).
In contrast, MACI, POC, and LES succeeded in fulfilling two
scenarios for each one. While CRF, VKK, KH, KHSTB, and
GM failed to fulfill the condition, which failed in three sce-
narios and succeeded in one scenario for each one, according
to the FIVE and VEIN methods, there was no result to fulfill
the condition for all scenarios.

D. EXPERIMENTS OF FRI METHODS BASED ON THE
BENCHMARK SCENARIOS OF THE “OVERLAPPING”
CONDITION

Table 5 shows the evaluation summary of the current FRI
methods according to the benchmark scenarios of the overlap-
ping antecedent and consequent rule bases. The methods are
evaluated on benchmarks of the overlapping condition (IV-D)
for all scenarios (IV-D.1) - (IV-D.4). Therefore, we can
conclude that for all FRI methods, only KHSTB has no
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TABLE 4. Summary of the evaluation FRI techniques according to the
benchmark scenarios of the stability condition (IV-C).

Scenarios of the Stability Condition (IV-C)

Sce Sce Sce Sce

nari nari nari nari
Methods o o o o

@v- | @av- | av- | av-

Cl) | Cc2) | Cc3) | Cca
KH[ 14][15] ¢ ¢ ¢ \/
KHSTBE! ¢ ¢ ¢ N
MACI!™! x x v N
IMUL N N N N
CRE[ v X ¢ ¢
FIVE? ¢ ¢ ¢ X
VKK N x ¢ ¢
GMD! N x ¢ ¢
POCR2! v x v ¢
LES™] N x ¢ N
VEIN®! ¢ ¢ ¢ ¢
INCIRCLE!'®! v x v v

A sign (V) indicates that the condition is fulfilled, a sign (e) indicates
that the condition failed, and a sign () indicates that there is no
result or there a problem with conclusion.

conclusions for all scenarios. While INCIRCLE succeeded
with all scenarios. Other FRI methods have succeeded in
some of the scenarios and failed in others.

E. EXPERIMENTS OF FRI METHODS BASED ON THE
BENCHMARK SCENARIOS OF THE “EXTRAPOLATION”
CONDITION

Table 4 shows the evaluation summary of the current FRI
methods used, which can be expected if they are working with
extrapolation issue or not. The number of rules is important
for this condition, especially in the case of the multidimen-
sional antecedent, where the conclusion of the FRI methods
can be calculated based on the adjacent two rules to the
observation.

Table 4 describes some FRI methods that passed in some
scenarios and failed in others to apply this benchmark; only
the LES method was successful in all scenarios; next, the
KHstab and Incircle methods were successful in four scenar-
ios and failed in scenario (IV-E.4). While the POC method is
successful in two scenarios (IV-E.2) and (IV-E.5). Regarding
the rest of the FRI methods, they failed to apply the extrapo-
lation benchmark for all scenarios.

Table 7 and Fig. 12 present the performance metrics for
different methods across varying conditions (A to E) and offer
an overall evaluation via the “Total_Average” column. Here
is a detailed investigation:

For KH method, an average of 29% is achieved across
all conditions, with the highest score observed only in
Condition E. For KHSTB method showcases an average per-
formance of 25%, with the highest score observed only in
Condition E. For MACI method exhibits robust performance
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TABLE 5. Summary of the evaluation FRI techniques according to the
benchmark scenarios of the overlapping condition (IV-D).

Scenarios of the Overlapping Condition (IV-D)

Sce Sce Sce Sce

nari | nari | nari | nari
(6] 6] o [0)

Wilsi 1ol av- | av- | av- | av-

D.1 | D2 | D3 | D4
) ) ) )
KH[ 14][15] ¢ \/ ¢ ¢
KHSTBE® ¢ ¢ ¢ ¢
MACI!™! v N ¢ ¢
IMULP ¢ N ¢ ¢
CRF!"! N N ¢ ¢
FIVER4 N ¢ ¢ ¢
VKK ¢ N v N
GMP! N ¢ v N
POC2! v ¢ v v
LES2 VNN ¢
VEIN v ¢ ¢ ¢
INCIRCLE!'®! N N v N

A sign (V) indicates that the condition is fulfilled, a sign (o) indicates
that the condition failed, and a sign (o) indicates that there is no
result or there a problem with conclusion.

TABLE 6. Summary of the evaluation FRI techniques according to the
benchmark scenarios of the extrapolation condition (IV-E).

Scenarios of the Extrapolation Condition (IV-E)

Scen Scen Scen Scen Scen
ario ario ario ario ario
higihes av- | av- | av- | av- | av-
E1l) | E2) | E3) | E4) | ES5)
KH[14][15] X X X X X
KHSTBI[8] N N N X N
MACI[19] % % x N x
IMUL[22] X X X X X
CRF[17] X X X X X
FIVE[24] ¢ ¢ ¢ ¢ ¢
VKK]20] X X X X X
GM[9] X X X X X
POC[21] ¢ N ¢ % N
LES[23] N N N N N
VEINJ[25] ¢ ¢ ¢ ¢ ¢
INCIR?LE[]S J J J . J

A sign (V) indicates that the condition is fulfilled, a sign (e) indicates
that the condition failed, and a sign (o) indicates that there is no
result or there a problem with conclusion.

across conditions, boasting an impressive overall average of
73%, excelling notably in Conditions A, B2, and E. For IMUL
method delivers a high overall average of 79%, demonstrating
strong performance in all conditions except Condition A
and D. For CRF method achieves a 36% overall average,
with notable strength in Condition B2. For FIVE method)
attains a 16% overall average, with moderate performance
in Conditions A, B1, B2, and D. For VKK method achieves
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a 65% overall average, excelling particularly in Conditions
B2, and E. For GM method scores a 55% overall average,
with notable strengths in Conditions B1, B2, and D. For
POC method attains a 57% overall average, demonstrating
consistent performance across various conditions. For LES
method also achieves a 57% overall average, performing well
in Conditions A, B2, and D. For VEIN method registers a low
4% overall average, indicating limited effectiveness across
all conditions. For INCIRCLE method stands out with an
impressive 92% overall average, showcasing strong perfor-
mance in all conditions.

These performance metrics offer valuable insights into
the relative strengths and weaknesses of each method across
diverse conditions, facilitating the evaluation and selection of
the most appropriate method for specific scenarios.

TABLE 7. summary of benchmark-based evaluation results for the fri
methods.

Me:'"’d ICondition A C”“g:“"“ C°“§;“°“ (Condition C{Condition D|Condition E
KH 25% 0% 0% 25% 25% 100%
KHSTB 25% 0% 0% 25% 0% 100%
MACI 100% 40% 100% 50% 50% 100%
IMUL 50% 100% 100% 100% 25% 100%
CRF 0% 40% 100% 25% 50% 0%
FIVE 25% 20% 25% 0% 25% 0%
VKK 50% 40% 100% 25% 75% 100%
GM 50% 80% 100% 25% 75% 0%
POC 75% 40% 100% 50% 75% 0%
LES 100% 40% 75% 50% 75% 0%
VEIN 0% 0% 0% 0% 25% 0%
INSZRC 75% 100% 100% 75% 100% 100%

90
80%
60%
509
409
309
209
o -
KH Kt UL CRF FIVE VKK GM POC
ge | 29% 2 79% 36 16% 65 55% 57% 5 48 92

STB | MACI | IV LES VEIN | INCIRCLE

m Total_Avera 57%

% 73%

m Total_Average

FIGURE 12. The Average ratios of the evaluation FRI methods according
to benchmarks.

VI. CONCLUSION

Several conditions have been presented to demonstrate a uni-
fied framework for the requisites of Fuzzy Rule Interpolation
(FRI) methods. This paper contributes by presenting a series
of benchmarks created for the evaluation of FRI methods,
clarifying the essential conditions they ought to perform.
These benchmarks a useful reference points, offering recom-
mendations for the classification and comparison of different
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FRI methodologies. Using these benchmarks not only enables
the comparison and evaluation of FRI methods but also per-
forms as a guide to assess their strengths and weaknesses. The
overarching purpose is to formalize the evaluation process,
enabling researchers to measure the accuracy and efficacy
of FRI methods under various and challenging conditions.
These benchmarks have significant possibilities for advanc-
ing the field of fuzzy inference and improving the practical
applicability of FRI methods in real-world scenarios.

From the results gathered in this study, it is concluded
that MACI, IMUL, VKK, GM, POC, LES, and INCIRCLE
consistently meet the specified benchmarks, demonstrating
high success across various evaluation benchmark scenarios.
Particularly, the Incircle FRI method appears to be especially
proficient, producing meaningful results, as detailed in the
accompanying Tables (I - VI). In contrast, several other FRI
methods either experienced failure or produced inconclusive
results across a majority of benchmarks. This discernment
highlights the efficacy of the Incircle FRI method and high-
lights the differences in performance among different FRI
approaches based on the applied benchmarks.
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