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ABSTRACT Early detection methods for cognitive impairment are crucial for its effective treatment.
Dual-task-based pipelines that rely on skeleton sequences can detect cognitive impairment reliably.
Although such pipelines achieve state-of-the-art results by analyzing skeleton sequences of periodic stepping
motion, we propose that their performance can be improved by decomposing the skeleton sequence into
representative phase-aligned periods and focusing on them instead of the entire sequence. We present the
phase-aligned periodic graph convolutional network, which is capable of processing phase-aligned periodic
skeleton sequences. We trained it with a cross-modality feature fusion loss using a representative dataset
of 392 samples annotated by medical professionals. As part of a dual-task cognitive impairment detection
pipeline that relies on two-dimensional skeleton sequences extracted from RGB images to improve its
general usability, our proposed method outperformed existing approaches and achieved a mean sensitivity
of 0.9231 and specificity of 0.9398 in a four-fold cross-validation setup.

INDEX TERMS Cognition, convolutional neural networks, dementia, task analysis.

I. INTRODUCTION
In 2023, the World Health Organization estimated that there
were over 55 million people worldwide suffering from
dementia, with 10 million new cases projected per year [1].
The early and reliable detection of mild cognitive impairment
(MCI) or dementia are paramount for early and effective
treatment.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

The clinical diagnosis of dementia and MCI are based on
clinical criteria [2]. Although clinical symptoms and courses
are essential for diagnosis, various auxiliary assessments
can support the diagnostic procedure. It is advantageous if
the assessment can be performed repeatedly and reliably,
which allows the tracking of patients’ cognitive decline and
adjustment of treatment, if necessary.

It is important to note that although these assessments
are helpful, alone, they are not capable of providing a
full clinical diagnosis of either MCI or dementia. Given
limited examination times, their applicability greatly depends
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on their average sensitivity (ratio of correct true positive
predictions) and specificity (ratio of correct true negative
predictions), which indicate how well the assessment method
predicts the ground truth diagnoses based on clinical criteria.

The diagnosis of cognitive decline can be assisted by
imaging-based assessment, for example, using computer
tomography (CT) [3] or magnetic resonance imaging (MRI)
[4] to detect biomarkers linked to dementia and MCI in brain
blood vessels. MRI has a sensitivity between 78% and 84%
and a specificity between 93% and 98% for the diagnosis
of dementia [5]. Unfortunately, CT and MRI examinations
take a relatively long time (20-60 minutes) [6], may not be
comfortable for the subject, and the limited availability of the
required CT and MR machines makes it difficult to rely on
such methods in the long run.

By contrast, paper- and test-based assessments are signifi-
cantly faster to perform and may also be used as an indicator
of cognitive decline. A popular example is the Mini-Mental
State Examination (MMSE) [7], which consists of a set of
predetermined questions that subjects answer on a test sheet.
TheMMSE assigns a score of 0-30. Subjects that score below
28 are classified as potentially having MCI and those that
score below 24 are classified as potentially having dementia.

TheMMSE’s sensitivity, specificity, and time to administer
vary based on the version of the test; different language and
question set variants exist. The original MMSE [7] takes
between 5 and 10 minutes to administer and has a sensitivity
of 81% and specificity of 89% for classifying dementia,
whereas MCI classification has a sensitivity between 45%
and 60% and a specificity of 65%-90%. The Japanese variant
MMSE-J [8] has a sensitivity of 86% and specificity of 89%,
and takes somewhat longer: between 10 and 15 minutes to
administer. It is important to note that the reliability of the
MMSE is not perfect because of its literacy requirements
and use of preset, memorizable questions that affect the
results [9].

The dual-task paradigm is a behavioral assessment that
aims to overcome the above limitations. In this assessment,
subjects perform a motor task and cognitive task first
separately (single task) and then simultaneously (dual task).

The motor task may be walking on a treadmill or in place
(stepping). Gait has a strong correlation with cognition [10];
hence, a deterioration in motor task performance caused by
increased mental load while performing the cognitive task is
an indicator of a subject’s cognitive state [11].
The cognitive task may be the recital of the months in

reverse order [12] or naming animals shown randomly on a
screen, which solves the memorization issue in the cognitive
task [13]. The assessment takes only minutes to perform and
yields a wealth of data. The sensitivity and specificity of
detection rely heavily on the methods used to analyze the
collected motor and cognitive task data, and are still being
explored.

In this paper, we build on the previous study conducted by
Matsuura et al. [14], who presented a dual-task assessment
based on stepping (motor task) and a randomly generated

mental arithmetic quiz (cognitive task). However, in the
pipeline used to process the data collected during the
dual-task assessment, the researchers did not consider
the periodicity (Fig. 1) of the stepping motion, which we
recognize as being highly important for predicting a subject’s
cognitive state.

Therefore, we propose a novel approach to gait-based
dual-task cognitive impairment assessment. By recognizing
the periodicity of the stepping motion and focusing on
representative gait periods and interperiod (in)consistencies
rather than the entire skeleton sequence, we show that
the overall performance of the prediction pipeline can be
improved.

Given that periodicity is a long-term dependency, it is
difficult to capture using convolutional networks unless large
convolutional kernels are used. However, the use of such
large kernel sizes reduces sensitivity to shorter-term features.
We propose a representation that decomposes the temporal
dimension of the skeleton sequences into phase-aligned
periods. The resulting phase-period representation places the
same phases in close proximity in the phase-period space.
This decouples the period dimension from the time (phase)
dimension, thus overcoming the need for large kernel sizes.
Our novel neural network architecture, the phase-aligned
periodic graph convolutional network (PPGCN), is capable of
processing the extracted phase-period decomposed skeleton
sequences.

To process the collected data and predict cognitive
impairment, we present amodified dual-task pipeline (Fig. 2).
We extract the skeleton sequences from RGB images of
subjects performing the stepping task. Then we decompose
the skeleton sequences into phase-aligned periods and
process them using the proposed PPGCN architecture.

In previous studies [15], [16], task features were reduced
to logits and combined to form the output probabilities,
which resulted in a loss of feature information. In our
study, we modify the presented pipeline so that the binary
predictions (healthy vs. MCI or dementia) are based on the
combined features of both motor and cognitive tasks.

We summarize the main contributions of this study as
follows:
• We propose a periodic approach to skeleton-based
cognitive impairment detection and present the PPGCN
architecture, which is capable of handling phase-period
decomposed skeleton sequences.

• Additionally, we introduce a pairwise feature distance
loss alongside cross-modality feature level fusion into
our multi-modal pipeline (Fig. 2) to further improve the
separation of healthy and cognitively impaired subjects.

II. RELATED WORK
A. PERIODIC SIGNAL EXTRACTION
The motion of joints in the skeleton sequence during the
stepping task is quasi-periodic: the individual joints largely
follow similar trajectories, but because of fluctuations in
both human walking patterns, particularly present during the
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FIGURE 1. Joint motion in the skeleton sequence is periodic; however, this is less pronounced for cognitively impaired subjects
(right) than healthy subjects (left). We propose that by recognizing and leveraging this property, gait-based dual-task cognitive
impairment detection performance can be improved. Decomposing the temporal sequences (top) into phase-aligned periods
(bottom) allows for the analysis of interperiod fluctuations in the same phase. The phase-period representation places the same
phases of different periods in close proximity in phase-period space, which allows convolutional networks to capture these
long-term dependencies across periods without prohibitively large kernel sizes, unlike in the temporal representation (green line).

dual-task assessment, and the sampling interval (unstable
recording speed), the phase and amplitude of the signal alters
across periods.

Various [17], [18] phase registration and period extraction
methods exist, but require a reference signal, which is not
available in our case. We rely on Makihara et al.’s self-
dynamic time warping (Self-DTW) [19], which implements
phase registration and period extraction from a single
quasi-periodic signal without a reference signal.

B. GRAPH CONVOLUTIONAL NETWORKS
Choosing a neural network architecture that can handle the
underlying structure of input data is essential for achieving
high performance for any application. Similar to convo-
lutional neural networks (CNN) [20] capturing the spatial
relationship and recurrent neural networks [21] capturing
the temporal structure within their respective inputs, graph
convolutional networks (GCN) [22], [23] effectively handle
the graph-based structure of the input data.

The graph structure, which consists of nodes and edges,
within the input data may represent dependencies or con-
nections (edges) between data points (nodes). GCNs operate
by performing the graph convolution operation (1), which

transforms node features based on the graph’s adjacency
matrix:

Xl+1 = σ (D̂−
1
2 ÂD̂−

1
2XlWl) (1)

where Xl is the input and Xl+1 is the output of layer l.
X0 denotes the input graph’s node values. Â = A + I ,
where A is the graph’s adjacency matrix and I is the identity
matrix. Using Â instead of A creates a self-connection to at
least the same nodes of the previous layer’s features, which
allows the forward propagation of features. D̂ is the diagonal
degree matrix, which normalizes the number of connections
to keep the feature scale (Xl) normalized.Wl are the learnable
parameters of the graph convolutional layer and σ is an
activation function.

GCNs generally operate by transforming the graph struc-
ture into an array that can be handled by CNNs and apply the
above operation. By extracting fixed-size locally connected
regions from the graph’s nodes and edges (sub-graphs)
and applying CNN-style convolutions, PATCHY-SAN [24]
and LGCN [25] have achieved state-of-the-art results.
Recent applications [26] of GCNs include communication
networks [27], COVID-19 diagnosis [28] and computer
vision [29], demonstrating the versatility of GCNs.
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FIGURE 2. The dual-task-based prediction pipeline predicts whether an individual is healthy or cognitively impaired. The inputs are
phase-aligned periodic skeleton sequences extracted from RGB images and mental arithmetic scores recorded during a dual-task assessment.
The pipeline is separated into modules based on modalities. The Pose Network processes the skeleton sequence, the Cog Network processes
the cognitive task scores, and the Fusion Network creates the final output from the combined Pose and Cog Network feature outputs.

In this application, it has been recognized [15] that the
human skeleton can be represented by a graph in which
the joints are nodes and the bones are edges of the graph.
The node values of such a graph are the coordinates of each
joint of the skeleton. Because the skeleton pose evolves over
time as the subject moves, stacking each skeleton graph in a
temporal skeleton sequence results in a spatio-temporal graph
representation of motion. In this temporal graph, another
dimension of adjacency exists, where each joint or node is
connected to the same node in the previous and next spatial
graph.

The spatio-temporal GCN (STGCN) [30] effectively
handles the spatio-temporal adjacencies of such sequences.
Originally designed for traffic forecasting, the generalizabil-
ity of graph-based methods also allows for its application to
our problem setting. The STGCN operates by alternating the
graph convolution operation (1) between spatial and temporal
dimensions. Wu et al. [15] and Liu et al. [16] applied the
STGCN to dual-task-based cognitive decline prediction and
achieved high performance.

C. SKELETON-BASED ACTION RECOGNITION
Skeleton-based action recognition methods are related to our
study because one of the modalities used to predict cognitive
impairment is skeleton sequence information. Skeleton
sequences are a strong feature for action recognition [31]
that is leveraged by machine learning methods such as naive
Bayes classifiers [32] and support vector machines [33], but
have become popular with the advent of deep learning graph
convolution-based methods.

GCNs such as the aforementioned STGCN are a fit for
skeleton-based action recognition because human skeletons
have a well-defined graph structure. The STGCN is the
progenitor of various architectures and pipelines that perform
skeleton-based action recognition.

To handle the long-term dependencies of periods using
convolutional networks, they require large kernel sizes, which
sacrifice the ability to process short-term features. Although
AM-STGCN [34] combines attention models [35] with graph
convolutions to also capture global information, it cannot
process the granular interperiod (in)consistencies of the
skeleton sequence.

We propose an architecture based on the STGCN that
is capable of processing an additional period dimension of
phase-period decomposed skeleton sequences rather than the
entire time series to better focus on differences between
periods.

D. DUAL-TASK-BASED COGNITIVE DECLINE DETECTION
Dual-task assessment yields a wealth of data and may be per-
formed sufficiently regularly to collect a dataset suitable for
analysis using machine learning methods. Various machine
learning approaches, such as support vector machines [36]
and clustering algorithms [37], rely on data collected during
dual-task assessment [38].

Wu et al. [15] achieved high classification performance
using a multi-modal dual-task pipeline, where three-
dimensional (3D) pose information was processed with the
STGCN alongside cognitive scores, which resulted in 94%
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specificity and 89% sensitivity. Liu et al. [16] also used
3D skeleton sequences with the STGCN in a proposed
two-stream pipeline and achieved a sensitivity of 96% and
specificity of 94%. As shown by the above, using the right
approach to analyze the collected information, results rivaling
clinical (CT and MRI) diagnoses and paper-based (MMSE)
assessments may be achieved.

The above approaches rely on 3D skeleton sequence
information extracted from color and depth (RGB+D)
images captured by a depth camera, which limits their
general usability. We wish to forgo the need for expensive
depth-camera hardware and propose a method that works
with only color (RGB) images recorded with easily available
cameras.

III. PROPOSED METHOD
In this section, we present a novel approach to gait-based
dual-task cognitive impairment assessment. We focus on the
representative stepping periods of the motor task to improve
detection performance. We achieve this by decomposing the
temporal dimension of the original skeleton sequences into
phase-aligned periods. We present a network architecture
that is capable of processing periodic graph information: the
PPGCN.

We also describe a dual-task assessment pipeline to demon-
strate the use of the PPGCN.We based the pipeline (Fig. 2) on
Wu et al.’s previous study [15], with an emphasis on the sep-
aration of pipeline modules based on their respective tasks.
We designed the pipeline with general usability in mind: it
relies on two-dimensional (2D) skeleton data extracted from
RGB frames, which can be captured using any camera.

We separate the prediction pipeline into three distinct
modules based on their task and modality:
• Pose Network: extracts features from the skeleton
sequence inputs;

• Cognitive (Cog) Network: processes and extracts fea-
tures from the cognitive task scores; and

• Fusion Network: combines the outputs of the Pose
and Cog Networks, and renders the final output of the
pipeline: the predicted label.

We use the proposed PPGCN architecture as the Pose
Network in the above pipeline. Next, we outline the steps
required to acquire the skeleton sequence of the stepping
motion, extract periods, and process the data to obtain the
predicted label.

A. 2D SKELETON EXTRACTION AND PRE-PROCESSING
Our dual-task assessment system [14] records frontal color
(RGB) video of the stepping task and logs mental arithmetic
scores while subjects perform multiple consecutive trials
of the dual-task assessment. We process the recorded RGB
frames using RTMPose [39] to extract 2D skeleton sequences
(Fig. 2).

For each trial, we extract skeleton sequences from 10 sec-
onds of single-task (stepping without mental arithmetic) and
20 seconds of dual-task (stepping while performing mental

FIGURE 3. The extracted skeletons are normalized by translating and
scaling the skeleton so that the hip joint is the origin and the spine is the
unit length.

arithmetic) videos. We resample the recordings to 10 frames
per second, which results in 100 single-task frames and
200 dual-task frames from which to extract skeletons.

The relative scale and position of the skeletons can encode
the location of the assessment. The extracted skeletons’ scale
and position do not vary significantly at a given location
because of the camera setup and the subjects’ position relative
to the camera being fixed, but do vary between locations. This
is an issue because, for example, some locations are biased
toward cognitively impaired subjects (e.g., nursing homes
and hospitals); hence, it can be seen that certain scales and
positions can be mapped to certain distributions of labels.
To remove any bias from the scale and position, we normalize
the skeleton sequences.

We calculate hip and neck joints, which are not part of
the 17-joint skeleton extracted by RTMPose, based on the
mean positions of the left/right shoulder and pelvis joints,
respectively. We scale and translate the skeletons so that the
spine, that is, the bone between the calculated hip and neck
joints, is unit length, and the hip joint lies at the origin (Fig. 3).

B. PERIOD EXTRACTION AND SELECTION
A trivial approach to interperiod convolution without sam-
pling the intermediate points would be to include dilated
temporal convolutions with a period-length dilation param-
eter. This is not feasible because period lengths vary as
a result of the quasi-periodic nature of the data, and the
dilation parameter needs to be constant. Instead, our approach
is to decompose the time dimension of the temporally
quasi-periodic skeleton sequence into periods and phases,
then align and uniformly sample the phase dimension to
overcome the issue of variable temporal period lengths.

We rely on Makihara et al.’s Self-DTW [19] framework to
decompose the temporal dimension of the skeleton sequence
into phase and period dimensions (Fig. 1). Self-DTW aligns
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the phases of the extracted periods and samples the phase
dimension at a number of points Nphase. The result is a list
of extracted joint periods Pjoint of lengthM joint

periods. P
joint
i is the

i-th extracted period of a given joint, which consists of Nphase
samples of the joint’s motion during its Pjointi motion period.

Because neural networks require a fixed input shape,
we also have to determine the number of periods to input
Nperiods (Algorithm 1). The number of extracted periods
M joint
periods present in the time-series data and extracted by

Self-DTW differ between the original temporal skeleton
sequences; hence, we must devise an approach to select
Nperiods from the extractedM joint

periods.
Our approach is to select the most coherent Nperiods long

contiguous sequence of periods for all joints.M joint
periods is a per

joint quantity because some joints move faster than others.
If Nperiods > M joint

periods, fewer periods are extracted than
the desired Nperiods. In this case, the extracted periods are
repeated until Nperiods = M joint

periods.
Then, we calculate a pairwise absolute correlation

matrix for the x and y dimensions of all joint periods:

C jointx ,C jointy ∈ [0, 1]M
joint
periods×M

joint
periods . Each element is the

absolute Pearson correlation coefficient (2) defined between
a given joint’s i-th and j-th periods (Pjointi ,Pjointj ) as

C joint
i,j = |

cov(Pjointi ,Pjointj )

σPjointi
σPjointj

| (2)

where cov(Pjointi ,Pjointj ) is the covariance, and σPjointi
and

σPjointj
are the standard deviations of the i-th and j-th periods

of a given joint, respectively.
To determine the starting index of k of the most coherent

run of Nperiods gait cycles from the extractedM joint
periods periods,

we stack and sample all C joint matrices in Nperiods×Nperiods-
sized sliding windows (Fig. 4). We use the gait periods in the
sliding window with the maximal absolute correlation (3) at
index k as inputs to the prediction pipeline:

k = argmax
x

(
x+Nperiods∑

i=x

y+Nperiods∑
j=y

Njoints∑
joint=1

C joint
i,j ) (3)

where x ∈ [1,M joint
periods−Nperiods], y ∈ [1,M joints

periods−Nperiods]
We use the periods {Pk ,Pk+1, . . . ,Pk+Nperiods−1} as inputs

to the Pose Network for all joints. The single index
convention works because the C joint matrices are symmetric.
The Appendix provides a pseudocode representation of the
process.

C. PPGCN ARCHITECTURE
We propose the PPGCN architecture (Fig. 6) as the Pose
Network module, which is an upgrade of the STGCN [30]
that is capable of processing the decomposed phase-period
information output by Self-DTW as inputs.

The input data are phase-aligned periodic skeleton
sequences. Both the PPGCN and Self-DTW are agnostic to

FIGURE 4. The stacked C joint correlation matrices are used in
conjunction with a sliding window-based search (in green) to find the
most coherent long run of periods: Nperiods = 5 in this example.

FIGURE 5. The PPGCN performs various graph convolution operations on
the phase-aligned periodic skeleton sequence. Spatial convolutions are
performed across joints within the same phase-aligned frame. Phase
convolutions are calculated along the phase dimension of a given joint
within the same period. Periodic convolutions are along the period
dimension of a given joint and phase-sampled frame.

the spatial dimensionality (Ndims) of the data and function
both with 2D and 3D inputs. Furthermore, if available,
multiple skeleton sequences from multiple dual-task trials
(Ntrials) may be stacked to provide more information, which
results in an input shape of (Ntrials × Ndims) × Nperiods ×
Nphase×Njoints. We split the multi-trial input into Ntrials trials
and feed them consecutively trial-by-trial into the PPGCN.
The PPGCN uses 3D convolutions to process the period,
phase, and spatial (joint) dimension (Fig. 5) of the per-trial
data of shape Ndims × Nperiods × Nphase × Njoints.
After we apply 3D batch normalization, we input the

per-trial data into a stack of three of our novel space-
phase-period graph convolution (SPP-GC) blocks. First, each
SPP-GC block contains a 3D phase convolution layer with a
kernel size of 1 × Kφ × 1 to allow the preprocessing of the
phase dimension independently of other joints and periods.
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FIGURE 6. The proposed PPGCN architecture consists of three space-phase-period graph convolution (SPP-GC) blocks. SPP-GC blocks perform a
phase-only convolution, followed by a simultaneous space, phase, and period convolution. Adherence to the graph structure is enforced by
multiplying the phase convolution output with the graph’s adjacency matrix (A). Phase-aligned skeleton sequence recordings from multiple trials
may be stacked as inputs, if available, which the PPGCN processes individually, and their output features are stacked.

Before further processing, to enforce the graph connectivity,
we multiply the feature map by the adjacency matrix of
graph A.

This is followed by a 3D spatio-temporal-periodic con-
volution layer simultaneously processing the data over the
space, phase, and period dimensions with a kernel size of
Kp × Kφ × Ks. Finally, there is a residual connection to the
input of the SPP-GC block.

The last SPP-GC block is followed by an average pooling
layer to produce a 64-long feature vector for each trial. Then
we stack the per-trial features to create an Ntrials× 64 shaped
output.

D. CROSS-MODALITY FEATURE FUSION
The other modality in our proposed pipeline is the cognitive
task scores obtained from the subjects’ performance in the
mental arithmetic quiz. We log four data points, the average
response time, and accuracy for both the single- and dual-task
cases. These form the Ntrials × 4-shaped inputs to the Cog
Network.

In their studies, Wu et al. [15] and Liu et al. [16] opted for
‘late-fusion’ in which they reduced Pose and Cog Network
features to logits as if each had its own predicted label
outputs. They processed logits via a stack of fully connected
layers to obtain another set of logits that corresponded to
the final output. We propose not reducing the Pose and Cog
Features to logits because there is no benefit to losing the
modality feature information downstream and there is also
no supervision for the individual module predictions.

The Cog Network in our pipeline (Fig. 2) is similar
to that in Wu et al.’s pipeline [15], with the reduction to
logits removed. It consists of a one-dimensional (1D) batch
normalization layer and 1D convolution layer with a kernel
size of 3, followed by two 1D depth convolutions with another
1D batch normalization in between, and finally, a global
average pooling layer. The Cog Feature output is a 160-long
feature vector concatenated with the Pose Network’s out-
put features to form a combined, cross-modality feature
vector.

We input the combined feature vectors into a feature
fusion network that consists of a batch normalization layer

followed by a sequence of fully connected layers and sigmoid
nonlinearity. The output is the predicted probability of the
input data having a positive label (subject has MCI or
dementia), y ∈ [0, 1], which is supervised via a binary cross
entropy loss LBCE .

E. PAIRWISE FEATURE DISTANCE LOSS
We leverage the availability of per-trial pose features that
results from the use of cross-modality feature fusion to
introduce a two-component unsupervised feature-level loss.
Prior works have shown [40], [41] that high interclass and low
intraclass variance of features is beneficial for classification
problems. Our main goal is to encourage the Pose Network
to produce similar features for inputs with the same label
(decreasing intraclass variance) and different features for
inputs with opposite labels (increasing interclass variance).
Although the networks attempt to achieve this through the
task loss LBCE , the effect may be magnified by directly
encouraging the networks to separate feature distributions
through a feature distance loss.

When the feature distributions of classes are distant, it is
easier for a classifier to create decision manifolds with
wider margins between the clusters of feature distributions.
By having a wide margin between feature distributions, the
generalization performance, both between the training and
validation datasets, and for possible future out-of-dataset
samples, is expected to increase.

The first component Lsame minimizes the pairwise cosine
distance of features that have the same label. We separate
each batch of Pose Features F into a positive F+ and negative
F− sub-batch based on the corresponding ground truth labels.
Then we calculate the positive (4) and negative (5) sub-batch
losses, L+same and L

−
same, respectively:

L+same =
∑
i

∑
j

1−
F+i F

+

j

∥F+i ∥∥F
+

j ∥
(4)

where i, j ∈ [0, ∥F+∥] and i ̸= j

L−same =
∑
i

∑
j

1−
F−i F

−

j

∥F−i ∥∥F
−

j ∥

where i, j ∈ [0, ∥F−∥] and i ̸= j (5)
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TABLE 1. Distribution of samples in the dual-task assessment dataset
used to train and validate the proposed method.

Finally, Lsame (6) is the weighted sum of the positive and
negative components:

Lsame =
1

∥F+∥(∥F+∥ − 1)
L+same +

1
∥F−∥(∥F−∥ − 1)

L−same

(6)

The second component Lopp minimizes the pairwise cosine
similarity (7) for features that have opposite labels:

Lopp =
1

∥F+∥∥F−∥

∑
i

∑
j

F+i F
−

j

∥F+i ∥∥F
−

j ∥
(7)

where i ∈ [1, ∥F+∥], j ∈ [1, ∥F−∥]
We save and reuse features from the (n − 1)-th batch

for the loss calculation in the case in which the n-th batch
does not contain either class, which ensures that the loss is
always active, even in the case of severe dataset imbalance.
Furthermore, we ensure that the initial batch contains at least
one positive and negative sample so that there is always a F+

and F− saved to avoid errors.
The combined loss function (8) of the network is

L =
(α + β)LBCE + αLsame + βLopp

2α + 2β
(8)

where α and β are the coefficients of Lsame and Lopp,
respectively. By weighting the task loss LBCE with
(α + β), we ensure that the classification task remains the
most impactful of the three, while the 1

2α+2β term normalizes
the total loss magnitude.

IV. EXPERIMENTS AND RESULTS
A. DATASET
To train and validate our proposed method, we used a dataset
(Table 1) collected using our dual-task system [14]. The
dataset samples were annotated by geriatric psychiatrists at
Osaka University Hospital based on subjects’ diagnoses. The
subtypes of dementia were limited to Alzheimer’s dementia
with Lewy bodies. Our dataset contained 392 samples of
dual-task assessment data. Each sample referred to the three
dual-task assessments (recorded consecutively) of skeleton
sequences andmental arithmetic scores of a subject. Informed
consent was obtained from all subjects prior to the collection
of data.

A total of 143 samples were labeled as positive (diagnosed
with MCI or dementia), of which 93 were from female
subjects aged 53-91 and 50 from male subjects aged 53-90.
From the 249 healthy samples, 142 were from females aged
70-87 and 107 from males aged 70-85. We split the dataset
into four balanced folds to perform four-fold cross-validation
(Table 2). As some subjects contributed multiple samples

TABLE 2. Distribution of samples in the four-fold split of the dataset.

TABLE 3. Network and training hyperparameters obtained after
hyperparameter optimization.

to the dataset, we took care to ensure that the folds were
split over subjects and there were no samples from the same
subject in different folds.

B. FOUR-FOLD CROSS VALIDATION
In our experiments, we used the 17 skeleton joints extracted
by RTMPose [39] from three consecutive dual-task experi-
ments per subject: Ndims = 2 and Njoints = 17. Following our
previous study [15], we performed three trials per subject to
improve stability: Ntrials = 3. As the averageMperiods, that is,
the number of periods from the skeleton sequence extracted
by Self-DTW, was 10 for single-task and 20 for dual-task
skeleton sequences, we chose their minimum value to use
as the number of input periods: Nperiods = 10. This used
themost available information while minimizing redundancy.
Self-DTW sampled the phase-aligned periods in 25 points.
We concatenated single- and dual-task phase-aligned periodic
skeleton sequences along the phase dimension, which
resulted in Nphase = 50.
We determined the PPGCN and loss hyperparameters

by performing hyperparameter search using the Optuna
hyperparameter optimization framework [42]. The selected
hyperparameters are shown in Table 3.
The performance evaluation metrics are the balanced

accuracy (Acc.), sensitivity (Sens., a.k.a. true positive rate),
and specificity (Spec., a.k.a. true negative rate) scores.
We consider the sum of sensitivity and specificity (Sens. +
Spec.) to be the most important descriptor of performance for
the task.

Although we performed training and validation in batches,
we calculated the metrics for each fold by collecting all
predicted labels and then comparing the results with the
expected labels of the respective fold. Similarly, we evaluated
the combined metrics by aggregating all the above predicted
labels and comparing them with all expected labels in
the dataset. This ensured that no errors were present as
a result of averaging per-batch values when metrics were
calculated.

We obtained results after training the models for
100 epochs with the parameters in Table 3. The four-fold
cross-validation results (Table 4) and ROC curves in Fig. 8
show balanced performance across all four folds.
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FIGURE 7. UMAP visualization of the embedded trial features without (top) and with (bottom) the Feature
Loss active. When the Feature Loss is active, features corresponding to positive labels (red +) are better
separated from those with negative labels (blue ◦). The effect is observable both in the non-periodic case
for the STGCN (left), and also for our proposed PPGCN (right).

TABLE 4. Four-fold cross-validation results (Ntrials = 3). Combined
metrics were obtained by calculating them over the aggregated fold-wise
predictions.

C. ABLATION STUDIES
The modular approach to the prediction pipeline allows for
the easy swapping of modules to observe the individual
impact of the proposed enhancements. In ablation studies
(Table 5), we compared the performance impact of the
following combinations: swapping the PPGCN to STGCN,
applying logit fusion instead of feature fusion, and turning
the proposed Feature Loss on or off. When using the STGCN,
we used the non-periodic skeleton sequences as inputs. For
the PPGCN, we used the phase-aligned periodic skeleton
sequences.

To observe the effects of logit fusion, we reduced the output
features of the STGCN, PPGCN, and Cog Network to logits.

FIGURE 8. Four-fold cross-validation and combined ROC-curves
(Ntrials = 3).

The STGCN with the logit fusion configuration is identical
to Wu et al.’s [15] model. For feature fusion, the pipeline
is presented in Fig. 2, with the networks outputting their
extracted feature vectors.
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TABLE 5. Mean Sens. + Spec. comparison with individual enhancements
turned on and off (Ntrials = 3).

TABLE 6. Mean performance comparison of our method with existing
methods (Ntrials = 1).

For testing the proposed Feature Distance Loss, we either
trained networks only with the task loss LBCE (without
applying Lsame or Lopp) or with the full, combined loss
function L (including both Lsame and Lopp). The PPGCNwith
feature fusion and Feature Loss enabled represents the full
proposed method in this study.

We observed a clear upgrade in performance when we used
our proposed PPGCN versus the STGCN (Table 5). Applying
feature fusion instead of the original logit fusion improved
performance for both setups, and when training with our pro-
posed Feature Loss, we even observed further performance
improvement, although this effect was diminished using the
STGCN.

The effect of the Feature Loss was illustrated well when
we visualized the embedded features via Uniform Manifold
Approximation and Projection (UMAP) [43] (Fig. 7). When
the loss was active, the features of subjects with positive
labels were better separated from those with negative labels.
These observations are in line with the measured results: the
effect of the feature separation loss enhanced the performance
of both the PPGCN and STGCN (Table 5).

D. COMPARISON OF OUR METHOD WITH EXISTING
METHODS
To compare and contrast the results of the proposed
PPGCN architecture with other methods, we compared its
performance with the pipelines proposed in [15] and [16]
trained on our dataset. Because Liu et al.’s method [16] used
only a single trial, to enable a closer comparison, we used
only the data from the first of three dual-task trials for training
and validation (Ntrials = 1).
Comparing the mean results of four-fold cross-validation

(Table 6), we observed that the periodic upgrade to the
STGCN represented the most significant jump in perfor-
mance, which was consistent with our observation during
the ablation studies. Furthermore, the introduction of feature
level fusion and then the feature loss both had a positive effect
on performance, even in the Ntrials = 1 case.
Although the final performance of the PPGCNwith feature

level fusion and the feature loss was slightly lower (1.8628 vs.

1.8356 mean Sens. + Spec.) than in the original Ntrials =
3 case, it still outperformed methods in previous studies.

We observed a drop in the performance of existing
methods. This is explained by multiple factors: first, the
dataset differed between the existing methods and ours. Both
Wu et al. and Liu et al. relied on 3D skeleton sequences,
whereas our dataset contained 2D skeleton sequences.
Furthermore, our model selection criterion was stricter: we
reported the performance of the final training epoch, whereas
researchers reported the best validation set performance in
their respective studies. This favors methods that stably
converge and are not prone to overfitting.

Despite this, our proposed method approached Liu et al.’s
originally reported performance of 1.90 Sens.+ Spec., which
they achieved with 3D skeleton sequences. This shows that
stepping-based dual-task cognitive impairment with easily
available RGB cameras is not only possible but can also
match the performance of methods that rely on expensive,
more difficult-to-acquire depth cameras, which increases the
general applicability of the paradigm.

E. DISCUSSION
The main application of our proposed method is to assist
in predicting diagnoses based on clinical criteria [2]. Most
importantly, out of the two metrics ‘‘sensitivity’’ and
‘‘specificity’’, increasing sensitivity is particularly important.
This is because high sensitivity reduces false negatives,
which is critical when selecting subjects to dedicate further
attention to.

A possible approach to increase sensitivity or decrease the
imbalance between sensitivity and specificity is to assign a
weight to the loss function based on the ratio of positive
to negative samples, either in the current mini-batch or the
dataset. Various other task loss functions may also be trialed
to directly target increasing specificity instead of the binary
cross entropy loss used in this study.

Unfortunately, the above approaches may only go so far
when the dataset is heavily imbalanced and has a limited
number of samples, as in our case. Increasing the dataset
using ongoing data collection and reliably annotating the
samples would go a long way in increasing performance and
generalization capability.

The current dataset is imbalanced (Tables 1 and 2) even
for binary classification (2:1 ratio of healthy vs. unhealthy
samples). Separating into the dataset three classes would
further exacerbate the imbalance (6:1:2 ratio of healthy vs.
MCI vs. Dementia) which renders a 3-way classification
experiment infeasible. Once sufficient data samples are
collected, the task may also be extended to a three-way
classification problem (healthy vs. MCI vs. dementia).

Furthermore, although we focused on using phase-aligned
periodic skeleton sequences and their processing with convo-
lutional networks in this study, various possible approaches
exist for upgrading the pipeline, for example, by modifying
the Cog Network or Fusion Network.
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V. CONCLUSION
In this study, we proposed the PPGCN architecture as the
Pose Network in a dual-task-based cognitive impairment
detection pipeline.Wemodified the STGCN [30] architecture
using our novel SPP-GC blocks to support periodic data.
We acquired phase-aligned periods using Self-DTW [19]
from quasi-periodic 2D skeleton sequences extracted by
RTMPose [39] from RGB images.
By focusing on representative motion periods rather

than the entire skeleton sequence in conjunction with
cross-modality feature fusion and an unsupervised pose
feature loss, we achieved a mean 1.8628 sensitivity +
specificity in a four-fold cross-validation setup, which
outperformed the results in previous studies.

APPENDIX
We provide a pseudocode representation (Algorithm 1) of
the period extraction and selection process described in
Section III-B, Period Extraction & Selection.

Algorithm 1 Period Extraction and Selection
pose← Normalized pose extracted from RGB video
Nperiods← Num. of periods to select

procedure PeriodSelect(pose,Nperiods)
P := SelfDTW (pose) ▷ Extract periods

▷ Create correlation matrices for periods
C ← Corr. matrix list of all joints, coordinates
for all Pjoint ∈ P do ▷ For both x, y coordinates

M joint
periods← Num. of periods from SelfDTW

C joint
← Correlation matrix of joint

if size(Pjoint ) < Nperiods then
Pjoint := repeat(Pjoint ) ▷ Repeat until size OK

for i := 0toM joint
periods do

for j := 0toM joint
periods do

C joint [i, j] := |corr(Pjoint [i],Pjoint [j])|
C .push(C joint )

▷ Search for the best starting index of Nperiods long window
corrmax := 0 ▷ Best correlation
k := 0 ▷ Starting idx for Nperiods
for x := 0tosize(C)[1]− Nperiods do

for y := 0tosize(C)[2]− Nperiods do
corr := sum(C[:, x : x + Nperiods,

y : y+ Nperiods])
if corr > corrmax then

corrmax := corr
k := x ▷ xory, because C is symmetric

return P[k : k + Nperiods]
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