IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 14 February 2024, accepted 26 February 2024, date of publication 29 February 2024, date of current version 7 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3371493

==l ToPicAL REVIEW

Review on the Advancements in Wind Turbine
Blade Inspection: Integrating Drone and

Deep Learning Technologies for

Enhanced Defect Detection

MAIJID MEMARI", PRAVEEN SHAKYA, MOHAMMAD SHEKARAMIZ ", (Member, IEEE),
ABDENNOUR C. SEIBI, AND MOHAMMAD A. S. MASOUM ", (Senior Member, IEEE)

Machine Learning and Drone Laboratory, Engineering Department, Utah Valley University, Orem, UT 84058, USA

Corresponding author: Mohammad Shekaramiz (mshekaramiz@uvu.edu)

This work was supported by the Utah System of Higher Education (USHE)-Deep Technology Initiative Grant 20210016UT.

ABSTRACT The increasing demand for wind power requires more frequent inspections to identify defects in
the Wind Turbine Blades (WTBs). These defects, if not detected, can compromise the structural integrity and
safety of wind turbines. As WTBs are crucial and costly components, they may suffer material degradation
and fatigue failure, which affects their performance and safety. Thus, the urgency for efficient and regular
monitoring to maintain their structural integrity is greater than ever. This review paper explores innovative
methods in fatigue testing, damage detection, and structural reliability in WTBs, focusing on the use of
recent inspection methods, including those that take advantage of drones. Drones are used to identify defects
such as cracks, erosion, and coating irregularities using high-resolution imagery with the onboard cameras.
Various investigators have developed novel data-driven approaches, incorporating machine learning and
deep learning, to accurately identify these defects. Although deep learning-based image processing has
been successful in other public infrastructure contexts, its application to wind turbine inspection from
aerial images presents unique challenges. This paper also highlights the critical role of failure inspection in
enhancing the operational integrity of WTBs, showcasing state-of-the-art deep learning techniques that are
pivotal for identifying and analyzing failures in WTBs from images captured by drones. The paper provides
insights into the latest developments in using drone imagery for blade defect detection, contrasting this
method with traditional non-destructive techniques. This approach could significantly transform the wind
energy industry by offering a more efficient, automated, and precise way of ensuring the structural health
of wind turbines. Unlike previous studies that predominantly focus on isolated aspects such as inspection
or fatigue, this review paper not only integrates the three major aspects of WTBs integrity in terms of
aerial inspection, image processing using machine learning, and structural integrity of the blade but also
undertakes an extensive examination of the prevailing methodologies in the field, pinpointing crucial gaps
and challenges. It provides a detailed review of existing research, covering various areas including automated
inspection, image processing techniques, fatigue analysis, and the reliability of wind turbines. This approach
enriches the discourse by offering a multifaceted perspective on WTB maintenance, thereby advancing the
understanding of operational integrity within the field of wind energy.

INDEX TERMS Wind turbine blades, defect detection, drones, anomaly detection, fault identification,
feature extraction, image processing, deep learning, aerial imagery, crack detection, turbine maintenance,
fatigue, reliability.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and With the growjng global demand for sustainable energy
approving it for publication was Yiming Tang . solutions, wind turbines have increased rapidly in number and
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scale. Consequently, this surge has led to a simultaneous rise
in the number of turbine blade failures, making identification
of their surface defects of paramount importance for ensuring
their operational efficiency and longevity. If not addressed in
a timely manner, such defects can compromise the structural
integrity of the turbines, leading to possible catastrophic
failures. WTBs are intricately designed with thin-walled and
pre-twisted structures to withstand the dynamic deformations
experienced during operation. Their preset angle relative to
airflow remains relatively constant, thereby optimizing their
aerodynamic performance. The blades feature suction and
pressure sides formed at their leading and trailing edges,
further enhancing their aerodynamic efficiency. To withstand
complex loads encountered during routine operation, WTBs
are engineered to withstand harsh environmental conditions,
including high humidity, wind gusts, fatigue, and even
lightning strikes.

Wind turbine damage can arise from both natural and
human factors. Improper handling during manufacturing,
transportation, installation, and maintenance can cause dam-
age. Additionally, WTBs are often located in environmentally
challenging locations, making them susceptible to various
forms of damage. Recognizing the early stages of damage
is crucial, as the gradual accumulation of micro-damage can
compromise efficiency and even result in catastrophic failures
over time. Timely detection and diagnosis of blade health
through Structural Health Monitoring (SHM) can mitigate
these risks and extend the lifespan of wind turbines.

Several methods are employed for diagnosing WTB dam-
age, including Non-Destructive Testing (NDT), Supervisory
Control And Data Acquisition (SCADA)-based approaches,
and vibration signal analysis. NDT technology, in particular,
has gained prominence in recent years for its effectiveness
in fault diagnosis. This paper also examines the latest
advancements in WTB damage detection, encompassing
methods such as visual inspection, wave propagation anal-
ysis, impedance measurement, photogrammetry, ultrasonic,
thermal, and radiographic methods. It is also focused on the
experimental and numerical study of the structural reliability
and fatigue of WTBs.

Recent advances in aerial technology, particularly the
development and use of drones, present a promising avenue
for early defect detection. Harnessing the potential of drones
for defect identification not only ensures accurate data
acquisition but also promises reduced human intervention,
addressing the challenges posed by an aging workforce and
rising labor costs. Drawing parallels from previous research,
methods rooted in image processing have been pivotal in
defect detection across various infrastructures. However,
aerial images of wind turbines present a unique challenge.
These aerial shots encompass a myriad of complexities,
including varying environmental data, necessitating robust
image processing techniques to identify potential structural
flaws. This review paper also delves into the innovative
realm of utilizing drone-captured imagery for WTB defect
detection.
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We highlight the evolution of defect identification tech-
niques, ranging from vibration detection technology and
acoustic emission detection to more recent computer vision-
based methodologies. More specifically, we shed light on
how machine learning, especially deep learning algorithms,
are revolutionizing the domain of WTB defect detection,
paving the way for automated, real-time surveillance, and
quick preventive maintenance. This article also includes the
various WTB reliability models and how they are used to
predict their remnant service life.

Historically, defect detection largely relied on non-
destructive methods. While these traditional methods are still
relevant, their limitations in terms of cost, scalability, and
accuracy have propelled the research community to explore
alternative avenues. The integration of drones with deep
learning algorithms stands out as a viable solution, offering
unprecedented levels of accuracy and scalability.

The following sections will provide a comprehensive
understanding of the various wind turbine failures, their
structural integrity, and will elucidate recent strides made
in deep learning algorithms and their application, present
real-world case studies, and evaluate the scalability and
overall impact of these novel methodologies. The following
sections consist of three major parts related to wind turbine
damage and reliability models, autonomous inspections,
and image processing. We aim to present a comprehensive
review that encompasses all activities ensuring a sustainable
energy supply through timely autonomous inspection, image
processing, and wind turbine blades structural reliability.

Il. OVERVIEW OF DAMAGES ON WTB

Wind loads acting on the blades cause them to rotate and
generate electricity. However, for a prolonged period, cyclic
loading induces fatigue degradation to these blades, thereby
inducing cracks that lead to blade failure before their intended
service life. Furthermore, WTB damage can be caused
by erosion, heavy rain, lightning, ice accumulation, strong
winds, manufacturing defects, and collision of birds as shown
in Figure 1 taken from [1].

For the safety of WTBs, most wind turbines operate at cut-
in (3-4 m/s) and cut-out (25 m/s) wind speeds to avoid damage
from high winds. However, it has been seen that the WTBs
are damaged due to a fierce storm and very high wind. This
is usually avoided by installing wind farms in areas with low
probability of a strong storm and regions with very high wind.

During the operation of wind turbines, the presence
of air mixed with sand and water droplets can lead to
significant erosion of WTBs as shown in Figure 2. The
blades experienced significant force due to rapid impacts
from tiny particles within milliseconds, particularly at the tip
where the rotational speed is highest. The impact of a water
droplet on the blade surface induces significant shear stress.
Continuous scouring by sand particles and water droplets
imposes a persistent load on the blade surface, resulting in
a gradual reduction of the blade surface fatigue strength and
causing substantial damage to the blade material. Erosion at
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(c)

the leading edge of WTBs stands out as a notable example of
a subtractive process, frequently arising from the high-speed
impact of the blade’s leading edge with rain droplets or
hailstones [2]. Zarate et al. [3] studied erosion at the tip of
WTB considering aerodynamic analysis, modal analysis and
predictive ML modelling. Location of erosion and erosion
level were automatically detected using multi-layer neural
network and adaptive networks with fuzzy inference system.
Campobasso et al. [2] presented a novel probabilistic analysis
framework that combines Computational Fluid Dynamics
(CFD), uncertainty propagation, and high-performance com-
puting to assess the performance degradation of WTBs due
to erosion. The study quantified statistical moments of power
and energy yield losses for eroded turbines at offshore and
onshore sites, revealing potential Annual Energy Production
(AEP) losses of 2% and 3%, respectively (with low standard
deviations). Their findings emphasized the importance of
considering turbulence intensity at the installation site in
understanding turbine loss variability. Castorrini et al. [4]
employed open source CAD functionalities to model leading
edge erosion on WTB, and simulating pits and gouges
using CFD.Their research on a 5 MW WTB revealed
AEP loss of 1-2% due to leading edge damages. They
further emphasized the potential benefits of adaptive power
control strategies to mitigate erosion-induced energy losses.
Lopez et al. [5] proposed a framework to estimate erosion
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FIGURE 1. WTB damaged due to (a) Fierce storm (b) High winds (c) Lighting strike (d) Damage due to lightning strike (e) Ice accumulation [1].

evolution and energy degradation overtime by considering
weather uncertainty. They utilized wind and rain data derived
from site observations, ERAS reanalysis (atmospheric data),
and whirling arm test data. The assessment of erosion effects
on airfoils was conducted using aerodynamic polar curves.
Their case study of a 5 MW NREL wind turbine in the
North Sea revealed potential AEP loss of 1.6-1.75% and the
predicted inital erosion failure between 2-6 years.

Wind turbines that are hundreds of feet above ground
become easy targets for lightning. In the presence of moisture
on the WTBs struck by lightning, the accumulated dust in the
air generates a destructive internal shock wave that harms the
blades. Researchers are actively working on the development
of a lightning protection system to protect blades from
such damage. The National Renewable Energy Lab (NREL)
has developed a new type of material (thermoplastic resin
composites) to protect the blade from lightning [7]. The
advantage of using thermoplastic materials is that they can
be easily recycled compared to commonly used thermoset
materials. Moreover, thermoplastic composites can cure at
room temperature, thus reducing the blade manufacturing
time and cost. The experimental findings indicate that
approximately 80% of the electrical current is channeled into
the expanded aluminum foil layer for lightning protection
instead of the blade skin when subjected to a high current.
Moreover, the carbon fiber remained unharmed beneath the
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(b) Eroded WTB surface
FIGURE 2. Erosion on WTB [6].

affected region of the tip. Consequently, this design enhances
the safety of the blades against lightning strikes.

During cold weather, ice accumulation on WTBs emerges
as a significant concern for safety and operational efficiency,
particularly due to the high speed at which the blades
are moving at the tip. This accumulation of ice on the
blades results in a reduction of lift and an increase in
drag, both of which detrimentally impact power production.
Bragg and others have highlighted these effects in their
studies [8]. Additionally, experimental observations by Gao
and colleagues have shed further light on these dynamics [9].
In a detailed field study, Gao et al. [10] specifically examined
the impact of ice accretion on utility-scaled 50 m WTBs,
focusing on the resultant effects on power production. In their
innovative approach, they utilized a drone equipped with a
digital camera to capture detailed images of the ice accretion
on WTBs. Their findings are crucial, indicating that even
under conditions of high winds, the power production can be
reduced to 80% due to the presence of ice on the blades.

In addition to complex environmental damage, human
errors are also the reason for blade failure due to faulty
manufacturing. Figure 3 illustrates an example of broken
blades due to poor manufacturing [1]. In this blade, wrinkles
appeared in the carbon fiber within the spar. When subjected
to cyclic loading from strong winds, these wrinkles spread
extensively, resulting in damage to the WTB.

The majority of WTBs consist of composite materials,
wherein the spar box contains spar and shear webs responsi-
ble for bearing the primary loads. Sgrensen et al. [11] carried
out an experimental study to investigate various types of
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FIGURE 3. Example of a damaged WTB [1].

TABLE 1. List of most common damage types on WTB [11].

Type Description

Damage formation and growth in the adhesive layer that joins
the skin and the main spar flanges (skin/adhesive debonding
and/or main spar/adhesive layer debonding)

Damage formation and growth in the adhesive layer that joins
the skins of the up and downwind along the leading and / or
trailing edges (adhesive joint failure between the skins)
Damage formation and growth at the interface between the
face and the core in sandwich panels in the skins and the main
spar web (sandwich panel face/core debonding)

Formation and growth of internal damage in laminates in the
skin and / or the main flanges of the flanges, under a tensile or
compression load (delamination driven by a tension or
buckling load)

Splitting and fracture of separate fibers in skin and main spar
laminates (fiber failure in tension; laminate failure in
compression)

Skin buckling due to the formation of damage and the growth
of the bond between the skin and the main spar under
compressive load (skin/adhesive debonding induced by
buckling, a specific type 1 case)

Formation and growth of cracks in the gel-coat; debonding of
the gelcoat from the skin (gelcoat cracking and gelcoat / skin
debonding)

Type 1

Type 2

Type 3

Type 4

Type 5

Type 6

Type 7

damage that occurred in WTB. Figure 4 sho ws most common
types of damage and defects on WTB. In summary, Table 1
summazied these types of damage occuring on WTB.

IIl. WTB TESTING METHODS AND NUMERICAL
SIMULATIONS

The structural integrity of WTBs has been studied through
intensive experimental investigations and numerical sim-
ulations. WTB testing methods are generally categorized
into two types: static and fatigue. Depending on the
objective of the experiment, the test load can be either
load-based or strength-based. Load-based testing aims to
demonstrate the blade’s ability to withstand intended loads
without any failure, which is part of the certification
process. Strength-based testing, on the other hand, focuses
on evaluating the material properties and durability of the
blades. It involves applying static and dynamic loads to
identify potential weaknesses in the blade’s construction
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(a) Blade section subjected to a compres-
sive load

(d) Damage in blade section at the leading
edge (Type 2: Adhesive joint failure)

FIGURE 4. Types of common damages induced on a WTB [11].

and materials. By combining load-based and strength-based
testing, engineers can gain comprehensive insights into the
overall performance, structural resilience, and safety margins
of WTBs to meet rigorous standards and withstand the harsh
conditions of wind energy environments.

The experimental study and the numerical analysis of
static testing, fatigue, and reliability in WTB are essential
components of the design and validation process. Exper-
imental studies involve subjecting physical prototypes to
static tests, where the blades are subjected to static loads to
assess their structural behavior and integrity under various
conditions. Concurrently, fatigue testing involves simulating
cyclic loading conditions to replicate the long-term stresses
experienced during the operational life of the blade. These
experiments provide invaluable information on potential
weaknesses, deformation patterns, and failure modes. How-
ever, numerical studies utilize advanced modeling techniques
to simulate and predict the static and dynamic behavior of
WTBs. This numerical analysis helps optimize the design,
predict stress distributions, and assess long-term reliability
of the blades. Combining experimental and numerical studies
leads to a comprehensive understanding of the static, fatigue,
and reliability aspects, enabling engineers to refine designs
and ensure the structural integrity of WTBs throughout their
operational lifespan.

A. EXPERIMENTAL STUDY OF WTBS

The experimental study of WTBs is a crucial aspect that
focuses on static testing and fatigue analysis. The aim
of the experimental study is to improve the performance
and durability of wind turbine systems, contributing to the
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overall efficiency of wind energy generation. Static testing
involves subjecting the blades to various loads and forces
to assess their structural integrity and material strength
under different conditions. This phase helps researchers
understand how the blades respond to static forces, ensuring
that they can withstand the environmental challenges they
may encounter during their operational life. Additionally,
fatigue testing is essential to evaluate the long-term reliability
of the blades by simulating cyclic loading, similar to the
conditions experienced during wind-induced oscillations.
By comprehensively investigating both static and fatigue
aspects, scientists and engineers can refine blade designs,
leading to more robust and sustainable wind turbines that can
withstand the diverse challenges of harnessing wind power
for renewable energy production.

1) STATIC TESTING
WTBs undergo extreme loads during operation. Therefore,
it is crucial to perform static testing of WTBs to determine
structural integrity and its ability to withstand extreme loads.
When loads are applied to the blades in a static manner, the
loads are held constant in one direction to determine the
ultimate strength of the blades and predict its performance
under various conditions. The objective of this testis to ensure
that the blades comply with the International Electrotechnical
Commission (IEC) Technical Specification 61400-23, which
defines the requirements for full-scale strutural testing of
WTBs.

During static testing, the blade is subjected to loads that
simulate the forces it may experience during its operational
lifespan. The testing can be intentionally destructive or
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non-destructive, depending on the objectives. Static testing is
typically performed in specialized facilities where the blade
is secured and loads can be accurately applied, as shown
in Figure 5. The testing process usually involves gradually
increasing the load until a pre-determined limit is reached.
This procedure assesses the blade’s ability to withstand
the expected loads without experiencing any failure or
deformation. The results obtained from static testing are
crucial for wind turbine manufacturers and operators, as they
provide valuable information about the blade’s structural
performance, ultimate strength, and the overall reliability.
This information also helps optimize the design and ensure
the safety and durability of WTBs [12].

In this area, Yang et al. [13] studied a full-scale collapse test
under flapwise loading for a 40m composite WTB. Integral
and local WTB deformations under flap loading conditions
were measured using a videometric technique. At maximum
load, the blade tip deflected about 11 m, which was 160%
of the extreme design load for the tested blade. Their study
revealed that the initial failure mechanism occurred due to the
debonding of the aerodynamic shells of the adhesive joints
resulting in a complete blade failure.

Fagan et al. [14] conducted an experimental investigation
on a 13 m long composite WTB. The results of the test were
used to calibrate the finite element model for an optimized
design study using a genetic algorithm. In their setup, two
blades were mounted on a support structure and loaded using
chains and chain blocks. Three load saddles located at 5 m,
10 m, and 12 m from the root of the blade were used to transfer
the load. The results did not show signs of cracking, surface
buckling, or acoustic emissions during the test.

Chen et al. [15] conducted a failure analysis on a 52.3 m
long 2.5 MW composite WTB under static loading. Static
bending tests were performed for two sets of 2.5 MW
and 3 MW blades. The initial set of tests was designed to
evaluate the performance of the blades under design loads
applicable to 2.5 MW turbines. These tests were conducted
in accordance with certification body requirements for full-
scale blades. In contrast, the second set of tests, was
conducted on 3.0 MW turbines, aimed to push the limits of
the blade’s capabilities and exploring potential failure points.
For each set of experiments, the loads were applied stepwise,
with a specific loading procedure of 0%, 40%, 60%, 80%,
and 100%, followed by an unloading procedure of 80%, 60%,
40%, and 0%, relative to the target loads, in each individual
test case. Following the successful completion of the blade
certification with the 2.5 MW load set, testing was continued
with the 3.0 MW load set. During this testing phase, the blade
experienced a catastrophic failure in the transition region
at approximately 90% of the target test loads. The main
failure regions were found to be between 3.5-5.5 m exhibiting
several typical failure modes, including Laminate Fracture
(LF), Composite Delamination (DL), and sandwich skin-core
Debonding (DB).
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In another study, Gage et al. [16] conducted static
testing on the NRT Blade, a 13 m WTB. The blade
was subjected to extreme negative flapwise bending and
static edgewise bending moments. These test moments
included the combined effects of blade self-weight, tear
load from the weight of the load saddles, as well as
external loads applied through an overhead crane and ballast
weights. For each load scenario, the bending moments were
applied in three load ramps, corresponding to approximately
25%, 50%, and 100% of the target load. Remarkably, the
blade successfully withstood each of the proof load cases,
displaying no signs of damage or evident changes in physical
shape.

Jgrgensen et al. [17] conducted a failure test on a 25 m
WTB subjected to flapwise load. The blade was tested to
failure at three different locations. For static tests, more than
100 strain gauges were used to detect the strain in the blade.
Rumsey and Paquette [18] performed static and fatigue tests
on a 9m long composite WTB. Thirty thousand Ohm metal
foil strain gauges were installed on the gel-coat surface of
the blade and strain gauges were zeroed at the flapwise load.
The commercial off-the-shelf acoustic emission NDT system
effectively monitored the blade, revealing diagnostic signs of
failure after 4,000,000 fatigue cycles. The study emphasized
safety concerns, prompting the test’s interruption prior to
complete blade failure. Lee et al. [19] proposed optimal
sensor placement on the WTB without Finite Element (FE)
model and displacement estimation. They have employed a
simplified experimental blade model through modal testing
interpolation, which proved practical for operational wind
turbine applications. Additionally, a wireless sensor network,
utilizing open-source hardware, was implemented on a 300 W
scale wind turbine to analyze blade vibrations during
operation.

As stated above, static testing of WTBs is an essential step
in ensuring their structural integrity and performance. This
type of testing involves evaluating the blades under static
(non-moving) conditions to assess their strength, stiffness,
and overall structural behavior. Through static testing, the
strength and structural behavior of WTB structures at
different locations were determined in the aforementioned
experimental studies. However, it is crucial to recognize
that assessing the long-term durability and performance of
these blades requires more than static testing alone. This
is particularly true because static testing may not fully
capture the dynamic loading conditions a blade encounters
during its operational life. In cases where static testing
is lacking, the significance of conducting comprehensive
fatigue testing is heightened to ensure the blades’ reliability.
Fatigue testing is a critical procedure, which subjects the
blade to repeated loading cycles, simulating the conditions
throughout its operational lifespan. The next section will
delve into a study focused on fatigue testing for different
WTBs.
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FIGURE 5. Static testing of WTB [12].

2) FATIGUE TESTING

The primary goal of fatigue testing is to ascertain the struc-
tural characteristics of a blade, including its fatigue strength
and failure modes. Moreover, such testing is instrumental in
evaluating the capability of new sensor technologies to detect
damage and conduct SHM. Evaluation of the blade’s service
life can be achieved either experimentally or numerically
by subjecting a typical blade to cyclic loading in the form
of millions of load cycles. Figure 6 presents the fatigue
certification test method of WTB.

The size of composite WTBs has continuously grown over
the past decade. Therefore, the utilization of testing tech-
nology that takes advantage of the resonance phenomenon
has become increasingly common. The moment distribution
on WTBs is a critical aspect of its structural analysis, as it
directly influences the overall performance and reliability
of the blade. It is necessary to determine the moment
distribution on the blade using modal analysis and test
amplitude using damping analysis for resonance-type fatigue
testing.

Desmond et al. [21] performed structural tests on a 8.3 mm
long WTB made of different materials (glass fibers and
carbon fibers) to investigate their reliability by inducing
damage to both blades. The load was applied through a
hydraulic actuator and damage was detected using Acoustic
Emission (AE) sensors. The testing concentrated on applying
loads to specific spanwise regions of the blade (i.e., 7m,
6m, and 4.37m) where the deliberate defects were located.
The fiberglass blade showed out-of-plane and root laminate
failure at different loading stations, however, the carbon fiber
showed failure of the in-plane and out-of-plane.
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FIGURE 6. Fatigue certification test of WTB [20].

Lee and Park [20] studied fatigue damage effect on
the residual strength of full-scale composite WTB. They
initially performed a static test followed by fatigue testing
on a 48.3 m WTB in accordance to IEC TS 61400-23.
The blade was sequentially loaded in positive flapwise,
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positive edgewise, and negative flapwise directions. During
the static loading test, the blade withstood positive flapwise
loading. For edgewise loading, the blade sustained the static
loading; however, there were some cracking sounds due to
peeling strains in the trailing edge bonding line, resulting in
delamination in the fatigue-damaged layers. During negative
flapwise loading, the blade collapsed at 70% of static loading
due to interfacial failure in the bonding line which was unable
to sustain the shear flow. A sudden drop in the torsional
rigidity was observed showing oblique cracks in the shear
webs that lead to the breakage of the pressure-side spar cap.

Al-Khudairi et al. [22] conducted fatigue testing and
examined damage propagation by introducing a crack to
study the performance of a full-scale WTB, specifically a
47.5 m long WTB was selected for static testing, fatigue
testing and modal analysis. A total of 30 strain gauges were
used on the pressure and suction side of the blade, and
inside the shear web. They conducted three studies (i) full
blade without crack, (ii) a crack of 200 mm was introduced
between the spar cap and the web, and (iii) a crack was
extended to 1000 mm. The first natural blade frequency for
each state was used for fatigue testing. The results showed
that for a 200 mm crack between the shear web and the spar
cap at a location of 9 m from the root it did not propagate
at 50% of the target bending moment up to 62110 cycles.
When the load increased to 70% of the target bending
moment, damage was observed on the pressure side of the
blade. For 1000 mm, the crack started to propagate and
the blade experienced delamination, adhesive joint failure,
compression, and sandwich core failure.

Chen [23] presented an experimental observation on
structural degradation of a 47 m long full-scale composite
WTB subjected to fatigue loading up to 2 million cycles.
In composite WTB, the unidirectional laminates form a
major portion of the spar caps, which are responsible for
the overall stiffness and load carrying capacity of the blade.
Changes in bending stiffness, damping ratio, and natural
frequencies were calculated at different fatigue cycles. The
fatigue test was stopped at five intervals (0, 0.5, 1, 1.5, and
2 million), a pulling force was applied at a blade section of
39.5 m and deflections were measured in sections of 19 m,
28 m and 39.5 m using drawwire displacement transducers.
No fatigue degradation of the bending stiffness was observed
in the blade section ranging from O to 19 m. However,
a clear trend of degradation was observed from 19 to 39.5 m
blade section. The stiffness degradation was a result of
the density of matrix cracks in these off-axis laminates
(biaxial and triaxial), which might enter saturation phase
and unidirectional laminates were taking the primary load.
Changes in the natural frequencies were negligible in fatigue
loading and the damping ratios increased by 20% for two
flapwise modes.

Fremmelev et al. [24] explored damage detection in a
commercial 52 m long WTB under fatigue testing. To detect
damage, different artificial damages were introduced in the
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form of cracks to the blade. Damages induced in the WTB
were manually increased to see propagation and delamination
during fatigue loading. Various number of sensors such as
Strain Gauges (SG), AE sensors, accelerometers, and an
active vibration monitoring system were employed along
the blade to monitor the structural health of damaged and
healthy states of the blade. SG measurements demonstrated
the local detection of damage initiation and propagation
through changes in the strain range, providing a simple
interpretation with limited data processing. AE sensors
revealed that damage to sandwich panels, such as the web
and the shell, could be detected within 0.5 m. The Dis-
tributed Accelerometer System (DAS) showed potential for
modal identification, suggesting improved modal separation
with increased ambient excitation. The Active Vibration
Monitoring System, utilizing Power Spectral Density (PSD),
was found to be sensitive to small damages, enabling the
formulation of a damage index to quantify severity and track
progression.

Melcher et al. [25] performed an experimental study
on a 60-70 m long commercial WTB to study ellipti-
cal bi-axial resonance fatigue testing. In their method,
they used phase-locked resonant bi-axial excitation with
a 1:1 frequency ratio, streamlining the assessment of
damage-equivalent load cycles as compared to bi-axial
tests involving multiple frequencies. One spring element,
two decoupled mass elements, and two hydraulic actuators
were used to maintain the 1:1 biaxial frequency ratio. The
elliptical bi-axial rotor blade fatigue test, utilizing resonant
excitation, effectively simulated realistic loading conditions
similar to field scenarios. The validated design model, which
integrates transient and harmonic simulations, aligned closely
with the experimental results, showcasing the agreement in
displacements and loads along the blade.

Castro et al. [26] presented an optimized fatigue testing of
WTB using the strain-based damage method experimentally.
A linear optimization method was used to determine the
optimal mix of different uniaxial and multiaxial test blocks,
allowing the attainment of material-based damage across
the blade while minimizing the test time duration. The
experimental results demonstrated a nearly 50% reduction
in the duration of the total testing. The total experimental
Equivalent Damage Ratios (EDRs) achieved after conducting
the three test blocks within the optimized test was assessed.
These findings were presented for various cross-section
regions, including the Trailing-Edge (TE), TE panel, Spar
Cap (SC), and Leading Edge (LE), on both the Suction
Side (SS) and Pressure Side (PS), and at various span-wise
locations along the blade.

Flapwise vibration is the dominant vibration in WTB that
leads to out-of-plane alternating loads that break the blade
when the load exceeds the blade strength limit. Su et al. [27]
experimentally studied the areas of fatigue failure of WTB
rotating at the fundamental frequency. Strain gauges were
used to collect strain data at various locations. To identify
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the locations that are vulnerable to fatigue damage, the
strain power spectral density amplitude along the spanwise
direction was examined. Through accurate identification, the
region of the rotating blade that is susceptible to fatigue
failure is precisely determined except for the position at
0.10 R (R defines blade radius), the spanwise region of the
blade ranges between 0.70-0.75 R is particularly prone to
failure. This is attributed to the combination of flapwise
bending and vortex excitation coupling, which leads to a
higher amplitude in the strain.

Reliability monitoring is possible using Radar sensors with
other sensor types. However, there are some limitations that
need to be addressed, such as the effect of the environment
and operational conditions. In this area Simon et al. [28]
presented the design and experimental implementation of a
cooperative radar network for blade SHM. During manufac-
turing 40 Frequency-Modulated Continuous Wave (FMCW)
radar sensors operating at 58-63.5 GHZ were installed on
a 31 m long WTB. Ten embedded material sensors were
installed in the core material of the blade, and the remaining
30 sensors were placed on the inner surface of the rotor blade.
Fatigue testing on a full-scale turbine blade with artificial
damage such as a hole was performed in the laboratory. It was
found that icing is also detected using the same sensors.
All of the Radar measurements used in their investigation
were made with the rotor blade unloaded. Therefore, the data
analysis must take into account both mechanical vibrations
and the effects of mechanical stress. Moll et al. [29] studied
the radar sensors in WTB which operate in microwave and
millimeter wave frequency range, to conduct remote and
in-service inspection. Radar sensors were mounted on the
wind turbine tower, emitting the electromagnetic waves in
the direction of the rotating blade. Their observation revealed
successful damage detection in the Glass-Fiber Reinforced
Plastics (GFRP) plate and the tip of the blade in the laboratory
environment.

Zhang et al. [30] employed highly stable BuckyPaper
(BP) sensors to monitor the structural health of a repaired
composite blade specimen under fatigue. To check the
health monitoring of the specimen, BP sensors were initially
calibrated through the quasi-static tensile failure test and
graded loading and unloading after which these sensors were
used to monitor glass-fiber-reinforced composite specimens
through axial-tensile fatigue tests. The sensor results were
compared with the actual damage of the specimen and a
non-destructive inspection chart revealed comparable results.

Staffa et al. [31] developed and validated a low-cost
damage detection sensor in real-time through an experimental
investigation using small samples. The system comprises
both hardware components and a signal processing algorithm,
designed to identify and continuously monitor changes
in structural responses caused by the accumulation of
damage. The efficacy of the device is substantiated through
experimental validation conducted on a basic Y-shaped
specimen exposed to fatigue loading. The device is capable of
accurately predicting structural damage and giving real-time
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feedback on the health of the structure. The experimental
results revealed promising use for industrial applications.

An experimental study on WTB fatigue involves a
systematic investigation to comprehend how these crucial
components respond to cyclic loading, simulating the oper-
ational stresses they endure during their lifespan. Through
a carefully designed testing protocol, the study aims to
identify potential failure modes, assess fatigue life, and
gain insight into the structural behavior of the blades under
various loading conditions. Experimental setups typically
include subjecting the turbine blades to repeated loading
cycles, monitoring strains, and observing any visible signs
of damage. By quantifying the effects of cyclic loading
on structural integrity, this experimental approach provides
valuable data to validate computational models, optimize
blade designs, and ultimately ensure reliable and enduring
performance of wind energy systems. The findings of such
previous studies contribute significantly to advancing the
understanding of fatigue phenomena in WTBs, influencing
design improvements and operational strategies in the
renewable energy sector. In the next section, we discuss
the integration of experimental studies with numerical
simulations in the fatigue analysis of WTBs which constitutes
a comprehensive approach to understanding and predicting
the structural behavior of these critical components.

B. NUMERICAL SIMULATIONS

Experimental studies involve subjecting turbine blades to
realistic loading conditions in controlled settings, monitoring
responses, and collecting empirical data on fatigue perfor-
mance. These experimental data become invaluable in the
validation of numerical simulation models. Numerical sim-
ulations, employing finite element analysis (FEA) or other
computational techniques, complement these experiments by
providing a platform for predictive modeling under various
scenarios. By combining the insights gained from physi-
cal testing with the capabilities of numerical simulations,
engineers can refine and validate computational models,
enhancing their accuracy and reliability. This integrative
approach not only strengthens the understanding of fatigue
mechanisms, but also enables the development of more robust
and optimized WTB designs, which ultimately contributes
to the overall efficiency and longevity of wind energy
systems.

The assessment of WTB reliability offers two distinct
approaches, i.e., deterministic methods and stochastic (prob-
abilistic) methods. International design standards endorse
semiprobabilistic approaches, representing an enhancement
over deterministic methods. The semiprobabilistic strategy
involves examining a range of design load scenarios,
conducting short-term numerical simulations on a validated
wind turbine model, and using extrapolation techniques to
estimate higher load levels for long-term exceedance proba-
bilities [32], [33]. During the design check for the ultimate
and fatigue limit states, partial safety factors for loads or
materials are applied, considering specific reliability levels.
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Calibrated partial safety factors contribute to maintaining
a consistent reliability level across structural components
subjected to varying load conditions. However, challenges
arise, particularly in novel wind turbine technologies, such
as offshore Floating Wind Turbines (FWTs), where site-
specific parameters, positioning systems, control strategies,
and drivetrain technologies introduce uncertainties. Large
partial safety factors may lead to less cost-effective designs
of WTBs. On the contrary, the probabilistic approach
explicitly addresses uncertainties related to loads, materi-
als, and analysis methods, improving the overall design
level. This approach, proven effective in various industrial
designs, utilizes Structural Reliability Analysis (SRA) to
calculate and predict the probability of limit-state violations
during a reference period, incorporating stochastic variables
into the formulation of limit states regarding ultimate
strength, fatigue failure, structural stability, or critical
deflection [34].

One noteworthy technique is the utilization of Monte
Carlo (MC) simulation, a probabilistic methodology that
involves executing numerous simulations with randomized
input values to evaluate a spectrum of potential outcomes.
Specifically in the realm of wind turbines, applying MC
simulations allows modeling of uncertainties related to wind
conditions and material properties. This method provides a
comprehensive perspective on the reliability of the system
in a spectrum of scenarios [33], [35], [36]. Additionally,
Weibull analysis proves to be a common practice for
scrutinizing the distribution of wind speeds [35]. Engineers
leverage this method by fitting a Weibull distribution to
the observed wind speed data, thereby estimating the like-
lihood of various wind speed occurrences. These reliability
analysis methods, among others, significantly contribute to
the progression of wind turbine technology, ensuring not
only optimal performance under anticipated conditions, but
also fortifying resilience against unpredictable environmental
variables.

In this area, Abdusamad [35] employed a robust approach
based on MC simulation to assess the reliability of wind
energy systems. The simulation utilizes Weibull distribution
to model the wind speed. The study reveals that as the number
of simulations increases, there is a slight decrease in the
probability of failure, accompanied by a substantial reduction
in computational errors and a noticeable increase in run time.

Dao et al. [36] introduced a probabilistic approach to
address uncertainty in reliability data by quantitatively
estimating parameters from available resources. The study
incorporates fuzzy logic to model the uncertainty in failure
costs, establishing a connection between a component’s
failure cost, capital cost, and downtime. The researchers
employ a time-sequential MC simulation to replicate the
operational sequences of Offshore Wind Turbine (OWT)
components. The findings highlight that uncertainties have a
more pronounced impact on OWT performance, particularly
in databases where component reliability is low. In addi-
tion, the study emphasizes that both reliability and cost
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uncertainties can collectively contribute to variations that
exceed 10% in the cost of energy.

Sichani et al. [33] performed the estimation of the
probabilities of wind turbine failure using an enhanced
Monte Carlo (EMC) method. The proposed method offers
distinct advantages over both Peak-Over-Threshold (POT)
and Standard Monte Carlo (SMC) techniques, demonstrating
superior performance in terms of computational efficiency
and accuracy. The SMC method involves generating random
samples from a given probability distribution to approxi-
mate numerical results, particularly for inteactable integrals.
On the contrary, the EMC method incorporates variance
reduction methods, importance sampling, stratified sampling,
or control variates to improve the efficiency and accuracy of
the simulation. The goal of these enhancements is to reduce
computational burden and achieve more accurate results by
more effectively allocating computational resources. While
SMC is a basic and widely used technique, the researchers
applied the EMC method to a low-order numerical model
representing a 5 MW wind turbine equipped with a pitch
controller and subjected to turbulent inflow conditions. The
study explored scenarios involving constant rotational speed
and variable rotational speed controlled by the pitch con-
troller. The results indicate that the EMC method effectively
estimates the failure probabilities of the model, aligning with
values relevant to the required 50-year return period of the
wind turbine.

Gamma Process Model (GPM) is a stochastic model
that particularly well-suited for modeling the degradation
and deterioration mechanisms inherent in various materials
over time. In the context of structural reliability, Gamma
process serves as a versatile framework for capturing the
uncertainties associated with complex loading conditions,
material properties, and structural responses. By incorpo-
rating probabilistic parameters, such as shape and scale
parameters, Gamma process facilitates a more comprehen-
sive representation of structural deterioration and failure
modes. Researchers and engineers often employ GPM to
perform probabilistic assessments, enabling a more accurate
prediction of the probability of failure and the remaining
structural life. This approach contributes significantly to
advancing our understanding of structural reliability and
aids in optimizing maintenance strategies to enhance overall
safety and longevity of engineering systems. Zhang et al. [37]
presented a stochastic deterioration modeling method and
a fatigue damage assessment of offshore composite WTBs.
NREL 5 MW blade was used to determine fatigue damage
and applicability of the stochastic deterioration modeling
method. The aerodynamic loads in the wind turbine were
determined using the Blade Element Momentum (BEM)
method. GPM was used for modeling progressive damage
such as wear, fatigue, and corrosion. The results showed
that the proposed approach serves as a valuable tool for
assessing the performance and evaluating the fatigue damage
in composite WTBs operating in harsh offshore wind field
environments.
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Lee et al. [38] studied the root cause failure of a
full-scale WTB of 3 MW during fatigue testing and revealed
that the blade failure at its root end. In their study, the
blade was modeled as full-scale shell elements and the
sub-component as solid elements to perform finite element
analysis. They observed that the blade’s bumping motion
led to a modification in the load distribution at the root
end, resulting in an increased load at other locations. This
incremental load was a contributing factor to the partial
separation of the T-bolt joints, which ultimately led to
delamination at the end of the blade root.

Haselbach and Branner [39] investigated the trailing edge
failure numerically and experimentally tested on a 34 m long
WTB to the ultimate failure. Aeroelastic simulations were
conducted to ultimate load failure using HAWC?2 software
(second generation horizontal axis WTB code). All relevant
Design Load Cases (DLC) were computed to predict the
design load according to IEC 61400-1. Abaqus software
(an FEA solver) was used to discretize the blade geometry
having 67000 8-noded double-curve thick shell elements. The
adhesive bond line between the upper and lower aerodynamic
shells at the trailing edge was simulated using 8-node linear
brick elements featuring reduced integration and hourglass
control. Various failure criteria were used to identify critical
strains, stresses, and progressive damage and failure models.
The results showed that the combination of solid elements and
shell elements using multi-point constraints leads to a highly
accurate prediction of tailing edge failure. The combined
loading, which is critical for load directions, subjects the
training edge to a compressive load, thereby leading to a
deformation-induced blade failure.

Haselbach et al. [40] provided a comprehensive numerical
analysis of energy release rates at the tip of a transversely
oriented crack on the trailing edge of the 1.5 MW blade. Four
ASM Posiwire 6250 draw wire transducers were mounted on
the suction-side cap and two more ASM Posiwire 6250 were
at the trailing edge to validate optical displacement mea-
surements. Strain gauges were used to validate longitudinal
strains glued to the laminate. HAWC2 software was used
for aeroelastic simulation to predict the bending moment
distribution and forces at the cross-section of the blade
for various loads. For both numerically and experimentally,
a geometric non-linear longitudinal trailing-edge wave occurs
in blades, which were designed to prevent local buckling.
These waves can damage the integrity of the adhesive trailing-
edge joint.

Lahuerta et al. [41] investigated a sub-component of the
blade tailing edge failures attributed to static and fatigue
loading, mainly characterized by the edge-wise moment.
For the static test, the 3 x 2 x 400 mm blade segment
was tested at the 24 m blade station. The experimental
and numerical findings were evaluated and explained using
criteria related to the strength and stability of the trailing edge.
In static tests, a buckling wave was formed along the trailing
edge until the point of failure occurred at the trailing edge
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adhesive joint. The global loading curve response exhibited
distinct pre-buckling and post-buckling regions, revealing a
non-linear structural response. The blade failed at 2.4 million
cycles.

Liu et al. [42] studied the reliability of offshore WTBs
with and without the support of the floating foundation.
OpenFAST, an open-source engineering tool for simulating
the dynamics of wind turbines, was used to determine
the motion of the floating wind turbine and the blade
was modeled in ANSYS software. Calculations include the
probabilities of blade root overload failure, blade root fatigue
failure, and excessive blade tip displacement. The blade
failure probability for a floating wind turbine was revealed to
be higher than for a fixed wind turbine. Different piezoelectric
materials on floating WTBs were tested to determine the
effect of piezoelectric material on floating blades. It was
observed that the blade with piezoelectric materials showed,
respectively, a decrease in the stress level at the blade root and
blade tip displacement as well as the probability of failure.

Tarfaoui et al. [43] conducted a numerical study of static
and fatigue modeling of a NACA 4424 airfoil WTB. The
maximum thickness of the blade was taken as 24% of the
chord length. The blade was modeled as a hollow structure
with thin walls and shell type elements. Aerodynamic load
was calculated at each segment using BEM theory. Hashin’s
criteria assume the occurrence of two distinct fiber and matrix
failure modes occurring in two different fracture planes.
It was used to evaluate the different modes of failure. The
results showed that the blade failure occurred near the hub
and spar of the blade.

Bos et al. [44] proposed a new technique consisting of a
quadrature rule to determine the fatigue design load of the
offshore NREL SMW blade. The DLC of 1.2 as specified in
IEC 61400 standard described the simulation in the regular
environment that results in power production of offshore wind
turbines. For fatigue testing a DLC value of 1.2 was used.
The main advantage of using the implicit quadrature rule is
that it has positive weights and can be constructed directly
using the environment measurements. This method revealed
a good accuracy with less computational time as compared to
the standard binning approach.

Liu et al. [45] presented a modified fatigue damage model
proposed by Wu and Yao [46] by introducing sine/cosine
trigonometric terms to simulate damage progress in a WTB.
The 3.4 MW Sinoma 68.6 m long WTB was selected for full
fatigue testing to meet the 20-year service life requirement.
For fatigue testing, the blade was fixed to a bench through
the flange bolts with the tip cut at 61.5 m distance from the
root. Instead of line stiffness, bending stiffness is selected as
the evaluation standard with the advantage of having stiffness
in real-time to avoid additional calibration test. In their
simulation, the humidity effect was ignored. It was observed
that as the temperature increases, the stiffness of the blade
drops. The fatigue damage indexes of the composite under
different cycles through the stiffness degradation experiment
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was obtained and observed that the modified sine and cosine
models have the ability to simulate the damage process with
a higher fitting degree than other models.

Castro et al. [47] presented an optimized method for
multi axial fatigue testing of WTBs and they applied it to a
commercial WTB. The response of the blade was analyzed
at the material level by incorporating strain-based damage
targets. All regions along this blade were observed to have
the damage based on strain and no fatigue or static failure
occurred. The total test time was 50% less than the current
standard test.

Avendano-Valencia et al. [48] proposed a data-driven
model to predict the short-term fatigue Damage Equivalent
Loads (DEL) on a wind turbine affected by wake. This
model relies on wind field inflow sensors and load sensors
deployed on up-wind wind turbines. Gaussian Process
Regression (GPR) is a probabilistic model that captures and
predicts relationships in data by assigning a distribution over
functions [49]. They have used GPR model and calibrated
it to effectively predict the loads on a wake affected wind
turbines. For the DELs of the blade, the overall prediction
error was less than 1%. In the fore and aft direction, the
maximum normalized mean squared error for tower base
DELs in wake affected zone was nearly 4%.

Shaler et al. [50] presented a sensitivity analysis approach
to identify which wind-inflow and wake-related parameters
have the greatest influence on fatigue and ultimate loads
under normal operations of turbines in a wind farm. A total
of 28 parameters were identified which can lead to largest
variation of fatigue and ultimate loads. NREL 5 MW blade
was considered at normal operating conditions and gusts,
start-ups, shutdown, and idling conditions were neglected.
The results show that ambient turbulence in primary wind
direction and shear are the most important parameters for
fatigue and ultimate loads for both waked and non-waked
turbines. Yaw misalignment, integral length of the u direction,
and the u component of the IEC coherence model also
affected fatigue and ultimate loads.

Hu et al. [51] addressed rain-induced fatigue damage
in WTB coatings, which requires significant repair and
maintenance costs. It introduces an advanced computa-
tional framework for analyzing rain erosion-induced fatigue.
An extended stochastic rain field simulation model was
considered to model the different types of raindrop shapes
(flat, spindle, and spherical), sizes, impact angle, and wind
speed. A stress interpolation method was used to determine
the impact stress of raindrops with effective computational
time. The accuracy of the framework was verified against
data from the literature. The study demonstrated that by
incorporating rainfall statistics, this framework can estimate
the fatigue life of the blade coating due to rain erosion
effectively.

Moraras et al. [52] studied the variation of the equivalent
stress at high stress points of the blade with respect to the
applied torque. A finite element analysis was performed
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on the scalable WTB to determine the locations of high
stress values along the blade. Electrotensiometric transducers
were strategically placed at various locations on the blade
to ascertain both the primary stresses at those specific
points and their fluctuations during the torsion test, which
were subsequently computed through numerical simulation.
The results of the finite element correlated well with the
experimental data.

Zhang et al. [53] proposed an RDT-SSI method to estimate
the operational frequency of an OWT under ambient excita-
tion using combined Kalman filter, the Random Decrement
Technique (RDT), and stochastic subspace identification
(SSI) methods. RDT technique used to pick up the free-time-
decaying signal of a structure having unknown excitation
and SSI estimate the modal properties of large-scale turbine
having high noise level. Both combined as RDT-SSI method
is used for the identification of modal parameters. RDT-SSI
method is easy to implement for field application due to
non-requirement of input loads. The accuracy of RDT-SSI
method is validated with the experimental study of small-
scale OWT. The small-scale OWT was submerged at varying
depths to replicate the impact of scouring phenomena. As the
embedment depth decreased, the frequency of the OWT also
diminished.

Aeroelastic tailoring, that is, Bend-Twist Coupling (BTC),
is generally used to reduce the fatigue loading on WTB.
Bend-twist coupling suggests that due to bending the blade
can also twist. This phenomenon alleviates aerodynamic
loads due to a decrease in the angle of attack when the load
is suddenly increased. Hayat and Ha [54] used bend-twist
coupling to alleviate aerodynamic loads through unbalanced
laminate composite. Three kinds of unbalances (i.e. ply angle,
ply-material and ply-thickness) were used to get aeroelastic
tailoring of a 5 MW WTB. Fully coupled aeroelastic analysis
of the 5 MW variable speed and collective-pitch controlled
wind turbine rotor blade showed a reduction in fatigue load
due to aeroelastic tailoring.

Meng et al. [55] investigated fatigue loads due to the effect
of BTC under different wake conditions using the stress-
based method. An anisotropic 1-D beam model was used
in aeroelastic simulation. Static and dynamic analyses were
performed to verify the anisotropic beam model for the NREL
SMW WTB with different fiber angle orientations. The study
suggests that the predicted life of NREL 5MW is in close
agreement with the design life.

During the flap-wise fatigue test, a large aerodynamic
drag was experienced on the WTB. To mitigate this, a drag
reducer was installed along the outboard blade. However,
this caused an increased torsion that creates an extra twist
deformation along the blade, which was unfavorable to the
normal conduction of the testing. To tackle this problem,
Guangxing et al. [56] proposed a shuttle-shaped airfoil
design in WTBs to reduce the drag. A highly efficient
aero-structure integrated numerical method was utilized to
construct an optimization design framework. An optimal
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airfoil was designed at NREL 60 m blade to reduce the
drag. The results obtained indicated that using the shuttle
airfoil the drag coefficient reduced by 25% compared to the
ellipse airfoil. This design helps to meet the target testing
loads, thereby, improving the excitation motor efficiency and
reducing the power consumption.

Peng et al. [57] developed a multi-scale modeling method
for a jacket-type offshore wind turbine. The local joints
of the jacket were modeled using solid elements and
other components as beam elements. Equivalent Mises and
Lemaitre methods were used to analyze the multi-axial
fatigue damage utilizing the multiaxial S-N curve to account
for the multiaxial stress conditions in the local joint. The
multiaxial S-N curve considers the influence of varying
stress directions, providing information on the durability of
a material. This curve is crucial for designing components
exposed to multiaxial loading in diverse applications. It was
revealed that the tubular joint of the jacket leg and
brace connections can be effectively represented using the
multi-scale methods which yields a 15% difference in the
degree of uniaxial fatigue damage. Using multi-scale finite
element model, uniaxial and multiaxial fatigue comparison
showed a difference of about 15%. For better accuracy, multi-
scale finite element model can be used for multiaxial fatigue
analysis of the jacket-type offshore wind turbines.

In summary, static and fatigue testing play pivotal roles in
evaluating the structural integrity and performance of WTBs,
crucial components of wind energy systems. Static testing
involves subjecting the blades to controlled loads to assess
their strength, stiffness, and deformation characteristics under
various conditions. However, fatigue testing simulates the
cyclic load that WTBs experience throughout their opera-
tional life, helping to identify potential fatigue failures and
ensuring long-term reliability. Experimental studies involve
subjecting turbine blades to controlled loading conditions,
collecting empirical data on fatigue performance, and vali-
dating numerical simulation models. Numerical simulations,
employing advanced FEA and predicting the aerodynamic
loads based on different methods such as computational
fluid dynamics, blade element momentum method, and
complement experimental findings by predicting the struc-
tural and aerodynamic performance under different operating
conditions. Innovative approaches include bend-twist cou-
pling for fatigue load reduction and drag reduction through
shuttle-shaped airfoil design. The reliability of WTBs is
a critical factor that influences the overall efficiency and
safety of wind energy systems. Robust reliability assessments
consider factors such as material properties, manufacturing
variability, and environmental conditions to ensure that
the blades can withstand the complex and dynamic forces
encountered during their operational lifespan. Probabilistic
methods such as MC, EMC, and GPM predicts the failure
of WTBs. These advances contribute to optimizing WTB
designs, enhancing their reliability, and ensuring efficient,
durable performance in the evolving field of wind energy
technology.
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Table 2 presents the comparison of various studies based
on different NDT techniques, loading, sensors, software, and
WTB length. The table containing the acronyms listed in
Table 2 can be found in Table 3.

IV. WTB INSPECTION METHODS

The monitoring process for the health of WTBs is primar-
ily focused on early detection of blade damage, thereby
identifying potential safety risks promptly. This approach
is imperative to avert severe and catastrophic failures and
ensure the uninterrupted, safe, and efficient operation of
wind turbines. Performing periodic maintenance on identified
faults and potential safety hazards can substantially mitigate
operational and maintenance costs, minimize downtime,
improve power generation efficiency, and reduce economic
losses.

SHM of WTBs is regularly carried out using quality control
during manufacturing and in-service inspections to detect
various kinds of damage. NDT methods serve as valuable
techniques for detecting, assessing, and monitoring these
blades without requiring the dismantling of the structure
or causing harm to the materials being tested. These NDT
processes often include specialized applications tailored to
test and evaluate composite materials to produce reliable
data.

NDT techniques on WTBs can be performed using sensors
or a visual inspection. Visual inspection can spot obvious
deterioration or significant fissures. However, cutting-edge
sensor technology is relied on to evaluate elements such
as fracture propagation, inherent damage, or delamination.
SG sensors measure the expansion or contraction of the
material, which is directly related to the amount of strain or
stress experienced by that material. Accelerometer sensors
are used to measure the dynamic response of the blade.
Advances in technology have led to the development of
modern emerging sensors capable of detecting damage in
ways that were not possible with traditional strain gauges
and accelerometers. Technologies such as optical fiber,
AE, pezoelectric lead zirconate titanium (PZT), macro-fiber
composites (MFC), scanning laser Doppler spectroscopy
(SLDV), and radio detection and range (RADAR) sensors
are employed to measure inherent blade damage based on
different NDT techniques.

There are a spectrum of methods to detect structural and
material damage to WTBs, including strain, acoustic emis-
sion, ultrasonic, vibration, thermal imaging, and machine
vision monitoring. This section provides a comprehensive
review of the principles of each monitoring technique and
discusses ongoing advances in research in these areas.
A detailed analysis will be conducted on the merits and
drawbacks of each of these monitoring techniques, offering
a more nuanced understanding of their applicative value and
limitations.

The integration of remote sensing technologies, particu-
larly drones equipped with high-resolution cameras and spe-
cialized sensors, has revolutionized the inspection process.
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TABLE 2. Comparison of techniques, analysis methods, and sensors for WTB Testing.

Authors Study Sensor Technique/ Testing Axial Damage | Detection| Blade Scale
Software Loading Types length

Yang et al. (2013) | Exp SG Videometric Static Uni DB Local 40m Full
[13]
Chenetal. (2014) | Exp SG, N/A Static N/A DL, DB, | Point 52.3m Full
[15] DWDT LF
Fagan et al. | Exp, SG GA Static N/A N/A Point, 13m Full
(2017) [14] Num Local
Melcher et al. | Exp SG Phase-locked | Fatigue Uni, Multi | DL Global 60m Full
(2007) [25]
Desmond et al. | Exp AE N/A Static, Uni Crack, Point 8.3m Full
(2015) [21] Fatigue DL, LF
Lee and Park | Exp N/A N/A Static, Uni DB, DL N/A 48.3m Full
(2017) [20] Fatigue
Chen (2019) [23] Exp SG, N/A Static, Uni Fatigue Point 47m Full

DWDT Fatigue Deg
Gage et al. (2021) | Exp SG, N/A Static, Uni N/A Point 13m Full
[16] ACC Fatigue
Fremmel et al. | Exp SG, N/A Fatigue N/A Crack, Local, 52m Full
(2022) [24] Acc, Vi- DL Point

bration
Zhang et al. | Exp BP N/A Static, N/A DB, Local N/A Sub-component
(2022) [30] Fatigue Crack,

DL
Castro et al. | Exp SG N/A Fatigue Uni, Multi | Fatigue local 14.3m Full
(2022) [26] Deg
Su et al. (2023) | Exp SG, Acc N/A Static, N/A N/A Local, 0.7m Full
[27] Fatigue Global
Hughes and | Exp, SG BSTRAIN Fatigue Uni, Bi N/A Point 12m Small
Stensland (1999) | Num Software
[58]
Lee et al. (2015) | Exp, SG N/A Fatigue Bi DL Global 56m Full
[38] Num
Haselbach  and | Exp, DWDT, HAWC2 Fatigue Uni DB Point, 34m Full
Branner (2016) | Num FBG, SP Local
[39], Haselbach
et al. [40]
Lahuerta et al. | Exp, SG N/A Static, Uni DB, Local 24m Sub-component
(2018) [41] Num Fatigue Buck
Liu et al. (2019) | Num Piezo OpenFast, Fatigue N/A N/A Global 61.5m Full
[42] material ANSYS
Tarfaoui et al. | Num N/A N/A Static, N/A N/A Global 50m Full
(2019) [43] Fatigue
Bos et al. (2020) | Num N/A Quadrature Fatigue N/A N/A Global 61.5m Full
[44] Technique
Liu et al. (2020) | Num N/A Cos/ Sin | Fatigue N/A Stiff Global 68.6m Full
[45] Trignometric Deg
Term
Castro et al. | Num N/A N/A Static, Uni, Multi Fatigue Local 14.3m Full
(2021) [47] Fatigue Deg
Avendano- Num N/A DEL Fatigue N/A N/A Local 61.5m Full
Valencia et al.
(2021) [48]
Shaler et al. | Num N/A N/A Fatigue N/A N/A Global 61.5m Full
(2021) [50]
Zhang et al. | Num N/A GPM Fatigue N/A N/A Global 61.5m Full
(2021) [37]
Hu et al. (2021) | Num N/A Abaqus Fatigue N/A Fatigue Global 100m Sub-component
[51] Deg,
Erosion
Moraras et al. | Exp, SG N/A Fatigue Uni N/A Local 1.75m Full, Sub-
(2022) [52] Num component
Zhang et al. | Num N/A RDT-SSI Fatigue N/A N/A Local 60 cm Small
(2022) [53] Method
Simon et al. | Exp Radar N/A Fatigue Uni Crack Local, 31m Full
(2023) [28] Sensor Global
These aerial vehicles capture detailed images and data, safe distance. Advanced sensors on drones, such as infrared

allowing comprehensive analysis of blade conditions from a thermography and Light Detection And Ranging (LiDAR),
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TABLE 3. List of acronyms used in Table 2.

Acronym | Full Term
ACC Accelerometer
AE Acoustic Emission
Buck Buckling
BP BuckyPaper
DB Adhesive Joint Debond
Deg Degradation
DEL Damage Equivalent Load
DL Delamination
DWDT Draw-Wire Displacement Transducer
Exp Experimentnal

FBG Fiber Bragg Grating

HAWC2 | Horizontal Axis Wind turbine simulation Code 2nd generation
Multi Multiaxial loading
Num Numerical
SG Strain Gauge
SP Stereophotogrammetry.
Uni Uniaxial loading

enhance their capability to detect subtle and hidden
defects.

In parallel, physical sensor technologies installed directly
on the turbine blades or components provide real-time data on
the structural integrity and performance of the wind turbines.
Strain gauges, accelerometers, and emerging technologies
such as fiber Bragg Grating (FBG) sensors and piezoelectric
sensors for the detection of acoustic emission are crucial in
this domain.

Despite these advances, there remain challenges in inte-
grating these technologies into a cohesive system that can
provide accurate and reliable data under diverse environmen-
tal conditions. Developing intelligent algorithms capable of
automatically analyzing sensor data and identifying defects
with high accuracy is essential for the future of autonomous
wind turbine monitoring. The continuous evolution of these
technologies promises to enhance the efficiency and safety
of wind turbine operations, making renewable energy more
reliable and sustainable.

A. STRAIN DETECTION
Strain Monitoring of WTBs is an established and
cost-effective technology used to monitor blade deformation
under operational conditions. When blades are subjected to
external forces, they tend to deform. Exceeding historical
deformation thresholds at any local position on the blade can
indicate potential damage. Strain sensors, which are adept at
detecting minor changes in blade deformation, are crucial to
monitoring blade fatigue, stress concentrations, and damage.

Two primary types of strain monitoring sensors are
deployed for WTBs: resistance strain gauges and Fiber Bragg
Grating (FBG) sensors. Resistance strain gauges consist
of a thin metal foil patterned on a plastic film base. The
deformation of the blade translates into this gauge, altering
the electric resistance, which is then measured and converted
into strain values for effective monitoring.

Strain measurements, using physical sensors either affixed
to or embedded within the WTB’s surface, are essential for
gauging deformation, whether tension or compression. This
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method enables continuous local strain monitoring, though
accurate sensor placement is critical for reliable detection.
Typically, multiple sensors are placed near critical areas to
increase sensitivity. Electrical strain gauges, based on the
principle of changing electrical parameters, come in various
types, including resistance, capacitance, inductance, and
semiconductor technologies [59]. For smaller WTBs, systems
that use modal analysis, wireless networks, and strain gauge
sensors have been developed for deflection monitoring [19].
Traditional strain gauges, when properly installed, offer a
cost-effective means of detecting discontinuities in WTBs,
providing favorable frequency responses and a wide measure-
ment range. However, they have limitations in pinpointing
damage accurately due to their distance from the affected
area and are susceptible to environmental interference,
especially temperature fluctuations. These sensors also limit
the surface area available for strain measurement and are
not particularly robust for prolonged installations. Figure 7
illustrates a strain gauge sensor placed on a cantilever
beam [60].

FBG sensors, made of Bragg grating glass fibers, are
highly sensitive to changes in strain or stress concentrations
in the blade. Embedded in the blade structure, alterations in
the blade’s state due to strain or stress result in changes in the
optical characteristics of the sensor, enabling precise damage
monitoring with minimal signal attenuation or change. The
sensitivity and precision of this method make it invaluable for
the detection and monitoring of preventive damage to WTBs,
as shown in Figure 8.

Originally used in telecommunications, optical fiber
sensors are resilient against electromagnetic and radio
interference and have inherent immunity to lightning strikes,
common in WTB environments. They are also cost-effective
and lightweight. These sensors are categorized into intensity-
based sensors, phase-modulated sensors (interferometers),
and wavelength-based sensors. FBG and optical fiber
microbend displacement sensors are employed to detect
damage in WTBs. Optical fiber sensors function by exploit-
ing changes in light transmission properties within the
fiber as the blade experiences strain or deformation. These
alterations are precisely measured to detect stress, damage,
or structural integrity, providing critical feedback for turbine
performance and safety. Research in this area includes the
work of Tian et al. [62], who developed a non-baseline
damage detection method based on FBG in a WTB. Sierra-
Perez et al. [63] identified nonlinear damage in a 13.5-meter
blade using strain measurements and a pattern recognition
technique. Wen et al. [64] investigated the feasibility of
detecting damage in floating wind turbines using FBG
sensors and a Fiber Optical Rotary Joint (FORJ) in wave basin
tests, suggesting that FBG sensors consistently delivered
reliable responses.

B. ACOUSTIC EMISSION DETECTION
Acoustic emission is a passive online detection method that
uses sensors to collect transient elastic waves emitted from
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the blade structure and materials. These waves can be caused
by blade damage such as defects in a composite material,
including matrix microcracking, fiber-matrix debonding,
localized delamination, fiber pull-out, and breakage. Unlike
other NDT techniques, acoustic emission stands out due to
two key characteristics: (1) The signal’s source, namely the
“sound” produced by the released energy within an object,
and (2) Its sensitivity to dynamic processes within a material,
allowing detection in both static and evolving defects [65].
Acoustic emission detection is very sensitive and can detect
waves much smaller than normal sound. Sensor data can
be used to extract damage-related information such as rise
time, duration, counting, energy, peak amplitude, and peak
frequency as shown in Figure 9. This information can be used
to monitor blade damage events, such as fatigue, stiffness, and
cracks in turbine blades. At Sandia National Laboratories,
two NDT techniques, namely acoustic emission and coherent
optical, have been employed [66]. The acoustic emission
technique monitors the sound energy generated by the loaded
blade, while the coherent optical method is utilized as well.
Experimental results indicate that both techniques effectively
locate and monitor high-damage regions and flaws within
the blade structure. Jungert [67] investigated two distinct
acoustic techniques for the detection of damage in WTBs.
The impulse-echo method is employed to detect regions of
the blade that are either missing or in contact with each other,
from the outer surface of the blade.
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C. VISUAL INSPECTION USING RGB CAMERAS
Wind turbines play a crucial role in the global shift toward
renewable energy, highlighting the need for effective main-
tenance strategies. Among the various methods employed,
visual inspection of WTBs using RGB cameras stands out
for its efficacy and technological advancement. This section
examines the evolution of WTB visual inspection methodolo-
gies, highlighting the integration of cutting-edge technologies
and innovative approaches. Exploration includes data-driven
frameworks, advanced deep learning techniques, and the
utilization of drones equipped with RGB cameras for
high-resolution imaging. The focus extends to pioneering
techniques in Convolutional Neural Networks (CNNs) for
precise crack detection and the adoption of models such
as You Only Look Once (YOLO) for improved defect
identification. Furthermore, it examines the efficacy of
various CNN architectures and anomaly detection methods in
identifying surface damage on WTBs. The collective findings
and developments discussed in this section underscore the
significance of refined and automated visual inspection
processes, which are crucial for the maintenance and
long-term sustainability of wind energy infrastructure.
Wang and Zhang [69] focused on a novel approach to
detect cracks in WTBs using drone-captured images, with
a particular emphasis on the utilization of extended Haar-
like features. This advanced feature set, a key element of
their data-driven framework, significantly enhances crack
detection capabilities. The extended Haar-like features,
depicted in Figure 10, offer a more comprehensive and
effective representation of the pattern compared to the
original Haar-like features, as shown in parts (a) and (b) of
Figure 10, respectively. These extended features achieve a
higher detection rate (DR) of 97.1% and a notably lower false
alarm rate (FR) of 1%, surpassing the original feature set’s
80% DR and 5% FR. Integrated into an extended cascading
classifier [70], these features outperform those derived from
a LogitBoost-based classifier [71] in terms of DR, FR, and
training efficiency. The effectiveness of this framework is
corroborated through testing with drone-acquired images
from a commercial wind farm, demonstrating its potential for
real-time or near real-time applications.
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FIGURE 9. Acoustic emission technique (a) Structure of AE sensor (b) Damage identifying using AE sensor [68].

Moreno et al. [72] investigated the effectiveness of deep
learning, particularly using a CNN, to improve image
classification. The CNN is tailored for classifying various
types of damage in WTBs from drone-captured images.
This architecture includes convolutional layers, batch nor-
malization, Rectified Linear Unit (ReLU) activation, and
max pooling, culminating in a fully-connected and softmax
classification layer. The model demonstrates high accuracy
(92%) in classifying 10,000 images across 10 classes, sur-
passing other techniques. Its real-time damage identification
capability, such as detecting lightning impact and wear,
significantly advances wind turbine maintenance efficiency.
However, the model’s performance dips in low-light con-
ditions, indicating a need for future enhancements in such
scenarios.

Peng and Liu [73] presented a method to detect and
analyze cracks on large-scale WTB surfaces using images
captured by drones. The method involves image acquisition,
pre-processing, and analysis steps to enhance crack detection
accuracy and subsequently reduce operational costs. Tradi-
tional methods for monitoring WTBs are cumbersome and
costly. The proposed drone-based approach addresses these
challenges, leveraging real-time image transmission from a
camera-equipped quadrotor drone. They utilized a quadrotor
drone, shown in Figure 11, equipped with a camera for
real-time image capture. Pre-processing techniques, includ-
ing Wiener filtering [74], adaptive median filtering [75], and
mathematical morphology [76], are applied to improve image
clarity and emphasize crack details. The focus of the method
is on analyzing grayscale values of crack images to study
crack distribution, severity, and development trends. The
advantages of using aerial images include improved worker
safety, increased inspection efficiency, reduced blind areas
in detection, and avoidance of interference from sensors.
The proposed method outperforms traditional techniques
by incorporating image restoration and noise reduction
techniques [77], using mathematical algorithms to enhance
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image quality, and utilizing grayscale analysis [78] to provide
valuable information for maintenance decisions.

Wang et al. [79] introduced a two-stage data-driven
approach to detect cracks on WTBs using image analysis.
The approach involves identifying crack locations and
contours. Figure 12 illustrates this process, showcasing (a)
the identified crack locations and (b) the detailed crack
contours. The crack location is achieved through a parallel
sliding window method and an extended cascading classifier.
Crack contour detection employs a parallel Jaya K-means
algorithm to segment crack windows and pinpoint crack
contours [80]. The article emphasizes the importance of
monitoring WTB health for efficient wind farm operation
and discusses challenges related to inspecting blades using
drones. The effectiveness of the proposed approach is
validated through drone-taken images from a commercial
wind farm. Challenges in inspecting WTBs using drones
include handling image analysis, object detection, crack
identification, broad area coverage, and safety concerns.
The two-stage approach involves a parallel sliding window
method and an extended cascading classifier for crack
location, followed by a parallel Jaya K-means algorithm for
accurate crack contour detection. The benefits of using the
parallel Jaya K-means algorithm include efficient parallel
processing, improved accuracy in segmenting cracks, precise
boundary identification for contour extraction, and better
computational performance on both high-end PCs and
embedded devices such as Raspberry Pi.

Denhof et al. [81] discussed the utilization of CNNs for
automating the optical surface inspection of wind turbine
rotor blades. The challenges in this inspection process are
highlighted, including environmental stress, effort, costs, and
manual inspection limitations. The need for automation to
enhance efficiency and reduce costs is emphasized. The
approach involves capturing image data of rotor blades
from multiple angles using a Digital Single-Lens Reflex
(DSLR) camera and training CNN models using pre-trained
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FIGURE 10. Two Haar-like feature sets; original Haar-like features and
Extended Haar-like features [69].

FIGURE 11. Image of the drone quadrotor [73].

architectures including ResNet50 [82], DenseNet201 [83],
Xception [84], and VGG19. These models learn to detect
defects in the rotor blade surface and eliminate the need for
manual inspection. Factors influencing model selection and
hyperparameter tuning are outlined, considering hardware
capabilities, training data amount, and pre-trained model
performance. The article evaluates the performance of these
nine common pre-trained CNN models using a 5-fold
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cross-validation scheme [85]. The top-performing model,
ResNet50, achieved median accuracies of 97.4% and 93.8%
for 8024 and 1604 samples, respectively. DenseNet169 and
DenseNet201 also performed well. VGG16 demonstrated a
median accuracy of 97.0%. While other models had slightly
lower median accuracies, ResNet50 stood out due to its
balanced trade-off between classification performance and
runtime.

Qiu et al. [86] introduced the YOLO-based Small Object
Detection Approach (YSODA) for automatically inspecting
visual defects in WTBs. YSODA, integrating a CNN with
YOLO model, specifically targets small defects such as
cracks, oil pollution, and sand inclusion. The system, utilizing
YOLO-V3 architecture and a multiscale feature pyramid,
achieves a notable detection accuracy of 91.3% for these
defects. Validated with 23,807 labeled images, YSODA
demonstrated superior accuracy and robustness compared
to existing methods, offering improved detection, real-time
capability, adaptability, and overfitting prevention.

The bounding box decision process is depicted in
Figure 13, illustrating the stages of original image presenta-
tion, division into a 13 x 13 grid, and defect detection results.
This process highlights how the image segmentation leads to
precise defect identification.

YSODA’s effectiveness in detecting small-scale blade
damages is visually exemplified in Figure 14, where compar-
isons between the original image, YOLO-v3, and YSODA
results underline YSODA’s superior damage detection capa-
bilities.

Guo et al. [87] presented a vision-based approach for WTB
tip detection and positioning using drone-based automatic
inspection. The method employs Mask Region-based CNN
(Mask R-CNN) [88] for wind turbine structure detection and
shape constraints to accurately extract the pixel coordinates
of the blade tip. Mask R-CNN is a deep learning model
used for various computer vision tasks, particularly instance
segmentation, which involves not only identifying objects
in an image, but also precisely delineating their boundaries
by generating pixel-wise masks. This information is then
used to solve the Perspective-n-Point (PnP) problem [89] to
obtain GPS coordinates for blade tips, aiding path-planning
during inspections. The proposed approach is evaluated on a
Wind Turbine Detection (WTD) dataset, with Mask R-CNN
achieving the highest average precision of 0.989 and the
lowest average blade tip extraction error of 2.27 pixels among
tested network architectures, including Cascade R-CNN,
Faster R-CNN, and RetinaNet. The results highlight the
effectiveness of the method for blade tip detection, with
potential benefits for reducing maintenance costs, improving
power generation efficiency, and enhancing safety in wind
turbine operations.

Figure 15 compares the performance between Horizontal
Bounding Box (HBB) and Rotation Bounding Box (RBB)
methods for detecting blade tips in wind turbine images. The
comparison highlights the advantages of using RBB over
HBB, particularly in capturing the shape and orientation of
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FIGURE 12. Crack contour detection results [79].

FIGURE 13. The bounding box decision process for an input image [86].

the blades more accurately. This is crucial due to the rotation
characteristics of the blades, which makes HBB less effective
in representing their actual shape and position. The figure
visually demonstrates how RBB better fits the blade shape,
enhancing detection accuracy.

Reddy et al. [90] utilized a dataset comprising WTB
images captured by drones. The original images had
dimensions of 3264 x 2448 pixels, but for efficient CNN
model training, they were sliced into 16 smaller sections,
each of 544 x 408 pixels. For binary classification, the
dataset included 675 damaged images labeled as faulty
data and 1,000 images categorized as non-faulty data. For
multiple class classification, images were sorted based on
the type of damage. Data augmentation was implemented
using parameters such as shearing, zoom, and horizontal
flip via Keras’s ImageDataGenerator module [91]. The
CNN models consisted of three convolutional layers, with
parameters defined for filters, input image size, activation
units, and max pooling size. The binary classification model
underwent training for 200 epochs. Outcomes showed a
binary classification accuracy of 94.94% over 200 epochs
and a multiple class classification accuracy of 90.6% over
150 epochs. The evaluation tools included accuracy and loss
curves along with a confusion matrix.
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Figure 16 showcases different types of detection using
a sliding window technique for WTB Structural Health
Monitoring (SHM). The sub-figures are described as
follows:

o Figure 16 (a) Detection of Side Erosion by Window:
Highlights the detection of side erosion on a WTB using
a sliding window approach. The window slides across
the image, identifying regions with side erosion.

o Figure 16 (b) Detection of Tip Open by Window:
[lustrates the detection of a tip open condition on a
WTB using the sliding window technique. The window
moves across the image, marking areas where the tip of
the blade is open or damaged.

o Figure 16 (c) Mechanical Damage Detection: Demon-
strates the detection of mechanical damage on a
WTB using the sliding window method. The window
scans the image, pinpointing sections showing signs of
mechanical damage.

o Figure 16 (d) WTB Tube Crack Detection: Depicts the
detection of cracks in the WTB tube using the sliding
window technique. The window traverses the image,
identifying regions with cracks in the WTB tube.

« Figure 16 (e) Blade Crack Detection by Sliding Window:
Showcases the detection of cracks on a WTB using the
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FIGURE 14. Showcasing small damages on blades detected by YOLO-v3 and YSODA [86].

FIGURE 15. The performance between HBB and RBB [87].

sliding window approach. The window scans the image,
identifying areas with blade cracks.

These images highlight the effectiveness of the sliding
window technique in identifying specific types of damage
on WTBs by systematically analyzing different areas of the
image.

Wang et al. [92] introduced an unsupervised anomaly
detection method for WTB images captured by drones. This
technique integrates the One-Class Support Vector Machine
(OCSVM) with deep features from a generic image dataset.
The images are subsampled and undergo feature extraction
using the VGG-16 model, after which they are dimensionally
compressed with Principle Component Analysis (PCA) [93]
depicted in Figure 17.

VGG stands for Visual Geometry Group designed by
a research group at the University of Oxford that made
significant contributions to the field of computer vision,
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particularly in the development of deep CNNs for image
classification and object recognition.

Experiments demonstrate that deep features, specifically
those from the lower layers of the network, excel in
spotting anomalies in the blade images. The drone-captured
images were tested using different features: Convolutional
Autoencoder (CAE), Histogram of Oriented Gradients
(HOG) [94], and VGG-16 layers combined with PCA.
Performance metrics reveal that the VGG16 layerl + PCA
achieved the highest precision (0.630), recall (0.496), and F1
score (0.555). Despite its efficiency, the method sometimes
misclassifies dirt and stains as anomalies. The research
concludes that using OCSVM with deep features effectively
detects anomalies in blade images, suggesting potential for
combining this approach with supervised learning in future
studies.

Shihavuddin et al. [95] focused on a deep learning-based
automated method for detecting surface damages on WTBs
using drone inspection images to reduce human intervention
and enhance accuracy in damage detection. It employs
various CNN architectures along with augmentation tech-
niques including regular, pyramid, and patching [96] to
enhance training sample variability. Mean Average Precision
(mAP) [97] was used for performance evaluation, and
results indicate that the combination of deeper architectures
and augmentations produces higher mAP percentages. The
proposed system achieves a precision of 81.10%, nearly
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(b) Detection of tip open by window

(c) Mechanical damage detection (d) WTB crack detection.

(e) Blade crack detection

FIGURE 16. Types of detection [90].
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FIGURE 17. Unsupervised anomaly detection with compact deep features [92].
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matching human-level precision, while reducing processing
time and improving accuracy compared to manual analysis.
Continuous learning with human corrections is emphasized
for further accuracy enhancement. The study demonstrated
the effectiveness of the automated method for cost-efficient
and accurate WTB damage detection. The automated damage
suggestion system is depicted in Figure 18, which utilizes
drone inspection images and augmentation techniques to
enhance the training dataset. A deep learning model with
the Faster R-CNN object detection framework is trained
using these images to detect and classify damages. The
system suggests the presence and location of damages on new
inspection images, reducing the effort and time required for
human experts. The suggestions can be verified and refined
by experts, improving the trained model over time. Overall,
the system aims to enhance the efficiency and accuracy of
WTB inspection [95].

Yu et al. [98] introduced a novel approach for identifying
defects in WTBs using Defect Semantic Features (DSF) [99],
extracted with a DCNN [100]. DSF refers to the specific
features that characterize defects, and DCNN, a type of
artificial neural network, is adept at processing data with a
grid-like topology, such as images. The DCNN employed in
this study is trained on the ImageNet dataset [101], where it
functions as a transfer feature extractor. This methodology
aims to address current challenges in the field, notably the
scarcity of labeled defect images and significant variations
in blade defects. These issues are inadequately addressed by
traditional methods such as Histograms of Oriented Gradients
(HOG) [94], Scale-Invariant Feature Transform (SIFT) [102],
Tamura Texture [103], and Local Binary Patterns (LBP)
[104]. Experiments conducted on a dataset comprising
73 defective and 98 normal WTB images demonstrated
the superior performance of this approach, especially for
configurations named DSF-LC and DSF-PC, which achieved
an impressive accuracy rate of 99.17%. In contrast, the
DSF-RC configuration showed a lower accuracy rate of 25%,
underscoring the effectiveness of specific configurations in
the proposed method for defect identification.

Yang et al. [105] explored the application of deep learning
algorithms, specifically ResNet50 [82] and AlexNet [106],
in identifying surface damage on WTBs using drone-based
machine vision. The architectures of these models are
illustrated in Figure 19, with AlexNet depicted in Figure 19
(a) and ResNet50 in Figure 19 (b). The study utilized
a dataset comprising images from 20 types of WTBs,
classifying them into five categories: normal class, crack
damage, sand-hole damage, mix-damage, and Background
Class. In terms of performance, ResNet50 outperformed
AlexNet, achieving a classification accuracy of 95.58% as
opposed to 94.19% by AlexNet. The research underscored
the advantages of employing drone-based machine vision for
this purpose, noting improvements in accessibility, efficiency,
image resolution, and safety compared to conventional
manual inspection methods.
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Mao et al. [107] introduced CAD Cascade R-CNN [108],
a specialized model for detecting surface defects on WTBs.
The model builds on Cascade R-CNN and incorporates
techniques such as transfer learning [109], deformable
convolution [110], and deformable Region of Interest (Rol)
align for enhanced performance. ResNet-101 serves as the
feature extraction backbone, and an improved bisecting
k-means algorithm is used for reducing false positives.
Performance is evaluated using mean Average Precision
(mAP), with the model achieving a peak mAP of 92.1%. The
dataset comprises over 3000 images and videos captured from
different wind fields in China using an M200 drone equipped
with a Z30 PTZ camera (Figure 20). The model outperforms
existing approaches such as Faster R-CNN [111] and Mask
R-CNN, setting the stage for future work in extending its
capabilities to other defect types (Figure 21).

Guo et al [112] presented a hierarchical framework
for WTB damage identification that combines Haar-
AdaBoost [113] for region proposal and a DCNN for
classification. Tested on a dataset of 725 blade images from
Chinese wind farms, the model achieved an accuracy of
97%, outperforming VGG16 at 91% and the best-performing
SVM [114] model at 88%. It also excelled in recall rates,
ranging from 87% to 93% for different types of defects. The
framework not only showed superior performance but also
proved to be more computationally efficient compared to
existing methods such as SVM and VGG16.

Deng et al. [115] introduced an innovative defect detection
method for WTBs using digital image processing. This
method combines an improved Particle Swarm Optimization
(PSO) algorithm [116] called Lévy-based [117] Particle
Swarm Optimization (LPSO) with Log-Gabor filter [118] for
feature extraction. Lévy flight is a pattern of movement where
particles take occasional big jumps instead of small steps,
helping them explore new areas efficiently. In optimization,
a Lévy flight strategy is used to improve algorithms such as
Particle Swarm Optimization (PSO). It helps particles avoid
getting stuck in local solutions by making occasional long
jumps, leading to better solutions for complex problems.
The Log-Gabor filter enhances edge detection using multiple
templates, and the LPSO algorithm optimizes its parameters
to prevent local optima. By employing HOG [94] 4 Support
Vector Machine (SVM) [114] for classification, the approach
successfully identifies scratch, crack, sand-hole, and spot
defects with a recognition rate exceeding 92%. The proposed
technique addresses the limitations of traditional methods
and contributes to safer and more efficient wind power
generation.

Figure 22 presents a comparison between two adaptive
feature extraction algorithms. In subfigure (a), the output
image is based on the PSO algorithm, while in subfigure (b),
the output image is based on the Improved Adaptive LPSO
algorithm.

Zhang et al. [119] evaluated the effectiveness of deep
learning models YOLOv3, YOLOv4 and Mask R-CNN
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FIGURE 18. Flowchart of the proposed automated damage suggestion system VG and Vortex Generator [95].

for detecting and classifying defects in WTBs with new
performance metrics such as Prediction Box Accuracy,
Recognition Rate, and False Label Rate. The dataset from
an industrial partner, Railston & Co. Ltd. [120], contains
WTB inspection images and is augmented into three versions
(DO, D1, D2, D3) using techniques such as rotation and
grayscale. Mask R-CNN achieved the highest mean Weighted
Average (mWA) [121] of 86.74%, outperforming YOLOV3 at
70.08% and YOLOV4 at 78.28%. The paper also proposes a
new pipeline, Image Enhanced Mask R-CNN (IE-Mask R-
CNN), achieving comparable performance to Mask R-CNN.
Traditional metrics such as precision, recall, F1 score and
mAP@IoU were also used for evaluation.

Figure 23 illustrates two types of bounding boxes: the
manually labeled defect is encompassed within the yellow
box, while the black box depicts a bounding box as predicted
by the detection model. The Bounding Box Accuracy (BBA)
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metric is employed to quantify the discrepancy between
these two bounding boxes by calculating the area of overlap
between them. In instances where there is no overlap, the
BBA value is rendered as zero.

Yang et al. [122] introduced a sophisticated deep learning
model for detecting WTB damage using advanced method-
ologies like Otsu threshold segmentation [123] and drone
imagery. They evaluated several models, including traditional
SVM [114] and AlexNet [106], with SVM achieving 82.93%
accuracy, and AlexNet 91.06%. The enhanced AlexNet-tl,
incorporating transfer learning [124], improved accuracy to
94.67%, while AlexNet-rf, integrating a random forest clas-
sifier, reached 94.80% accuracy. The most effective model,
AlexNet-tl-rf, combining AlexNet with transfer learning and
a random forest classifier, achieved remarkable metrics:
98.49% accuracy, 94.60% sensitivity, and 0.9849 specificity,
establishing it as the superior tool for WTB defect detection.
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FIGURE 19. Deep learning architectures used in drone machine vision for WTB inspection [105].

FIGURE 20. M200 drone with an onboard Z30 PTZ camera [107].

Figure 24 illustrates the structure of the proposed model
for blade defect recognition, highlighting its multi-layered
architecture and the integration of transfer learning and
random forest classification for enhanced accuracy.

Sarkar and Gunturi [125] proposed a hybrid object
detection system to monitor and assess the health of WTBs.
Utilizing YOLOV3 deep learning model, the system captures
and analyzes images from surveillance drones, aiming
to diagnose the condition of these blades. To augment
detection accuracy, the system employs a Super-Resolution
CNN (SRCNN) to upgrade low-resolution images to higher
resolutions. In experimental comparisons, YOLOv3 demon-
strated remarkable performance. When compared with Faster
R-CNN [111] and YOLOvV2 models, YOLOv3 showcased
increasing superiority in average accuracy as iteration
numbers grew. For instance, after 5000 iterations, Faster
R-CNN had an accuracy of 95%, YOLOvV2 reached 93.59%,
while YOLOv3 achieved the same 93.59%, but with a
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distinct advantage in prior iterations. In terms of efficiency,
YOLOV3 was trained in 90 minutes and processed images
in an average of 0.20 s, outpacing the other models. Faster
R-CNN, in contrast, took 220 minutes for training and 0.652 s
for image processing, while YOLOvV2’s metrics stood at
120 minutes and 0.522 s, respectively. Finally, with regard
to precision, YOLOV3 recorded the highest mean average
precision at 0.96, compared to 0.87 for Faster R-CNN and
0.90 for YOLOV2. This accentuates YOLOvV3’s heightened
accuracy and reliability in detecting damages on WTBs.
Figure 25 elucidates the Non-Maximum Suppression
(NMS) process. Figure 25 (a) displays the image post-
NMS application, showcasing refined detection results, while
Figure 25 (b) presents the pre-NMS image, illustrating the
initial detection phase. The clarity of input images is pivotal
for accurate defect detection, as depicted in Figure 26, which
contrasts a blurry image against a clear one, underscoring the
significance of image quality. Lastly, Figure 27 details the
architecture of the YOLOv3 model, which is instrumental in
the system for robust and efficient defect identification.
Ranet al. [126] introduced Attention and Feature Balanced
YOLO (AFB-YOLO) algorithm, an enhancement of the
popular YOLO object detection approach, tailored for the
real-time detection of minor defects in WTBs. Derived from
the YOLOv5s model, AFB-YOLO integrates an advanced
feature pyramid network with elements such as weighted
feature fusion and cross-scale connections. It also intro-
duces a coordinate attention module for superior object
representation and an Efficient Intersection over Union
(EIoU) loss function for improved localization. Experimental
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outcomes indicate AFB-YOLO’s superiority over traditional
models in terms of detection accuracy and robustness.
When compared to YOLOV3, its detection accuracy metrics
such as Recall, F1-Score, and mAP50 rose by 24.1%,
13.8%, and 10.7% respectively. Furthermore, AFB-YOLO
exhibited faster detection speeds than the two-stage Faster
R-CNN [111] algorithm while retaining similar accuracy.

Figure 28 (a) shows the Faster R-CNN algorithm, which is
known for its accuracy but slower detection speeds. Figure 28
(b) illustrates the SSD model, another important baseline in
object detection. Finally, 28 (c) depicts YOLOVS, a direct
predecessor and inspiration for the AFB-YOLO algorithm.
These figures exemplify the evolution and comparison
of various object detection models, contextualizing the
improvements brought by AFB-YOLO.

Zou et al. [127] emphasized the importance of detecting
damages in WTBs to prevent accidents and economic
losses. A novel model, CBNLM-BLS, is introduced that
combines chunking and Non-Local Means (NLMs) [128] to
enhance the Broad Learning System (BLS) [129], making
it more computationally efficient. In comparison tests with
deep learning models such as ResNet [82], VGGI19, and
AlexNet [106], the CBNLM-BLS achieved the highest
classification accuracy of 99.71% in detecting defects on
WTBs and had a computation time of 28.662 s. This
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research utilized a dataset of 741 images of WTBs, with
556 used for training and 185 for testing. Variations of
the CBNLM-BLS model, adjusting parameters N1, N2, and
N3, were also evaluated, achieving accuracy rates as high
as 99.81% with computation times ranging from 14.078 to
41.752 s. In their innovative work, Zou et al. [127] developed
the CBNLM-BLS model to detect damages in WTBs.
The model’s efficacy is visually demonstrated through pre-
and post-processing images. Figure 29 shows the dramatic
improvement in image clarity: Figure 29 (a) presents the
initial image before applying CBNLM, while Figure 29 (b)
shows the enhanced visibility after CBNLM processing.
Zhu et al. [130] explored defect detection in WTBs using
advanced deep learning techniques, specifically proposing a
multi-feature fusion residual network combined with transfer
learning. To train the models, a dataset of WTB images
showcasing various defects was collected using drones. This
data set was enhanced and adjusted for input into a deep con-
volutional network. The novel algorithm merges ResNet [82]
and Inception structures, integrates feature fusion layers,
and employs transfer learning with weights from the Pascal
VOC dataset. A comparison among several models, including
variants of AlexNet, VGG, GoogLeNet [131], and ResNet
variants, revealed the proposed network’s superior accuracy
and speed. GPU performance tests on models underscored the
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FIGURE 22. Comparison of two adaptive feature extraction
algorithms [115].

FIGURE 23. Bounding box accuracy [119].

efficiency of transfer learning; for instance, the iteration time
for AlexNet on RTX2080 reduced from 51.8 s to 33.3 s with
transfer learning. Furthermore, F-1 scores, a performance
metric, for various defect types such as erosion and oil stain
generally improved with the inclusion of transfer learning,
emphasizing its value in this application.

Yu et al. [132] discussed the DMnet framework, a novel
approach to detecting wind turbine surface defects. The
authors did not explicitly define what the letters D and M in
DMnet stand for. However, it can be inferred from the context
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FIGURE 24. Structure of the proposed deep learning model with transfer
learning and an ensemble learning classifier [122].

that D might refer to Dynamic, as the framework involves a
dynamic activation mapping strategy, and M might refer to
Meta-learning, as the framework is inspired by meta-learning
ideology. This framework seeks to address the shortcomings
of current defect detection methods, with enhanced precision
for smaller, concealed defects. DMnet incorporates meta-
learning [133] principles, utilizing a cross-task training
strategy that reduces the need for extensive training data,
a depth metric-based classification system that uses cosine
distance for effective sample matching, and a dynamic acti-
vation mapping strategy to heighten task-specific information
while filtering out redundancies. Comparative testing reveals
DMnet’s superiority over traditional machine learning and
deep learning algorithms. In terms of performance metrics,
DMnet achieved an accuracy of 80.41%, precision of 78.80%,
recall of 75.70%, and an F1-Score of 76.83%. Ablation
experiments confirmed the efficacy of the framework’s
components, as each contributed to its improved perfor-
mance. The DMnet framework has demonstrated versatility,
as it performs consistently across different deep learning
models.
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(a) After non-maximum suppression

(b) Before non-maximum suppression
FIGURE 25. Non-maximum suppression process [125].

Figure 30 illustrates examples of defect visualization in the
DMnet framework. The framework is capable of accurately
identifying and visualizing different types of defects, such
as cracks, coating breakage, and corrosion, in aerial images
of wind turbine surfaces. The visualization demonstrates
the effectiveness of the DMnet in pinpointing even small
target defects in challenging situations. This highlights the
framework’s ability to enhance defect detection and aid in the
inspection and maintenance of wind turbines.

Foster et al. [134] introduced a novel dataset for wind tur-
bine surface damage detection and evaluates the performance
of CNNs models, particularly ResNet-101 Faster R-CNN
and YOLOVS, in this task. Offshore wind turbine inspection,
a traditionally expensive and high-risk operation, can benefit
from computer vision techniques, offering reductions in
human exposure and costs. While YOLOvV5 outperforms
ResNet-101 Faster R-CNN in predicting bounding box
coordinates, the latter estimates damage more holistically.
Performance metrics reveal that YOLOvV5S has the highest
mAP@Q.5 of 0.5121, but ResNet-101 Faster R-CNN excels
in densely packed bounding boxes scenarios. The study
underscores the potential of these models for Al-driven
or autonomous inspections of active turbines and suggests
future exploration into segmentation techniques and image
enhancement.

Lv et al. [135] introduced a novel method for efficient
and precise WTB damage detection using the Single Shot
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(a) Blurry image

(b) Non-Blurry image
FIGURE 26. Examples of blurry images [125].

MultiBox Detector (SSD) framework with an enhanced
ResNet backbone. This method leverages dense connection
blocks, a bidirectional cross-scale feature pyramid, and
various techniques such as data pre-processing, exponential
moving average, and label smoothing to optimize damage
detection. When compared with seven advanced models, the
proposed method Efficient, and Accurate Damage Detector
(EADD), outperforms in terms of detection accuracy and
computation time, boasting an mAP of 81.2%, an Frames
Per Second (FPS) of 56, 8.3 million parameters, and
12.8 billion Floating-Point Operations Per Second (FLOPS).
This approach exhibits promising potential, particularly
when considering the rapid growth of wind power and the
imperative need for advanced damage detection mechanisms
in WTBs.

Figure 31 illustrates the framework of the proposed method
for WTB damage detection. The method is based on the
SSD structure. However, it introduces an improved version
of ResNet, which includes dense connections and lightweight
bottlenecks, as the backbone of the network. The feature
maps extracted by the backbone network are then aggregated
through the neck component. The neck takes multiple
feature maps, denoted as Dn(n = 1,2,3,4,5), as input.
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FIGURE 27. YOLOv3 Architecture [125].

Additionally, two feature maps extracted by Conv4(D1) and
Conv5(D2) layers are also utilized as inputs for the neck. The
aggregated feature maps are then passed to the detection head,
represented by the green rectangle box. The detection head
consists of two convolutional layers: a 3 x 3 Conv layer and
a 1 x 1 Conv layer. These layers generate outputs of shape
N x (C + 4), where N is the number of anchor boxes in
each layer, C is the number of categories, and the four values
represent the predicted offsets of xywh (coordinates x and
y width and height). Overall, the framework combines the
strengths of SSD with the improved ResNet backbone, dense
connections, and lightweight bottlenecks to enable accurate
detection of WTB damage.

Figure 32 shows the damage detection results achieved by
the proposed method for WTB images. The detected damages
are annotated using colored bounding boxes. In Figure 32,
red boxes indicate instances of gelcoat peeling off. Gelcoat
peeling off refers to the separation of the outer protective layer
of the blade’s surface. It is commonly caused by erosion or
aging. Green boxes represent instances of surface cracking.
Surface cracking refers to the formation of cracks on the
surface of the blade. This can occur due to various factors
such as wind-induced vibrations or material fatigue. Black
boxes correspond to instances of surface corrosion. Surface
corrosion refers to the gradual deterioration of the surface
of the blade due to environmental factors such as moisture,
salt, or chemicals. By accurately identifying and highlighting
these different types of damages, the proposed method
demonstrates its effectiveness in detecting and localizing
various forms of damage on WTBs.

Zhang et al. [136] discussed a novel image recognition
method for detecting defects in WTBs utilizing attention-
based MobileNetvl YOLOv4 combined with transfer
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learning. This approach is designed to enhance detection
accuracy, response speed, and reduce computational com-
plexity.

Figure 33 illustrated the concept of depthwise separable
convolution, which is a fundamental operation used in
the MobileNetv1 neural network architecture. In traditional
convolutional operations, each input channel is convolved
with a set of filters, resulting in multiple output channels.
However, depthwise separable convolution decomposes this
process into two separate operations: depthwise convolution
and pointwise convolution. The depthwise convolution is
applied independently to each input channel using a separate
kernel for each channel. This operation produces a set
of intermediate feature maps, where each feature map
represents the convolved output of a single input channel.
This step reduces the computational cost by performing
spatial convolution on each channel individually. The
pointwise convolution is then employed to combine the
intermediate feature maps obtained from the depthwise
convolution. It applies a 1 x 1 kernel on each location
across all channels to compute a linear combination of the
intermediate feature maps. This step enables the network
to learn more complex representations by combining the
information captured from different channels. By separating
the convolution operation into depthwise and pointwise
convolutions, depthwise separable convolution significantly
reduces the number of parameters and computational cost
compared to traditional convolutions. This makes it partic-
ularly useful for lightweight and efficient networks, such as
MobileNetv1.

Figure 34 illustrates the structure of CBAM. The CBAM
aims to enhance the feature map by considering both
channel-wise and spatial-wise attention. In the channel
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FIGURE 28. Representative object detection algorithms [126].

attention module, the input feature map undergoes two sep-
arate operations: average-pooling and max-pooling. These
operations gather information about the spatial dimension
and retain background and texture information. The output
feature vectors from these operations are fed into a shared
Multi-Layer Perceptron (MLP). The MLP processes these
vectors to generate the channel attention feature map. The
channel attention is computed by applying the sigmoid
function o to the output feature vectors obtained from the
average-pooling and max-pooling operations. These vectors
are multiplied by weight matrices W0 and W1 and summed
element-wise to obtain the final channel attention feature

33264

map. This process allows the channel attention module to
adaptively learn relevant features and suppress irrelevant
ones. Overall, the channel attention module in Figure 34
emphasizes the importance of different channels in the input
feature map and enhances the feature representation for better
detection accuracy.

Xijaoxun et al. [138] introduced the Multivariate Informa-
tion YOLO (MI-YOLO) model designed for detecting cracks
in WTBs using deep learning techniques. The focus is on
improving the detection of subtle cracks to enhance wind
turbine efficiency. The MI-YOLO model synergizes feature
extraction capabilities from networks such as Mobilenetv3

VOLUME 12, 2024



M. Memari et al.: Review on the Advancements in WTB Inspection

IEEE Access

(b) After applying CBNLM

FIGURE 29. Comparison of images before and after CBNLM
processing [127].

FIGURE 30. Defect visualization [132].

[139] and Ghostnet [140]. Features such as the C3TR module
and Alpha-IOU are incorporated to better detect weak color
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Algorithm 1 Blurred Image Synthesis [137]

Require: Sharp image (Is), ROI mask Isroi, Central point
(ic, jc) of WTB, Additive noise N, Morphological struc-
turing element Se with size s, Angular velocity w, Linear
fusion factor «

Ensure: Blurred image (IB)

1: Idilate < Isroi ® Se

2: ledge < Idilate — Isroi © Se

3: Km <0

4: for each pixel (i, j) in Idilate do

5o (i, )) < 2tan(@/2) x 113, j) = Ges jo)lI?
6 (i, j) < arctan | =<

7: U(i,j) < s(i, j)cos( /2 — 6(i, j))

8: V(i,j) < s(i,j)sin(w /2 — 0(i, j))

o ifIUGH, VG DI < sx UG, )), Vi, j))?/2 then
10: Km(i, j) < SUsin@)tjcos)

. UGN, VENI

11: end if

12: end for

13: for each pixel (i, j) in Is do

14: if Isroi(i, j) then

15: Ib(i, j) < Km x Is(i,j) + N

16: else if /edge(i, j) then

17: Ib(i,j) < a(Kmx Is(i, )+ N)+ (1 —a) x Is(i, j)
18: else

19: Ib(i, j) < Is(i,))
20: end if
21: end for
22: return /B

cracks and balance precision-recall rates. Data enhancement
techniques, including slice transposition and crack pixel
reconstruction, expand the dataset to further the accuracy of
the model. Performance testing on drone images reveals MI-
YOLO’s superiority over YOLOVSs in mAP, precision, and
recall. Compared to other target detection algorithms, MI-
YOLO + Alpha-IOU exhibited the highest mAP of 93.2%,
a precision of 93.1%, and a recall of 92.2% against other
target detection algorithms.

Zhang et al. [141] introduced a new high-precision model,
SOD-YOLO, for detecting defects on WTB. Traditional
methods struggle to detect small and long strip defects on
WTB surfaces. SOD-YOLO overcomes these limitations by
integrating foreground segmentation [142], Hough trans-
form [143], a micro-scale detection layer, K-means [144]
re-clustering of anchor frames, CBAM attention mecha-
nism [145], and channel pruning. The method significantly
enhances detection accuracy and speed. Experimental results
indicate the SOD-YOLQ'’s average accuracy on the WTB
dataset is 95.1%, outpacing YOLOVS5 by 7.82%. The model
also boasts a 28.3% improvement in detection speed over the
mainstream models.

The YOLOVS model is a deep learning-based algorithm
used for object detection tasks. The model consists of several
components, including an input layer, a backbone network,
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FIGURE 35. Image pair acquisition setup [137].

a neck module, and a head output [141]. The input layer
takes in the image data that needs to be analyzed for object
detection. The backbone network is responsible for extracting
high-level features from the input images. These features
capture the visual patterns and characteristics of the objects
present in the image. The neck module further refines the
features extracted by the backbone network. It performs
additional operations such as feature fusion or upsampling
to enhance the representation of the image features. Finally,
the head output processes the refined features obtained from
the neck module and generates the final predictions. The
predictions include the bounding box coordinates and the
class labels of the detected objects. Overall, the main structure
of the YOLOVS model demonstrates the sequential flow of
information through the input layer, backbone network, neck
module, and head output to achieve accurate and efficient
object detection [141].

Figure 37 depicts the algorithm structure of SOD-YOLO,
which is an improved version of the YOLOvV5 model specif-
ically designed for WTB defect detection. The algorithm
incorporates several enhancements to improve the detection
of small targets and long strip defects in the WTB dataset.
The algorithm structure starts with the preprocessing of
WTB images using foreground segmentation and the Hough
transform techniques. This step helps extract the blade region
and adjust the image orientation for accurate defect labeling.
Next, the input images are passed through the improved
YOLOvVS model, consisting of several key components:
Micro-scale Detection Layer: A micro-scale detection layer
is introduced to the original YOLOVS architecture. This
layer aims to improve the detection of small targets and
enhance the recognition of long strip-shaped defects on
the surface of WTBs. Re-clustering of Anchor Boxes: The
K-means clustering algorithm is employed to re-cluster the
anchor boxes used in the detection process. By recalculating
the cluster centers, the model can better adapt to the
characteristics of the WTB dataset and improve the accuracy
of defect detection [141]. CBAM Attention Mechanism:
The algorithm integrates the Convolutional Block Attention
Module (CBAM) mechanism into each feature fusion layer.
CBAM helps to emphasize important features related to blade
defects and suppress irrelevant background information,
enabling more accurate detection in complex backgrounds.
The algorithm also includes additional steps for channel
pruning, which reduce the computational complexity of the

VOLUME 12, 2024

model and improve the detection speed. In general, the
structure of the SOD-YOLO algorithm showcases the various
improvements made to the YOLOv5 model to improve its
performance in detecting WTB defects, particularly small
targets and long strip-shaped defects [141].

Yang et al. [146] delved into the challenges and innovations
in WTB inspection, highlighting the importance of accurate
drone-based image stitching for defect identification. Current
image stitching methods fall short due to texture-deficient
blade surfaces and unstable drone positioning. Addressing
this, the proposed method consists of two stages: coarse-
grained stitching, which leverages blade shape features and
camera-blade distance, and fine-grained stitching that fine-
tunes the panorama using regression. The newly introduced
“Blade30” dataset, containing drone images of 30 full WTBs
from various environments, offers a significant resource for
the industry. It is populated with 1,302 images, diverse in
drone models, camera resolutions, and defect types, making it
a substantial step forward in benchmarking various inspection
methods.

Figure 40 shows the annotation of defects and contam-
inations in the Blade30 dataset. The upper part of the
figure displays annotations for defects, which are areas on
the WTB that indicate damage, such as cracks or chips.
These defects are marked with yellow rectangles to highlight
their presence. The bottom part of the figure displays
annotations for contaminations, which are foreign objects
or substances found on the blade surface that can affect its
performance. These contaminations are also marked with
yellow rectangles. These annotations provide valuable infor-
mation for analyzing and evaluating the effectiveness of the
proposed stitching algorithm and the deduplication method
in identifying and addressing defects and contaminations on
WTBs.

In this section, various techniques and applications of
RGB camera technology in WTB inspection are discussed.
Techniques like extended Haar-like features and adap-
tive median filtering are used for image pre-processing,
while CNN architectures and object detection frameworks
are employed for deep learning object detection models.
Advanced techniques such as the LPSO strategy are applied
for enhanced image denoising and motion blur removal.
These methods serve critical roles in feature extraction, noise
reduction, defect identification, and ensuring the clarity of
images captured for inspection purposes. Refer to Table 4 for
further details and specific applications of these techniques
in the field.

D. VISUAL INSPECTION USING THERMAL IMAGING

Thermal imaging monitoring technology is a non-contact
monitoring technology that detects thermodynamic changes
on the blade surface. When the blade is damaged, the
structure of the blade becomes discontinuous. The heat
is locally retained at the discontinuous position with low
thermal conductivity, resulting in a higher temperature
at the discontinuous position. A highly sensitive infrared
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TABLE 4. Summary of techniques used in WTB visual inspection using RGB cameras.
Category Techniques Applications

Extended Haar-like Features, Wiener Filter-
ing, Adaptive Median Filtering, Log-Gabor
Filter

Image Pre-processing Techniques

Feature Extraction, Noise Reduction, Edge
Detection

CNN Architectures (e.g., ResNet, DenseNet,
Xception, VGG), Object Detection Frame-
works (e.g., YOLO, Mask R-CNN, Cascade
R-CNN), Anomaly Detection (e.g., One-
Class SVM), Innovative Methods (e.g., U-
Net, attention-based models)

Deep Learning Object Detection Models

Defect Identification, Anomaly Recognition,
Targeted Defect Detection

LPSO Strategy, CBNLM-BLS Method, I-

Advanced Techniques DeblurGANv2 Network

Image Denoising, Motion Blur Removal in
Aerial Images, Synthetic Images

camera can capture and visualize this temperature difference,
to realize the rapid detection of blade-damage defects.
In addition, the high strain area inside the blade will
generate heat energy by friction, which allows the engineer
to determine the high strain area of the blade. Wang and
Gu [147] used the passive infrared thermal imaging detection
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method to detrmine the damage of the WTB under outdoor
conditions, and the numerical simulation of the damage
was performed. Sanati et al. [148] explored passive and
active thermography techniques, employing pulsed and step
heating and cooling methods. The study involved monitoring
a section of a severely damaged blade and a small ““plate”
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FIGURE 38. DJI AIR 2S professional drone shooting WTB defects [138].

cut from the undamaged laminate section, where holes of
varying diameter and depth were drilled from the rear to
create “‘known’ defects. The results of image processing on
both active and passive thermography revealed a significant
enhancement in the quality of images and the visibility of
internal defects through the applied technique.

Chen et al. [149] introduced a method using thermography
and computer vision for inspecting WTBs. It focuses on
detecting subsurface damages, crucial for blade maintenance
and longevity. This method aims to significantly reduce
inspection costs and lower the Levelized Cost Of Energy
(LCOE) by 1-2% for land-based wind farms. AQUADA'’s
non-intrusive approach enhances inspection efficiency com-
pared to traditional methods, offering a promising solution
for the wind energy industry.

Zhou et al. [150] centered on enhancing defect detection
in WTBs by integrating visible and infrared image fusion.
Traditional inspection techniques often lead to a high per-
centage of false detections due to inefficiencies. To address
this, a Regression Crop data-processing technique was
introduced, which automatically crops critical areas in WTB
images, thereby increasing detection accuracy by 34.5%.
This method, combined with an RGB-IR feature fusion
module, further optimizes detection, attaining a precision
rate of 99% for genuine defects. When compared using the
YOLOV7 model, the combination of ‘““Regression Crop”
and RGB-IR feature fusion vastly outperformed existing
methods, as evidenced by precision improvements of up to
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20.8% and AP gains of 34.5%. In the exploration of efficient
wind turbine detection using drones photos in Industry 4.0,
Zhou et al. [150] proposed a novel Soft-Masks Guided (SMG)
[151] Faster R-CNN model. This model harnesses synthetic
datasets and soft masks to enhance detection accuracy.
The synthetic datasets simulate real drone-captured imagery,
and the soft masks guide the model’s focus, suppressing
domain-specific features and boosting feature extraction
accuracy. Notably, soft masks have proven beneficial for
variations in wind turbine sizes. On the Xilin dataset, the
SMG Faster R-CNN achieved an AP@IoUO0.5 of 0.409,
outperforming many models including SSD, RetinaNet, and
DA Faster R-CNN. Furthermore, the model performance
peaked with a soft pixel value of 125, reaching an AP
of 0.409, indicating that larger soft mask values enhance
detection.

Figure 41 provides an overview of the methods utilized
in the study [150]. It illustrates the workflow of the
proposed approach for detecting defects in WTBs. The
image-processing method consists of two main components:
the Regression Crop data-processing method and the RGB-IR
feature fusion module. The Regression Crop method involves
reducing the size of the input image through downsampling.
After the downsampling process, the image goes through a
four-stage residual module to obtain the final feature maps.
This method makes the process three times more efficient
compared to traditional global crop methods. The RGB-IR
feature fusion module focuses on combining the features
extracted from RGB and InfraRed (IR) images. The module
adapts the weighting coefficients of IR image features
dynamically to achieve better detection accuracy. By inte-
grating the features from both modalities, the likelihood of
false detections caused by dust or other contaminants on
the blades is minimized. Overall, the combination of the
Regression Crop method and the RGB-IR feature fusion
module enhances the accuracy and efficiency of detecting
actual defects in WTBs.

Figure 42 illustrates a comparison between examples of
actual and false defects within the WTB dataset used in the
study [150]. The figure presents two images side by side.
The left image shows an example of an actual defect on
a WTB. This defect may include various types of damage
such as cracks, chips, or delamination. The specific defect
is annotated by professional turbine maintenance personnel
to ensure accuracy. The right image, on the other hand,
represents a false defect. These false positives can occur
due to various factors such as dust, urine, or feces present
on the blade surface, which may visually resemble actual
defects. By including both examples of actual defects and
false positives, Figure 42 highlights the challenges faced in
accurately detecting and distinguishing between real defects
and false detections. Understanding the characteristics and
differences between actual defects and false positives is
crucial for developing effective detection methods. The
proposed approach in the study aims to address these
challenges by utilizing a data-processing method and feature
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FIGURE 39. Blade inspection utilizing remote and non-remote sensors [146].

FIGURE 40. Annotation of defects [146].

fusion module to improve the accuracy and precision of
detecting actual defects in WTBs.

In this section, the utilization of thermal imaging
techniques for the inspection of WTBs is investigated.
Thermal imaging is instrumental in detecting structural
damage through thermodynamic changes on the blade
surface. This section underscores the capability of sensitive
infrared cameras to capture temperature differentials at
the site of discontinuities, allowing for rapid identification
of blade-damage defects. Furthermore, the integration of
computer vision with thermography offers a non-intrusive,
yet cost-effective means for subsurface damage detection.
The fusion of visible and infrared imaging, as well as
the application of advanced techniques like SMG Faster
R-CNN with synthetic datasets, significantly improves defect
detection accuracy under varying turbine conditions. The
diverse applications and descriptions of these techniques are
comprehensively presented in Table 5, providing a detailed
overview of their effectiveness in WTB visual inspections
using thermal imaging.

E. ULTRASONIC TESTING

Ultrasonic testing technology is a relatively mature technol-
ogy to detect defects in composites and other materials. It is
widely used to detect internal debonding, delamination, and
other defects of WTB materials. An elastic wave of more
than 20 kHz is introduced into the blade structure through
a transmitter. The wave propagates along the structure
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of the blade and passes through or interacts with the
defects, such as delamination, debonding, and crack, to make
the wave change in the propagation process. The second
sensor measures the mode changes, such as propagation,
amplitude, phase, time, reflection, and attenuation of the
elastic wave, to accurately judge the location and size of
the damage, and Figure 43 shows the ultrasonic technique.
Ultrasonic testing necessitates an assortment of transducers
and coupling agents and is carried out through transmission,
reflection, and backscattering modes [152]. These behaviors
are influenced by the interfaces between arbitrary boundaries.
The Ultrasonic non-destructive testing (NDT) method is
adept at detecting the bonding area and depth of a structure
by analyzing the time gap between transmission and echo
signals [153]. Chakrapani et al. [154] conducted experiments
utilizing the pulse-echo technique to scrutinize adhesive
bonds within composite plates, which exhibited varying
thickness ranging from 1.4 mm to 45.5 mm.

F. VIBRATION MONITORING

Vibration monitoring is a widely used monitoring technology
for WTBs. It works by monitoring the dynamic response of
the blade structure under external force excitation. Since the
dynamic response of the blade depends on the characteristics
of the blade material, structure, and loading conditions,
any damage to the blade will lead to a change in its
dynamic response. Ghoshal et al. [156] successfully detected
damage in WTBs before experiencing catastrophic failure
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FIGURE 41. Overview of the methods in WTB defects detection based on visible and infrared image fusion [150].

TABLE 5. Summary of techniques used in WTB visual inspection using thermal imaging.

Technique Description

Thermal Imaging

Uses both passive infrared and advanced thermography for blade damage detection in
various conditions.

Computer Vision Integration

Combines thermography with computer vision for cost-effective and non-intrusive sub-
surface damage detection.

Image Fusion & Processing

Merges visible and infrared imaging, employing techniques like *Regression Crop’ for
enhanced defect identification.

SMG Faster R-CNN

conditions.

Applies synthetic datasets and soft masks to improve detection accuracy in varied turbine

by analyzing the vibration response of the blade. Abouhnik
and Albarbar [157] presented a comprehensive overview of
vibration sources in wind power. They introduced a novel
method utilizing Empirical Decomposition Feature Intensity
Level (EDFIL) for the analysis of vibration signals and
the identification of crack damage. Chen and Chen [158]
conducted a study on the sensitivity of vibration modes in
the blades of various sizes for damage recognition. Their
findings indicated that as blade size increased significantly,
vibration modes became relatively more sensitive to damage
recognition.

The inspection of WTBs using NDT techniques plays a
crucial role in assessing the structural integrity without caus-
ing harm or altering their functionality. Various NDT methods
are employed to identify potential defects, damage, or struc-
tural irregularities in these critical components. Acoustic
emission, for instance, monitors the sound energy generated
by loaded blades, providing information on their structural
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health. Thermography techniques, involving both passive and
active methods, use temperature variations to detect hidden
flaws or damage. Vibration analysis, as explored in different
studies, leverages the response of the blade to identify
potential issues before catastrophic failure. Additionally,
coherent optical techniques and EDFIL have been proposed
for enhanced analysis of blade vibrations and identification of
specific types of damage. These NDT approaches collectively
contribute to the proactive maintenance and optimization
of WTBs, ensuring their reliability and longevity in the
renewable energy sector.

As the renewable energy sector continues to grow, the need
for innovative and efficient maintenance solutions for energy
infrastructure becomes increasingly critical. In particular,
the inspection and maintenance of WTBs pose unique
challenges due to their large size, complex shapes, and
often remote locations. Recent technological advancements
have brought forward the use of unmanned aerial vehicles,
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FIGURE 42. Examples of actual and false defects [150].

commonly known as drones, as a game-changing solution
in this domain. Drones offer a safer, more efficient, and
cost-effective alternative to traditional inspection methods,
which typically involve manual inspection by technicians.
This transition not only enhances the safety of the personnel
involved but also significantly improves the precision and
quality of the inspections. In the following section, we discuss
the advances in drone path planning specifically designed
for WTB inspection, highlighting the innovative approaches
and technologies that are shaping the future of wind turbine
maintenance.

V. DRONE PATH-PLANNING FOR WTB INSPECTION
The integration of drone technology in the field of WTB
inspection marks a significant advancement in renewable
energy maintenance. Drones, with their capability to navigate
challenging environments, are proving to be invaluable in
enhancing the efficiency and safety of WTB inspections.
Recognized for their agility, energy efficiency, and prolonged
operational duration, drones are increasingly becoming the
preferred choice for remote and autonomous wind turbine
inspections.

Different types of drones, each optimized for specific
tasks, are used in WTB inspections. Low Altitude Platforms
(LAPs) are favored for their agility, making them suitable for
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close-range inspections, while High Altitude Platforms
(HAPs) are used for broader, more stable observational tasks.
The choice between fixed-wing drones, known for their speed
and range, and rotary-wing drones, ideal for their Vertical
Take-Off and Landing (VTOL) capabilities, depends on the
specific requirements of the inspection task.

Path planning is a crucial aspect of drone operation in WTB
inspections. It involves developing algorithms tailored for
efficient and comprehensive coverage of the turbine blades.
This encompasses both uniform and mixed drone groups,
with emerging trends focusing on solar-powered and hybrid
drones that combine the best features of different drone types.

Drones in WTB inspections serve not only for visual
assessments but also for a variety of other maintenance
tasks. They are instrumental in identifying potential damages,
wear and tear, and other issues that could affect the
performance and longevity of wind turbines. The application
of drones in this field exemplifies the convergence of
advanced technology with renewable energy, leading to
safer, more effective maintenance practices, and ultimately
contributing to the sustainable operation of wind energy
infrastructure.

Pinney et al. [159] explored the utilization of autonomous
drones for the inspection of wind turbines. It aimed to reduce
costs, man-hours, and safety risks associated with traditional
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FIGURE 43. Mechanism of ultrasonic technique [155].

inspection methods. The study used a Tello EDU drone (EDU
stands for education) and substituted pedestal fans for wind
turbines as a small-scale proof of concept. The methodology
included autonomous area exploration, target detection,
Quick Response (QR) code scanning, image capture, and safe
return. Key components involved using OpenCV for object
detection and distance calculation, a parallel search pattern
for path-planning, and precise return path tracking. The
results indicated successful navigation, data collection, and
return, highlighting the potential for automating wind turbine
inspections to improve efficiency and safety in renewable
energy operations.

In their recent work, Pinney et al. [160] focused on devel-
oping a drone-based solution for wind turbine inspection.
It compared two area exploration algorithms: ‘““snake” and
“spiral”’, using a Tello EDU drone and pedestal fans as
turbine surrogates. The study integrated object detection with
OpenCV’s Cascade Classifier and QR code verification. The
results indicated that the snake pattern excels in battery
efficiency and flight duration without object detection, while
the spiral pattern outperforms with object detection. This
work contributed to automated wind turbine inspections,
with the aim of enhancing cost efficiency in renewable
energy.

The A* (pronounced A-star) algorithm is a graph traversal
and path search algorithm that is widely used in many fields
of computer science due to its completeness, optimality,
and optimal efficiency. It was first published in 1968 by
Peter Hart, Nils Nilsson, and Bertram Raphael of Stanford
Research Institute [161]. As shown in Algorithm 2, the A*
algorithm is known for its efficiency in finding the shortest
path between a start node and a goal node in a weighted
graph. The algorithm achieves this efficiency by combining
features of Dijkstra’s Algorithm and Greedy Best-First-
Search, effectively balancing between exploring the most
promising routes and ensuring that these routes are actually
feasible. A* uses a heuristic function to estimate the cost from
a node to the goal, which guides the search towards the goal
in an informed manner.

The A* algorithm operates by managing two sets of nodes,
the ‘Open Set’ (OS) and the ‘Closed Set’. Initially, OS
contains only the start node (S). The algorithm iterates over
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Time

Algorithm 2 A* Algorithm [161]
1: procedure AStar(S, G)

2: 0SS < {§}
3: CF < an empty map
4 GS[S]1 <0
5: FS[S] < h(S)
6: while OS # () do
7: C <« the node in OS with the lowest FS[C]
8: if C = G then
9: return reconstructPath(CF, C)
10 end if
11: OS .remove(C)
12: for each neighbor N of C do
13: TGS < GS[C]+d(C,N)
14: if TGS < GS[N] then
15: CF[N] < C
16: GS[N] < TGS
17: FS[N] < GS[N]+ h(N)
18: if N ¢ OS then
19: OS.add(N)
20: end if
21: end if
22 end for
23: end while
24: return failure

25: end procedure

nodes in OS, selecting the node (C) with the lowest ‘f score’
(FS). The “f score’ (F'S) for a node is the sum of the ‘g score’
(GS, the cost from S to C) and a heuristic estimate (%) of the
cost to the goal (G). If C equals G, the path is reconstructed
and returned. Otherwise, C is processed, its neighbors (V)
are examined, and their scores (GS and FS) are updated. N is
added to OS if not already present. This process repeats until
G is reached or OS is empty, indicating no path exists. The
heuristic function (%) is crucial for efficiency, as an optimal
heuristic reduces the nodes explored. Algorithm 2 outlines the
pseudocode for the A* algorithm.

Algahtani et al. [162] discussed a method for enhanc-
ing path planning robustness using Probabilistic Metric
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TABLE 6. Summary of techniques used in drone path-planning for WTB inspection.

Aspect Details
Drone Types for Inspection LAPs for close-range, HAPs for broad-range inspections
Drone Model Choice Fixed-wing for speed and range, Rotary-wing for VTOL and maneuverability

Path-Planning Algorithms

Efficient algorithms for blade coverage, use of uniform and mixed drone groups

Drone Application

For visual inspections and other maintenance tasks, identifying damages and wear

Technological Advancements

Solar-powered/hybrid drones, A* algorithm, autonomous exploration, SVM for turbine

detection

Aerial
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FIGURE 44. Schematic representation of the integrated and cyclic approach for comprehensive, interdisciplinary WTB

maintenance research.

Temporal Logic (P-MTL). This approach aims to improve the
understanding and interaction with environmental dynamics
during path-planning processes, particularly for autonomous
agents. Krishnan et al. [163] integrated the Bidirectional
Rapidly Exploring Random Trees (RRT) algorithm with an
enhanced Artificial Potential Field algorithm. The field of
drone path-planning continues to grow, with contributions
from Yanmaz [164], Chao et al. [165], and others, demon-
strating the dynamic nature of drone path-planning in WTB
inspections.

In this section, we highlighted drone integration as a key
advancement in renewable energy maintenance, emphasizing
drones’ role in enhancing wind turbine inspection efficiency
and safety. It contrasts fixed-wing drones, valued for speed
and range, with rotary-wing drones, preferred for their VTOL
capabilities, to meet diverse inspection needs. The discussion
extends to path-planning algorithms for effective turbine
coverage and technological advances like solar-powered
drones, autonomous exploration, and machine learning for
improved detection, underscoring drones’ growing signifi-
cance in sustainable inspection practices. Refer to Table 6 for
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detailed aspects and innovations in drone path-planning for
WTB inspection.

VI. GAPS AND LIMITATIONS

Despite the significant advancements in WTB technology,
there are still several gaps and limitations in the current
research. Addressing these areas is vital to propel the field
forward and enhance the efficiency and sustainability of wind
energy.

« Material Lifespan and Degradation: There’s a notable
deficiency in long-term empirical data on the degra-
dation of blade materials under diverse environmental
conditions. This gap limits our understanding of the
real-world endurance of materials and designs. Future
research should not only focus on the long-term
durability of new materials and designs but also develop
more robust testing methodologies that simulate extreme
weather conditions and operational scenarios. This will
help in designing blades that can withstand harsh
environments over extended periods.
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TABLE 7. List of acronyms.

Acronym Full Term Acronym Full Term
AE Acoustic Emission MC Monte Carlo
AEP Annual Energy Production MFC Macro-Fiber Composites
AFB-YOLO | Attention and Feature Balanced YOLO MI-YOLO | Multivariate Information YOLO
Al Artificial Intelligence ML Machine Learning
BEM Blade Element Momentum MLP Multi-Layer Perceptron
BP BuckyPaper MW Mega-Watt
BTC Bend-Twist coupling mWA mean Weighted Average
CAE Convolutional Auto Encoder NDT Non-Destructive Testing
CBAM Convolutional Block Attention Module NLM Non-Local Mean
CNN Convolutional Neural Network NREL National Renewable Energy Lab
DAS Distributed Accelerometer System OWT Offshore Wind Turbine
DB Debonding PCA Principal Component Analysis
DCNN Deep Convolutional Neural Network PnP Perspective-n-Point
DEL Damage Equivalent Load POT Peak-Over-Threshold
DL Delamination (Composite Type) PS Pressure Side
DLC Design Load Case PSD Power spectral density
DR Detection Rate PSO Particle Swarm Optimization
DSF Defect Semantic Features PZT Piezoelectric Lead Zirconate Titanate
DSLR Digital Single-Lens Reflex QR Quick Response
EADD Efficient and Accurate Damage Detector RADAR Radio Detection And Ranging
ECANet Efficient Channel Attention Network RBB Rotation Bounding Box
EDFIL Empirical Decomposition Feature Intensity Level R-CNN Region-based Convolutional Neural Network
EDR Equivalent Damage Ratio RDT Random Decrement Technique
EloU Efficient Intersection over Union ReLU Rectified Linear Unit
EMC Enhanced Monte Carlo ResNet Residual Network
FBG Fiber Bragg Grating Rol Region of Interest
FE Finite Element RRT Rapidly Exploring Random Trees
FEA Finite Element Analysis RUL Remaining Useful Life
FLOPS Floating-Point Operations Per Second SC Spar Cap
FMCW Frequency-Modulated Continuous Wave SCADA Supervisory Control And Data Acquisition
FORJ Fiber Optical Rotary Joint SENet Squeeze-and-Excitation Network
FPS Frames Per Second SHM Structural Health Monitoring
FR False Rate SIFT Scale-Invariant Feature Transform
FWT Floating Wind Turbine SLDV Scanning Laser Doppler Vibrometer
GFRP Glass-Fiber Reinforced Plastics SMC Standard Monte Carlo
GPM Gamma Process Model SMG Soft-Masks Guided
GPR Gaussian Process Regression SNR Signal-to-Noise Ratio
HAP High Altitude Platform SRA Structural Reliability Analysis
HAWC2 Horizontal Axis WTB Code 2nd Generation SRCNN Super-Resolution Convolutional Neural Network
HBB Horizontal Bounding Box SS Suction Side
HOG Histogram of Oriented Gradients SSD Single Shot Multibox Detector
1IEC International Electrotechnical Commission SSI Stochastic Subspace Identification
IR InfraRed SVM Support Vector Machine
LAP Low Altitude Platform TE Trailing Edge
LBP Local Binary Patterns UAV Unmanned Aerial Vehicle
LCOE Levelized Cost Of Energy VGG Visual Geometry Group
LE Leading Edge VTOL Vertical Take-Off and Landing
LF Laminate Fracture WTB Wind Turbine Blade
LPSO Levi-based Particle Swarm Optimization WTD Wind Turbine Detection
mAP mean Average Precision YOLO You Only Look Once
MAV Micro-Aerial Vehicle YSODA YOLO-based Small Object Detection Approach

o Scalability and Real-World Application: Current
research often relies on laboratory and controlled
experiments, which, while valuable, do not always accu-
rately represent large-scale, real-world applications. The
challenge lies in translating these findings into practical,
scalable solutions that can be effectively implemented
in operational wind farms. Future research should
prioritize the development and testing of technologies
in real-world settings to ensure their feasibility and
efficiency on a larger scale.

« Environmental and Ecological Impact: The impact
of WTBs on the environment and local ecosystems,
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particularly concerning bird and bat mortality, noise
pollution, and visual aesthetics, has been insuffi-
ciently studied. Comprehensive environmental impact
assessments are required to develop more ecologi-
cally harmonious designs and siting strategies, ensur-
ing that wind turbines coexist with their natural
surroundings without causing significant ecological
disruptions.

« End-of-Life Strategies: Research on sustainable end-
of-life strategies for WTBs, including recycling and
disposal, is limited. The development of environmen-
tally friendly disposal methods and the exploration
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of recycling possibilities are critical. Additionally,
innovation is needed in the manufacture of blades using
recyclable or biodegradable materials to reduce the
environmental footprint of wind turbines.

o Cost Analysis and Economic Feasibility: The eco-
nomic evaluation of advanced WTB technologies,
including a detailed cost-benefit analysis, is often
overlooked. Future studies must encompass a thorough
financial assessment to ascertain the economic viability
of new designs and materials, ensuring that they are
not only technologically advanced but also financially
feasible for widespread adoption.

« Integration with Emerging Technologies: Although
there have been strides in blade technology, its inte-
gration with emerging technologies such as Artificial
Intelligence (AI), big data analytics, and the Internet
of Things (IoT) for predictive maintenance and per-
formance optimization is still nascent. Future research
should investigate these integrations more thoroughly,
exploring how advanced computational and analytical
tools can enhance the efficiency and reliability of wind
turbines.

o Policy and Regulatory Framework: The explo-
ration of policy and regulatory aspects related to
new WTB technologies is limited. Future research
should examine how policy frameworks and reg-
ulations can evolve to support and accelerate the
adoption of innovative technologies in the wind energy
sector, addressing challenges such as approval pro-
cesses, safety standards, and incentives for sustainable
practices.

o Multidisciplinary Approaches: The advancement of
wind turbine technology requires a synergistic, mul-
tidisciplinary approach. Collaboration across fields
such as Computer Science, Mechanical Engineering,
and Electrical and Computer Engineering is essen-
tial for fostering innovative solutions. This includes
the development of advanced sensor technologies,
sophisticated data analysis techniques, and integrated
systems for enhanced inspection and maintenance of
WTBs.

« Enhanced Imaging Techniques: The current inspec-
tion methods may lack the advanced capabilities needed
for early detection of subtle or internal flaws in blade
materials. Future research should focus on the appli-
cation and refinement of thermal, multispectral, and
hyperspectral imaging techniques. These technologies
have the potential to revolutionize blade inspection by
providing deeper insights into the internal health of
blades and enabling predictive maintenance to prevent
failures before they occur.

Addressing these gaps and limitations is essential for
advancing the field of wind turbine technology, ensuring
its long-term viability, and maximizing the benefits of
wind energy in terms of efficiency, sustainability, and
environmental friendliness.
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VII. FUTURE DIRECTIONS

In the realm of Wind Turbine Blade (WTB) maintenance, our
future research endeavors are set to pioneer a self-sustaining,
interdisciplinary framework. This approach, inherently cycli-
cal, is designed to ensure that advancements in one phase
enrich and inform subsequent phases. Our strategy comprises
several pivotal components:

o Drone Path-Planning: Our approach will revolutionize
drone navigation by integrating next-generation path-
planning algorithms. These algorithms will be designed
for adaptive navigation, allowing drones to dynamically
adjust flight paths in real-time, ensuring optimal routes
are taken to each turbine within complex wind farm
landscapes. This precision in navigation facilitates the
identification and cataloging of turbines and their blades
with unparalleled accuracy, laying the groundwork for
targeted maintenance operations.

« Aerial Imaging: We aim to employ drones equipped
with state-of-the-art high-resolution and multispectral
cameras. This setup is not limited to capturing detailed
visible spectrum images but extends to peering beneath
the surface, revealing internal structural defects oth-
erwise invisible to the naked eye. To counteract the
inherent motion blur from both drone mobility and tur-
bine blade movement, we will implement cutting-edge
deblurring technologies. These advancements ensure
crystal-clear imagery is obtained, providing a reliable
data foundation for subsequent analysis.

« Image Processing: Our project intends to push the
boundaries of image processing and machine learning
for defect detection. The process begins with the
extraction of high-fidelity images from the advanced
aerial imaging phase, followed by the application of
sophisticated algorithms designed to parse these images
meticulously. The goal is to detect, categorize, and
analyze every minute defect, distinguishing them by
type, size, severity, and potential impact on turbine
operation. This granular level of detail is crucial for
crafting maintenance strategies that are both precise and
effective.

o Simulation and Assessment: Utilizing cutting-edge
simulation models, we will simulate the wind turbines
under various defect scenarios. These models will allow
us to simulate the behavior and potential impacts of
defects under a range of conditions, facilitating a deep
understanding of their implications on turbine health
and performance. This insight feeds into a predictive
maintenance framework, where data-driven predictions
inform maintenance schedules, ultimately aiming to
preempt potential failures, extend turbine lifespan, and
optimize operational efficiency.

As depicted in Figure 44, our research methodology
embodies a continuous loop of improvement, where each
component feeds into the next, fostering an environ-
ment of perpetual innovation. This approach is designed
to dynamically evolve, incorporating new insights and
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technological advancements to refine WTB maintenance
practices continually.

In summary, our dedication to advancing WTB mainte-
nance technologies extends beyond mere technical enhance-
ments; it is a reflection of our commitment to environmental
stewardship, economic development, and societal benefit.
Through this ambitious research agenda, we aspire to
contribute meaningfully to the development of a sustainable,
efficient, and robust global energy infrastructure.

VIil. CONCLUSION

A. SUMMARY OF KEY FINDINGS

This section encapsulates the critical insights and contribu-
tions derived from the reviewed studies in the realm of WTB
technology. It particularly highlights the progress in blade
design and its consequential effects on the dependability and
operational efficiency of wind turbines.

« Empirical Research and Data Acquisition: The role of
empirical research in the form of experimental testing of
WTBs under controlled environments has been instru-
mental. Such methods have yielded valuable empirical
data, especially in understanding fatigue performance,
playing a key role in corroborating numerical model
simulations.

o Computational Modeling and Finite Element
Method: The application of computational models, with
an emphasis on finite element analysis, has effectively
supplemented empirical studies. These computational
techniques have facilitated predictive modeling across
varied scenarios, thus deepening the comprehension of
blade dynamics in differing conditions.

o Targeted Research Endeavors: Specific research
initiatives have focused on aspects such as fatigue
failure simulations, root cause analysis, investigations of
trailing edge failures and modeling fatigue induced by
rain erosion. These targeted studies have been pivotal
in identifying weaknesses in WTB designs and in
formulating strategies for risk mitigation.

« Innovation in Design and Techniques: The introduc-
tion of novel approaches in design, such as bend-twist
coupling mechanisms and airfoils shaped like shuttles,
has been a breakthrough in reducing fatigue load and
aerodynamic drag. These innovations have considerably
enhanced blade design efficiency.

« Sophisticated Numerical Analyses: Further advance-
ments in numerical analysis have tackled complex issues
like multi-axial fatigue, predictions of remaining useful
life, and short-term fatigue damage assessment using
probabilistic methods. These advanced analyses are
crucial for pre-emptive maintenance and for optimizing
blade performance.

o Enhancing Wind Energy Technology: Collectively,
these advances have significantly improved the relia-
bility, operational efficiency, and durability of WTBs,
ensuring their alignment with the dynamic and evolving
needs of wind energy technology.
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« Interdisciplinary Collaboration: The evolution of
wind turbine blade technology is increasingly reliant
on the fusion of multidisciplinary expertise. Addressing
the multifaceted challenges presented by WTBs neces-
sitates collaboration across various domains, including
material science, aerodynamics, structural engineering,
sensor technology, data science, and fields like robotics
and Al This integrated approach fosters innovation in
material development, predictive maintenance strate-
gies, advanced sensor technologies, and intelligent data
analysis, all of which are imperative to address the
complex challenges of wind turbine technology and
propelling the industry towards more efficient, resilient,
and cost-effective wind energy solutions.

B. IMPLICATIONS OF THE FINDINGS

The findings from the reviewed studies on WTB technology
have far-reaching implications for the field of wind energy,
especially in terms of enhancing sustainability. These impli-
cations are detailed below:

o Increased Energy Efficiency: The improvements in
blade design and material, such as advanced aerody-
namics and lightweight, durable materials, lead to more
efficient energy capture. This efficiency is crucial for
maximizing the output of wind energy systems, making
them more competitive with traditional energy sources.

« Reduced Environmental Impact: The development
of more durable blades and the focus on predictive
maintenance reduce the need for frequent replacements
and repairs. This, in turn, leads to a decrease in the envi-
ronmental footprint of manufacturing and maintaining
wind turbines, aligning with global efforts to minimize
the ecological impact of energy production.

« Enhanced Reliability and Safety: With advancements
in fatigue analysis and life prediction, wind turbines
become more reliable and safer. This reliability is
crucial for their acceptance and operation in diverse
environments, including offshore and extreme weather
locations.

o Cost-Effectiveness: The extended lifespan and improved
efficiency of wind turbines, owing to these technological
advancements, contribute to lowering the cost of wind
energy. This cost reduction is essential for the broader
adoption of wind energy on a global scale.

o Support for Renewable Energy Transition: The
advancements in WTB technology significantly support
the global transition towards renewable energy sources.
By making wind energy more efficient and sustainable,
these advancements help in reducing dependence on
fossil fuels, thus contributing to mitigating climate
change impacts.

« Innovation and Economic Opportunities: These tech-
nological advancements open up new avenues for
innovation and economic growth within the renewable
energy sector. They stimulate research and development,
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create new job opportunities, and encourage investment
in renewable energy infrastructure.

In

summary, the advancements in WTB technology not

only enhance the performance and sustainability of individual
turbines but also have significant positive implications for
the broader field of wind energy. They play a crucial role
in driving the global shift towards more sustainable, reliable,
and cost-effective energy sources.
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