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ABSTRACT One of the challenges in image processing involves single image deraining (SID). Existing
methods do not exploit images at multi-scales and often overlook spatial and channel information. These
methods fail to account for different rain conditions, leading to challenges in effectively removing a wide
range of rain streak patterns, such as diverse directional or dense streaks. Moreover, they often result in the
loss of fine texture details or a blurred background in the process of eliminating rain streaks from images
captured in heavy rain. Mostly state-of-the-art (SOTA) deraining models achieve higher performance in
removing rain from rainy images but at the expense of a high number of parameters, which results in
computational complexity and memory requirements. Furthermore, they also do not consider high-level
visioned evaluation metrics to perform deep evaluations of the proposed models. In this paper, a simple
lightweight network with few parameters and relatively shallow depth is proposed by fusing the traditional
Gaussian-Laplacian pyramid technique with the attention module. We propose a novel attention-based
lightweight pyramid network for image deraining and detection (LPN-IDD) to achieve better deraining
performance. The proposed model includes a dual attention module integrated with the Gaussian-Laplacian
pyramids network. In LPN-IDD, different levels of Laplacian pyramids can extract multi-scale features to
adapt to different shapes and types of rain streaks. Residual and recursive blocks are used in each subnetwork
along with dual attention blocks to resist the occlusion or texture feature while suppressing unnecessary
features. Extensive experimentation performed on the SID synthetic and real-world datasets demonstrate
the effectiveness of the proposed model in image deraining tasks. For deep evaluation of the proposed
methodology, object detection models including faster-RCNN, YOLO-V3, YOLO-V7 are used along with
full reference evaluation metrics.

INDEX TERMS Channel attention, dual attention, feature enhancement, Laplacian pyramid network, object
detection, recursive learning, residual learning, single image deraining, spatial attention.

I. INTRODUCTION

Rain is a frequent weather occurrence that has a signifi-
cant impact on our everyday experiences. When it rains,
photographs may suffer from decreased visibility caused
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by rain-obscured views or streaks. Rain has a complex
atmospheric process, causing rain droplets to stick to camera
lenses or windscreens, resulting in blurred and distorted
images. Rain masks can take on different forms, such
as sparse rain streaks, rain mist, or randomly dispersed
droplets, depending on the circumstances. The removal of
rain streaks, droplets, or mist from rainy images has gained
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(a) Input (b) Groundtruth

FIGURE 1. An example of single Image deraining (SID): (a) synthetic rainy
image (b) original ground truth image.

importance because these degradations significantly impact
the effectiveness of vision systems that rely on clear, high-
resolution images. The complexity and unpredictability of
rain, which can vary in size, density, and direction, makes this
adifficult computer vision task. To address this issue in image
processing and computer vision, single image rain removal
methods or algorithms, also known as single image deraining
(SID), are used and have become increasingly significant in
various fields.

Single image deraining aims to recover a clear background
image that has been marred by raindrops or rain streaks.
There are several SID techniques available for removing rain
from a single image. These methods can be broadly classified
into two categories: model-driven methods and deep learning-
based methods. Model-driven methods use physical models
to simulate the effects of rain and remove it from the images.
On the other hand, deep learning-based data-driven methods
rely on sophisticated algorithms based on deep learning
to learn and understand rain patterns from a large dataset
of images. They then use this knowledge to remove rain
from new images. Recent studies revealed that the image
deraining problem is still facing dissatisfying results due to
the requirement of an enormous number of parameters for
handling complex heavy rainy conditions, Although existing
SID methods achieve remarkable results their performance
can be further improved.

Detecting rain streaks’ size and shape during dynamic
weather conditions, like rainy days, is challenging due to
limitations in traditional convolution methods, particularly
their convolution kernel size. Existing deraining networks
improve performance by increasing convolutional neural
network (CNN) width and depth but often overlook spatial
and channel information, limiting feature utilization. These
methods also tend to employ complex structural changes
to remove rain streaks. These methods are computationally
intensive, and they require substantial memory resources
during the execution of the algorithms. These factors can
make the rain removal process relatively slow and resource-
consuming. This limitation hampers their efficiency in
effectively deraining images in real-time scenarios, which is
particularly disadvantageous for applications requiring quick
processing, such as outdoor surveillance systems or real-time
image enhancement.
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The most extensively utilized image-deraining methods
are data-driven-based pyramid methods. These methods do
not consider various rain conditions and types and face
trouble while eliminating diverse directional or dense streaks
ultimately producing over-smoothed texture details or blurry
background images after extracting rain streaks. They give
equal importance to all extracted features, whereas few
features are more important for effective restoration. While
attention-based deraining methods instead of emphasizing
the removal of background images or texture details concen-
trate on learning rain streaks. In addition, most of the existing
methods only consider full reference evaluation metrics for
comparison (structural similarity index (SSIM), peak signal-
to-noise ratio (PSNR)), and some consider no-reference
metrics (natural image quality evaluator (NIQE), subjective
structural image quality (SSIQ)) but they do not consider
high-level visioned evaluation metrics to perform deep eval-
uations of the proposed model. Researchers are continuously
working to improve the efficiency of these methods to make
them more practical for real-world applications, because
single image deraining may improve the quality of images
as seen by humans as well as numerous computer vision
applications, including intelligent vehicles [1], object recog-
nition [2], video processing tasks [3], outdoor monitoring
systems [4], and auto-driving [5], etc.

To address these issues we suggest a Laplacian
pyramid-based lightweight network for image deraining
and detection (LPN-IDD) with fewer parameters. Instead
of creating a complicated network structure, we leverage
domain-specific knowledge to streamline the learning
procedure. The proposed system model is composed of
Laplacian, and Gaussian pyramids to decompose images
at multiple scales to extract image features at every scale.
After getting these features, they are passed to independent
subnetworks for clean Gaussian pyramid reconstruction.
Based on the unique physical characteristics of each
subnetwork, a customized loss function is selected for
training. The multi-task supervision is used during the whole
training period. The base of the reconstructed Gaussian
pyramid represents the final derained image. The main
contributions of the proposed network are summarized
below.

o A simple, lightweight network structure with few
parameters and relatively shallow depth is proposed
by fusing the traditional Gaussian-Laplacian pyramid
technique with the attention module. Multi-scale local
and global feature fusion is performed.

« To extract the key features that may be hidden due to the
complex rainy conditions from images, a dual attention
module integrated with channel and spatial attention is
used.

o Residual and recursive blocks are employed in each
subnetwork along with dual attention blocks to resist
the occlusion or texture feature while suppressing
unnecessary features. They focus on the most important
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features of rainy images and at last result in a non-blurry
and smooth background.

o Extensive experimentation is performed on the SID
training set to evaluate the deraining performance of the
proposed model. For deep evaluation of the proposed
methodology, object detection models are used along
with the full reference evaluation metrics.

The rest of the paper is organised as follows: Section II
provides a literature review for image deraining approaches.
Section III presents the proposed model. Results and analysis
are discussed in Section I'V. Section V presents the conclusion
and Section VI provides future work extensions of the
proposed work.

Il. RELATED WORK

Within the context of addressing rain removal, there are
two distinct categories: rain removal from videos and rain
removal from a single image. In this case, our focus will be
specifically on single image deraining methods, which aim
to remove rain artifacts from individual images rather than
entire video sequences. Currently, two distinct approaches are
being used to deal with single image deraining problem: one
is model-driven approaches and the second one is data-driven
approaches.

A. MODEL-DRIVEN IMAGE DERAINING METHODS

The model-driven solutions place a special emphasis on
designing effective algorithms that address optimization
challenges by skillfully utilizing and encoding the relevant
physical attributes of rain, along with a deep understanding
of the surrounding environment. Model-based rain removal
Approaches include filter-based [6], [7], [8], [9], [10], [11],
[12] traditional prior-based solutions [13], [14], [15], [16],
GMM based [17], [18], sparce coding based methods [19],
[20], [21], [22], [23]. In [6] and [7], a guided filter is proposed
for snow-rain removal, involving dark channel prediction
and guided filter refinement. Furthermore, [8] introduced
a guided LO smoothing filter for rain removal in images.
In order to remove line pattern noise from images using
Fourier transformation and separate noise and image esti-
mation, [9] offers a changed low-rank model. For removing
rain streaks from video cycles [10] models spatio-temporally
coupled rain streaks. in [11] a texture-based approach used
to identify and eliminate rain or snow patches from images.
In [12] a SID network with guided learning is proposed
via three sub-networks and uses multi-scale residual blocks
(MSRBs) for better deraining by exploiting multi-scale
data.

In [13], a layer decomposition technique is used to address
how rain streaks affect image visibility and computer vision
algorithms. By dividing images into rain-free backdrop (B)
and rain-containing (R) layers, [14] introduces a novel
single image streak extraction technique. This technique is
made possible by an iterative optimization approach [15].
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An unrolling technique is employed by [16] to integrate
data-dependent network topology within existing iterations
and introduce a learning bi-level layer priors method for
effective rain streak removal assessment and efficiency.
In [17], a multi-detail unit-based priori-guided model
(PGRAN) is proposed for single image deraining. By uti-
lizing Gaussian mixture models learned from small patches,
[18] introduces a structural residue phase to enhance image
quality through background noise removal. In [19], a joint
convolutional analysis and synthesis sparse representation
model JCAS is suggested. Reference [20] proposes a global
sparse approach to model and estimate rain streaks across
diverse directions. Sparse coding-based algorithms [21], [22],
[23] utilize clear images for rain removal while overcoming
traditional batch-model learning limitations by exploiting
structural similarity.

After an extensive review of model-driven deraining
approaches, it is evident that model-driven methods for single
image deraining struggle with precise rain layer separation
from backgrounds and complex rain streaks due to fixed
hand-crafted attributes, which are inadequate for the diverse
array of rain streak types.

B. DATA-DRIVEN IMAGE DERAINING METHODS

Due to recent rapid advancements in this field, deep
learning has substantially surpassed conventional deraining
techniques in single image rain removal and other image
restoration tasks. Data-driven based rain removal approaches
include CNN based [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], Attention based [39], [40], [41],
[42] GANSs or Lightweight pyramid based [43], [44], [45],
(461, [47], [48], [49], [501, [51], [52], [53], [54], [55], [56],
[57], [58], [59]. Reference [24] introduces a stereo-based
rainy dataset and the paired rain removal network (PRRNet)
for monocular deraining, addressing semantic segmentation
and scene deraining challenges. Reference [25] introduces
the conditional variational image deraining (CVID) network,
which employs spatial density estimation (SDE) and channel-
wise (CW) deraining methods to enhance deraining perfor-
mance. Reference [26] proposes ResGuideNet, a novel single
image deraining architecture employing cascaded blocks
guided by residuals for enhanced rain removal performance
and aesthetically pleasing results. Reference [27] utilizes
phase congruence features in rainy videos to detect rain
streaks, leveraging inter-frame feature variations for removal
and refining results through minimization operations and
proposed filters.

In [28], a deep detail network (DDN) is introduced by
merging deep learning and image processing with detail
enhancement (DES) and rain removal sub-networks (RRS).
Reference [29] presents a progressive image deraining
network (PReNet) for single image deraining, including
feature extraction and deraining modules. Reference [30]
utilizes SNet, an encoder-decoder CNN, for rain streak
transmission learning with VNet for multi-scale predictions
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and ANet for atmospheric light estimation. In [31], a DRD-
Net was proposed to address lost details in derained
images, employing rain residual and detail restoration
networks for effective detail recovery. The [32] restruc-
tures network layers into residual functions, demonstrating
improved optimization and accuracy with deeper residual
networks. In [33], DerainNet exploits image detail (high-
pass) layers instead of the entire image domain, demon-
strating strong real-world performance despite artificial rain
training.

For rain-streak removal, [34] presents DID-MDN, utilizing
densely linked convolutional neural networks to process
multiple data streams. A deep detail network inspired by
ResNet [28] and an automatic rain density-aware net-
work [35] is proposed for rain streak removal. Scale variation
in vision tasks is a common issue, affecting both low and
high-level processes. Existing CNN-based methods often
overlook crucial details due to single-scale analysis. They
frequently ignore spatial and channel information, which
limits the use of features, and instead often prioritize
expanding CNN dimensions to boost deraining performance.
To address this issue, multi-scale techniques or feature
pyramids are used, extracting local and global information to
enhance image restoration.

As attention models focus on important image areas,
commonly applied in high-level vision tasks such as super-
resolution [36], object detection [37], image captioning [38],
and also in single image deraining due to their remarkable
feature selection capability. The [39] employs depth-guided
attention for SID through residual map regression. In [40],
a spatial attention network is introduced for rain removal,
and [41] proposes DARGNet, a dual attention model for
dense rain streak removal. Furthermore, in [42], a robust
attention deraining network (RadNet) introduces a universal
SID model with robustness and enhanced real scenario data
effectiveness. Attention models display promising results in
rain streak removal, yet struggle with dense or large droplets.
Moreover, their computational complexity hampers real-time
applicability.

Lightweight pyramid networks are vital for efficient
low-level image processing and computer vision tasks.
Despite deep-CNNs’ success in deraining, their parameter
complexity is addressed by lightweight pyramids, utilized
in various tasks like image deblurring [43] and lightweight
super-resolution [44]. In [45], a lightweight pyramid network
LPNet is introduced for SID using Gaussian-Laplacian
decomposition and recursive-residual networks. The [46]
proposes a rain streak removal strategy through a residual
multi-scale pyramid approach, augmented by a multi-scale
kernel selection network (MSKSN). In [47], a multi-sub-
network structure is introduced with cross-scale fusion using
a gated recurrent unit and inner-scale dense block. The [45]
suggests a semi-supervised Gaussian Process architecture,
trained on synthetic and unlabeled real-world data. In [48]
and [49], a multi-scale progressive fusion network (MSPFN)
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and a multi-receptive field aggregation network (MRFAN)
based on self-supervised, aggregation and multi-receptive
field feature extraction blocks are proposed for image
deraining.

In [50], a cross-domain collaborative learning model
based on a multi-scale attention residual block (MSARB)
is proposed. In [51] and [52], a recurrent wavelet
structure-preserving residual network (RWSRNet) and
recurrent context-aware multi-stage network (ReCMN) were
proposed for image deraining. In [53] and [54], an end-to-
end recurrent multilevel residual and global attention network
and multi-scale context information and attention network are
proposed. In [55], a multi-scale aggregation residual channel
attention fusion network (MARCAFNet) is proposed.
A lightweight semi-supervised network (LSNet) for single
image deraining is proposed by [56]. Based on the lightweight
pyramid deraining (LPD) block and recursive mechanism,
[57] proposes a lightweight recursive pyramid network
(LRP-Net). Furthermore, [58], [59] proposes multi-scale
learning and attention-based densely connected mechanisms
(CMADNet) for image deraining and shows when networks
expand and become more intricate, the demand for additional
storage capacity grows. However, lightweight pyramid
models underperform in heavy rain, affecting complex single
image deraining. Also, many deraining techniques excel in
rain streak removal, they struggle with diverse rain types
and heavy rainy conditions due to reliance on synthetic
datasets.

llIl. PROPOSED MIODEL

This section describes a comprehensive explanation of the
proposed approach, a lightweight pyramid network for image
derain and detection (LPN-IDD), which is designed for
effectively removing rain artifacts from individual images.
The overall architecture of the proposed network is presented
in Fig. 2 and its parameters are provided in Table 1.
Subsequently, the intricacies of the subnetwork structure
including Laplacian and Gaussian pyramids, attention and
feature enhancement block as well as recursive and residual
learning are explored. We also elaborate on the various
loss functions employed within the LPN-IDD framework.
Algorithm 1 provides an overview of the entire process of
the proposed lightweight pyramid deraining network.

A. THE FRAMEWORK OF LPN-IDD

Fig. 1 demonstrates a restored rain-free image from a rainy
one using our model in two main stages: feature extraction
and reconstruction. Shallow features are extracted initially,
followed by deeper feature extraction.

1) LAPLACIAN PYRAMIDS
A rainy image X is decomposed into its Laplacian pyramids.
The decomposed image comprises of a set of images L with
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FIGURE 2. Proposed lightweight pyramid network for image draining and detection (LPN-IDD) architecture.

Algorithm 1 LPN-IDD: Lightweight Pyramid Network for
Image Deraining and Detection
Input: Training data 7D = R, G'].
Output: Derained image Y.
Initialize: Network structure, hyper-parameters.
Deraining Pipeline:
for each training epoch do
for each iteration do
Step 1: Forward pass to calculate predicted images.
Step 2: Compute Loss function

M

1 s : :
L — 5 Z(Z LNG,(YY), Gu(YEr))

i=1 \i=1

2
" ZLISSIM (G (YD), Gn(Y(i;T)))

n=1

Step 3: Update parameter 6, using Adam optimizer
04 = Adam(V0,(B), 64)

Detection Pipeline:
for each image i in X do
Create annotation files for X and derained images Y.
Apply pre-trained object detection models YOLO-V3,
YOLO-V7, and Faster-RCNN on X and Y.
Calculate mAP for rainy and derained images.

N levels, which can be defined as:
LP,(X) = GP,(X) — upsample(GP, + 1(X)) @))
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In the Equation 1, the function GP,, represents the Gaussian
pyramid where n = I,...N-1, and it can be computed by
downsampling GP,_1(X). Unlike previous image restoration
methods, which decompose images using a single scale,
the Laplacian pyramid adopted a multi-scale decomposition
strategy using fixed smoothed kernels. The top level contains
detailed background information of a given rainy image,
while other levels contain spatial information of an image at
multiple scales. To simplify the problem and take advantage
of sparsity, the multi-scale decomposition of an image is
performed. To improve information flow, we incorporate
global skip connections for transmitting shallow-level details.

Three factors led us to use the traditional Laplacian
pyramid to decompose the rainy image.

1) The Laplacian pyramid is a computationally efficient
algorithm, primarily utilizing convolutions (Gaussian
filtering), which can be seamlessly incorporated into
GPU-accelerated systems.

2) Top-level of L, extracts the background; other levels
contain rain streaks and details at varying scales. This
eliminates rain interference, allowing subnetworks to
handle single-scale high-frequency components.

3) Unlike earlier deraining techniques that employ single-
scale decomposition, LPN-IDD utilizes a multi-scale
approach with Laplacian pyramids. This strategy lever-
ages sparsity at each level, a principle that has driven
various deraining methods to simplify the learning task.

2) SUBNETWORK STRUCTURE
A set of independent subnetworks is built for each pyramid
level to generate a clean Gaussian pyramid against each
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TABLE 1. Architecture parameters for proposed lightweight pyramid network for image draining and detection (LPN-1DD).

Name Setting Input Output
Input - HxWx3 HXxWx3
Shallow features extraction
Dilated Conv-0 3% 3, dil:1 padding:1, stride:1 HxWx3 HxWx3
Dilated Conv-1 3%3, dil:2 padding:2, stride:1 HxWx3 HXxWx3
Deep feature extraction (Subnetwork structure with Residual block x5)
Depthwise Conv 3% 3, padding:1, stride: 1 HxWx3 HxWx32
Depthwise Conv 3x3, padding:1, stride:1 HXxWx32 HxWx32
Pointwise Conv 1x 1, padding:0, stride:1 HxWx32 HxWx32
Dilated Conv-2 3x3, dil:1 padding:1, stride:1 HxWx32 HxWx32
Feature Enhancement Block x 1
Conv-1 3% 3, padding:1, stride:1 HxWx3 Hx W x 32
Dual Attention Module x 1 - -
Spatial attention module - -
Dilated Conv-3 3% 3, dil:1, padding:1, stride:1 HxWx32 HxW x32
Dilated Conv-4 3x3, dil:2, padding:2, stride:1 HxWx32 HXxWx32
Channel attention module - -
Conv-2 3% 3, padding:1, stride: 1 H x W x 32 HxWx3

input Laplacian pyramid level. The proposed sub-network
structure (presented in Fig. 3) comprises of dual atten-
tion block (DAB) comprised of channel attention, spatial
attention and residual blocks to accelerate the speed of
training.

The input image is divided into five pyramid levels and
each pyramid level is reconstructed using five independent
subnetworks. After the decomposition of images shallow
features are extracted by using two dilated convolution layers
and deep features are extracted using dual attention blocks.
Model deraining performance is enhanced using a feature
enhanced block (FEB) module. This is done recursively
to form a clean Laplacian pyramid. These clean Laplacian
pyramids are then up-sampled with the below level and pass
from activation function ReLu to bring non-linearity. At the
end, the desired output is clean Gaussian pyramids where the
bottom level is our derained image. The following sections
provide a detailed breakdown of each subnetwork component
and its functioning.

1) Shallow Feature Extraction
The initial layer captures features from the nth input
level as follows:

Hcony = o(W(Input) + b2) )

Hony(.) represents basic convolution operation. W
represents weights, b denotes biases, and o is the

37108

2)

activation function used to add non-linearity.
F"® = Hit—comt * Ln(X) 3)

F™0 denotes features utilized for global residual
learning, which are then leveraged for further feature
extraction.

Fn,l = Hyji—com2 * Fn,O (4)

F™! is the outcome after performing convolution
operation on F™° and serves as the input for deep
feature extraction.

Recursive Blocks

After extracting shallow features by using two dilated
convolution operations, the resultant ™! feature map
is input to the n recursive blocks. The residual
and recursive blocks enhance training speed, address
vanishing gradient with skip connections, and decrease
parameter count through parameter-sharing. To over-
come the constraints of conventional convolution for
inter-channel relationships within local receiving areas,
as depicted, we introduce two depthwise separable con-
volutions and one point-wise convolutional operation
within each recursive block based on the results of our
experiments. Although mapping problems are already
resolved due to the Laplacian pyramid, however, during
feed-forward convolution operation image information
may be lost. To tackle this issue, we use skip
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K. Babar et al.: LPN-IDD: A Lightweight Pyramid Network for Image Deraining and Detection

IEEE Access

3)

Dilated Conv

33— -

|
LPn(X)— » | Hn,0 | .
F3n,1

| |
Y Hn, Hn,3
- [ is |« [ ip—" bl <—@ < [ i— ke
‘2 [F3ns5 F3n,4 F3n,3
=S

T'UH

De-Rainy Im_age

Global Max Pooling

Dilated Convolution

_ Activation Layer in DAB

Reconstruction Block

Global Average Pooling

Depth-wise Convolution

Point-wise Convolution

FIGURE 3. The detailed subnetwork structure of the proposed lightweight pyramid network for image draining and

detection (LPN-IDD) architecture.

connections in each recursive block. The calculations
in the #;, recursive block are as shown in Equation 5
and 6.

Ftn’l = Hdepth—Cunv * Fn’l (5)

n,2 n,1
F;"" = Hiepth—conv * F; (6)

The F,"’2 is the output feature map of two depth-wise
convolutions and becomes the input to the point-wise
convolution.

n,3 n,2
Fy"" = Hpoint—conv * Fy @)

Hepth—cConv and Hpoint—cony Tepresent depth-wise and
point-wise convolution(.) operations.

F!'=F" + "0 ®)

For information propagation and gradient back-
propagation, the output feature map F;' of the
recursive block is obtained through the summation with
Fm0 (Equation 8).

Feature Enhancement Block (FEB)

As network depth grows, the influence of shallow
layers on deeper ones weakens. To address this
issue, a streamlined four-layer network structure is
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introduced. Drawing inspiration from this insight, each
subnetwork incorporates a feature enhancement block
(FEB) to enhance deraining performance. The FEB
gathers input from the nth image level, combining
extracted features with the original image to extract
both local and global features effectively. FEB block
includes four layers: three dilated convolution layers
with batch normalization (BN) and activation function
ReLU, plus one convolution layer. Equation 9 and 10
describes the operations.

FEB" = ReLU (BN (Hcony * FI") &)
Y = HCOnV * FEBn (10)

Our aim is to combine local and global features. Hence,
Y represents the feature map obtained after applying
convolution operation on the output of three layered
Conv+BN+ReLU. To enhance the expressive ability of
our proposed LPN-IDD network, the input rainy image
X and the output of convolution layers Y are fused via
concatenation operation that helped in getting more
diversified features (O).

O = TanH (Concat(Y , X)) (11
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4)

5)

6)
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Dual Attention Block (DAB)

The FEB output serves as the input for the proposed
DAB module, featuring both channel and spatial
attention mechanisms to extract spatial features and
maintain image quality. This integration ensures the
preservation of sharp edges and texture details.

Fpap = Fsa(0) * Fca(0) (12)

Channel attention involves a fusion of average and max
pooling on the input feature map. The pooled features
undergo concatenation, followed by a dilated convo-
lution. The outcome of channel attention Fg4 feeds
into spatial attention pooling operation, connected to a
convolutional layer. This map identifies crucial spatial
regions for deraining. Sigmoid activation and a skip
connection address the gradient issue. The obtained
weights Fcq are element-wise multiplied with the
FEB block’s output, accentuating robust features. Both
FEB and DAB integrated jointly to extract complex
streaks information in the existence of the complex
background.

Gaussian Pyramid

After reconstructing the clean Laplacian pyramid, the
goal is to recreate the clean Gaussian pyramid levels.
The reconstruction layer is expressed as follows to get
the output level of the pyramid.

LPn(Y) = HConv(FDAB) + LPn(X) (13)

As we have five levels of Laplacian pyramids, the
output of LPs5(Y) is fed via a ReLU non-linear
activation function to forecast clean Gaussian pyramid
level GPs starting at the top level (Y).

LP,(Y) = GP,(X) — upsample(GP, + 1(X)) (14)

The LP5(Y) output is upsampled and then concatenated
with the matching Laplacian pyramid level to produce
the bottom-level GPs of the clean Gaussian pyramid.
So, the derained image’s Gaussian pyramid GP,(Y) can
be reconstructed from the obtained Laplacian pyramid
output LP,(Y) as follows.

GP,(Y) = max(0, LP,(Y) (15)
GP,(Y) = max(0, LP,(Y))
~+ upsample(GP,+1 + (Y)) (16)

where n = 1 to N - 1, the levels of a Gaussian pyramid
are ensured to be non-negative using the operation
x = max(0, x), akin to rectified linear units (ReLUs).
Derained Gaussian pyramid level GP4(Y) is projected
after the ReLU activation function. This process is
repeated until GP1(Y) is reached, which is the resulting
derained image.

Detection Pipeline

After applying the lightweight pyramid network to
derive derained images from original rainy images,

De-Rainy Input +
Annotated text File

Rainy Detected De-Rainy Detected
output output

o

Rainy Input +
Annotated text File

Object-Detection
Models

FIGURE 4. Object detection pipeline architecture for proposed LPN-IDD
model assessment.

we conducted object detection evaluations using preva-
lent pre-trained models: Faster-RCNN, YOLO-V3, and
YOLO-V7. Our evaluation employed a rainy dataset
suited for rain-related tasks but lacking annotations
necessary for object detection assessments. For object
detection on derained images, annotated files were
required for both rainy data (model inputs) and
the proposed model’s output (derained data). These
annotations encompass image coordinates, class labels,
x-y coordinates, height, and width.

We computed annotations for derained and rainy
images alike, enabling the calculation of mean average
precision (mAP) for the detection model. The annota-
tion files covered 15 classes, mirroring the 90 classes
of the MS COCO dataset. Upon inputting derained
images into pre-trained object detection models, the
models identified objects and delineated them with
bounding boxes, accompanied by confidence scores.
For comparative analysis, we also conducted detection
on rainy or ground truth images.

Our assessment employed mean average precision
(mAP) as the evaluation metric for object detection
models. To compute derained image mAP, we utilized
annotation files from ground truth images (comprising
annotated text files for derained images) alongside
corresponding detected annotations yielded by the
detection model. Similarly, for rainy image mAP,
annotation files from ground truth images (including
annotated text files for rainy images) were paired with
detected annotation files outputted by the detection
model. For both rainy and derained images, we con-
ducted detection using the aforementioned object
detection models, calculating average precision (AP),
recall, and precision for each class.
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B. LOSS FUNCTION

The widely used mean square error (MSE) loss [60], [61]
in image restoration often emphasizes squared penalties
and pixel-wise discrepancies [45], leading to excessively
smoothed outcomes. To address this concern and capture
semantic interdependencies among pixels, [45] introduces
structural similarity index (SSIM) and L1 losses, especially
relevant due to our multi-scale decomposition via Laplacian
pyramids. Following this approach, we integrate the same
loss functions into our image deraining network across each
scale. To retain high-frequency details, all pyramid levels
undergo training using a combination of SSIM and L1
losses [68], as denoted in Equation 17. Furthermore, for the
initial pyramid level, the focus shifts to L1 loss to uphold
higher-frequency nuances. The overall L1 loss is defined for
all levels, whereas levels two, three, and four used SSIM loss,
which can be defined as:

L (S0 LG, (G ))+)
L — ,_l n L) . n GT 17
22(23_1 L Gy (v, Gu(Vig) 7

i=1
Each subnetwork integrates shallow and deep feature
extraction blocks, incorporating dual attention mechanisms
to enrich and extract local and global features. Furthermore,
during back-propagation, gradients from lower pyramid
levels inform higher levels, facilitating effective param-
eter updates. Thus, our streamlined LPN-IDD network,
utilizing SSIM and L1 losses, outperforms more com-
plex deep models with extensive parameters employing
MSE loss.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We compare our LPN-IDD model with eight state-of-the-
art deraining models like JORDER [60], DID-MDN [34],
RESCAN [35], ReHEN [61], DGCN [62], LPNet [45],
DGNL [63], DRD-Net [31], MPRNet [64], NLEDN [65],
SDDRNet [66], PreNet [29]. All CNN-based comparative
methods are retrained on the Augmented-RainTrainH/L
dataset and their performance is evaluated on standard
evaluation metrics like PSNR and SSIM [68].

A. TRAINING SETTINGS

The proposed LPN-IDD model is trained using TensorFlow
version 2.12.0, CUDA Version 11.4 (NVIDIA Tesla P100-
PCIE) GPU of Kaggle. The code for the proposed model is
written in Python 3.10.11.

1) TRAINING DATASET

Due to the challenge of acquiring extensive real-world
clean/rain image pairs, we employ three synthetic rainy
datasets, namely Rain100H [62], Rain100L [62], and Rain12
[63], for both training and testing our proposed network.
Rain100H [62] comprises 1800 pairs of heavily rainy images
for training. For RainlOOL [62], 200 pairs of light rain
training images and 100 test image pairs are available. Rain12
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TABLE 2. Quantitative performance comparison of LPN-IDD with
different state-of-the-art image deraining methods on synthetic datasets.

Datasets Rain100H Rain100L Rainl2 Parameters
Methods SSIM/PSNR ~ SSIM/PSNR  SSIM/PSNR
DGNL 0.874/29.59  0.959/35.11 0.95/36.08 4,036,586
ReHEN 0.86/27.97 0.98/37.41 0.95/35.84 499,668
DGCN 0.90/30.48 0.98/37.59 0.95/35.9 2,731,071
JORDER 0.83/26.6 0.96/36.6 0.95/35.9 369,792
DRD-Net 0.88/28.09 0.97/37.11 0.95/36.59 5,230,214
DID-MDN  0.61/17.39 0.85/25.79 0.88/29.77 372,839
RESCAN 0.84/26.75 0.98/37.23 0.93/35.51 499,668
LPN-IDD 0.868/27.2 0.97/33.6 0.967/34.7 64,554

offers 12 pairs of clean/rain images. Given the limited size
of Rainl2, the training outcomes from Rainl00L are also
utilized for Rain12 testing purposes.

To enhance the training dataset, augmentation methods
like hflip, vflip, vhflip, and hvflip were used to modify
rain streak directions. This broadens the model’s ability
to recognize diverse directional patterns, enabling effective
learning from varied angles and orientations. So, after
applying augmentation techniques on datasets, the training
dataset includes 8000 images (321 x 481 pixels) with
variable Gaussian noise and rain streaks for enhanced
training. To capture detailed information, images are divided
into 100 x 100 patches, bolstering feature robustness and
deraining efficiency.

2) TESTING DATASET

For Rainl00H [62], Rain1400 [28] and Rainl0OL [62]
200 and 100 image pairs are used for testing. Reference [45]
released 300 real images of rain taken from the Internet as
a fresh data collection. The effectiveness of our LPN-IDD
model in real-world conditions is evaluated using this real-
world dataset and RainDS-real [69] and IVIPC-DQA [70]
real rainy datasets. The BSD500 dataset [31], known as the
Berkeley Segmentation Dataset, is a prominent benchmark
for CV and image processing tasks like segmentation, edge
detection, and texture analysis. It features 500 diverse,
human-analyzed images from the natural world. We examine
500 clean or non-rainy images from the BSD500 data set to
show that our LPN-IDD output is nearly identical to the clean
image.

B. EVALUATION ON SYNTHETIC DATASETS

According to Table 2, a quantitative analysis of our LPN-IDD
model shows the proposed method outperforms other state-
of-the-art deraining techniques on three different synthetic
rainy datasets affirming the efficacy of our approach in
producing clean outcomes. The LPN-IDD model surpasses
the comparative methods, mainly in SSIM metrics. The
computational analysis highlights LPN-IDD’s efficiency with
fewer parameters and lower cost while maintaining competi-
tive SSIM scores against larger-parameter alternatives.
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a. Input |mage b. Ground-Truth Image c. Jorder d. LPNet e. LPN-IDD
(PSNR/SSIM) (Infinite/1) (29.8/0.90) (19.2/0.83) (30.7/0.93)

a. Input Image b. Ground-Truth Image c. JORDER d. LPNet e. LPN-IDD
(PSNR/SSIM) (Infinite/1) (19.8/0.80) (21.1/0.82) (24.8/0.88)

P b. Ground-Tr c. JORDER d. LPNet e. LPN-IDD
(PSNR/SSIM) (Infinite/1) (18.3/0.78) (19.9/0.80) (25.1/0.89)

FIGURE 5. Rain-removal results of all comparing approaches on synthetic images selected from Rain 100H dataset with a static and complex
background and dynamic rain.

c. JORDER d. LPNet e.LPN-IDD
(32.1/0.90) (34.6/0.94) (36.5/0.95)

b. Ground-Truth Image
(Infinite/1)

a. Input Image
(PSNR/SSIM)

a. Input Image b. Ground-Truth Image c. JORDER d. LPNet e. LPN-IDD
(PSNR/SSIM) (Infinite/1) (26.1/0.86) (29.7/0.91) (34.8/0.96)
a. Input Image b. Ground-Truth Image c. JORDER d. LPNet e. LPN-IDD
(PSNR/SSIM) (Infinite/1) (24.8/0.89) (21.8/0.83) (33.2/0.91)

FIGURE 6. Rain-removal results of all comparing approaches on synthetic images selected from Rain 100L dataset with a static and complex
background and dynamic rain.
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¢. LPN-IDD
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FIGURE 7. Rain-removal results of all comparing approaches on synthetic images selected from the Rain1400 dataset with a static and complex

background and dynamic rain.

TABLE 3. Computational complexity of LPN-IDD and other
state-of-the-art models.

Method Avg run-time(s) Parameters
DID-MDN 0.539 372,339
NLEDN 0.891 1,005,379
RESCAN 0.940 499,668
ReHEN 0.576 298,263
PreNet 0.255 168,963
DRD-Net 13.019 5,230,214
SDDRNet 0.454 244,975
DGNL 0.037 4,036,586
DGCN 2.511 2,731,071
MPRNet 1.133 3,637,303
JORDER 0.18 369,792
LPN-IDD 0.18 64,554

While CNN-based methods excel in synthetic light rain
images, they often struggle with heavy rain, leaving behind
artifacts and face difficulty in handling diverse directional
rain streaks. Our qualitative evaluation compares LPN-IDD
with diverse deraining algorithms across various synthetic
rainy datasets and real-world data, illustrating robust gener-
alization and capturing variations in rain streak lengths and
directions.

In Fig. 5, we qualitatively compare our proposed LPN-IDD
model with various methods on the synthetic rainy dataset
Rain100H. The first image (a) depicts the rainy input, the
second (b) shows the clear ground truth and subsequent
images exhibit outcomes from different methods. Notably, (c)
and (d) models exhibit inadequate rain removal, introducing
blurriness and artifacts, and obscuring key details. In con-
trast, our proposed model (e) visually outperforms, closely
resembling the ground-truth image while maintaining edge
and crucial details.

In Fig. 6, the proposed model LPN-IDD is qualitatively
compared with various other comparison methods on the
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¢. LPN-IDD Output

a. Input Image b. LPNet Output

FIGURE 8. Qualitative evaluation of LPNet and proposed rain removal
model LPN-IDD on a rainy image of real-world dataset [45].

synthetic rainy datasets Rainl0OL and Rainl2. The first
image (a) represents the rainy input image and the second
image (b) is the ground truth image or clear image, other
images represent various comparison scheme results. It can
be clearly seen that (c) and (d) models do not remove rain
properly and it also creates blurry artifacts in the images. The
last image (e) which is our proposed model’s output image
visually outperforms the other comparative models.

The proposed model LPN-IDD is qualitatively evaluated
on the synthetic rainy dataset Rain1400 [28] which contains
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a. Input Image b. LPNet Output c. LPN-IDD Output

FIGURE 9. Qualitative evaluation of LPNet and proposed rain removal
model LPN-IDD on a rainy image of real-world RainDS-real [69] and
IVIPC-DQA [70] datasets.

a. Input clear image
of BSD500

b. LPNet results on a
clear image

b. LPN-IDD results on a
clearimage

FIGURE 10. Qualitative evaluation of baseline and proposed rain removal
model on a non-rainy image of BSD500 dataset [31].

diverse rainy scenarios and streak directions (rainy images
contain 14 different directional streaks with diverse intensi-
ties). In Fig. 7, the first three images in the first row represent
the heavy rainy input images of Rain1400 with different
directional streaks, and the next three images represent the
light rainy input images with different directional streaks.
The left first image is the ground truth image or clear image.
The images in the second row are our proposed model
LPN-IDD output images. Our method excels in various rainy
scenarios, producing results that closely resemble clear, non-
rainy images.

Table 3 demonstrates that our technique has a lower
computational cost as compared to all the state-of-the-art
methods as it has the least number of parameters when
compared to alternative strategies which have a huge number
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FIGURE 11. Task-driven evaluation of different object detection models
on rainy input.

of parameters. From all comparison methods, only two
achieve higher SSIM values but these models have a huge
number of parameters.

C. EVALUATION ON REAL-WORLD AND NON-RAINY
DATASETS

To further verify the robust adaptability of our model, the
proposed model LPN-IDD is qualitatively compared with
different rain removal strategies like LPNet and JORDER on
a real-world dataset. We conducted evaluations using rainy
images from the real-world dataset [45], RainDS-real [69]
and IVIPC-DQA [70] datasets which contain real rain images
of various lighting conditions and different scenes. The
outcomes, as illustrated in Fig. 8 and 9, indicate that while
LPNet does not entirely eliminate rain streaks and some rainy
streaks are still visible since rain patterns frequently have
complex distributions and diverse shapes, but our approach
LPN-IDD demonstrates significant improvements. It more
effectively reduces the visibility of rain streaks, yielding
results that more closely resemble the appearance of images
without rain. This evidence suggests that our method not
only stands out in synthetic rainy evaluations but also shows
promising capabilities in processing images from real-world
rain scenarios.

In Fig. 10, the proposed model LPN-IDD is qualitatively
compared with the baseline approach LPNet on a non-rainy
dataset BSD500 dataset [31]. LPN-IDD produces more
accurate results, while LPNet produces over-smoothness
in the image. Both quantitative and visual results clearly
depict that the proposed LPN-IDD approach is better than
conventional techniques in terms of PSNR and SSIM
scores [68], keeping a balance between edge and texture
details and also in terms of storage space due to its lightweight
nature.

D. TASK DRIVEN EVALUATION
For evaluating our proposed model’s object detection per-
formance on both rainy and derained images, we employed

VOLUME 12, 2024



K. Babar et al.: LPN-IDD: A Lightweight Pyramid Network for Image Deraining and Detection

IEEE Access

YOLO-V3

MAP = 43.96%

YOLO-V7

MAP = 53.55%

2

, :
17—
1’
1
26—
=
o
g———
-
=@

u 3 ¥
2 21 SR
— 1
— =
;

23
19
15 | 5

1 53

o

»

18
20

0.00 2
33 {0.00 2
3{000 19 0.0
¥ 4 06 [ ae as
Average Precision Average Precision

MAP = 42.58% MAP = 65.77%
24— | o
2 N ' ¢
21 | © ¢
15— T

15
g—————— 1@

as 10 a0 02 o4 as a8 )

Average Precision

FIGURE 12. mAP of different object detection models on rainy images
(first row) and derained results (second row) of our proposed LPN-IDD
model.

established state-of-the-art algorithms. We integrated these
algorithms by leveraging pre-trained object detection models,
readily available in prominent deep learning frameworks.
These models were originally trained on the COCO
dataset [67].

In essence, our objective isn’t solely enhancing rain detec-
tion accuracy. Instead, we utilize a robust object detection
model as a consistent benchmark to gauge diverse deraining
algorithms. This impartial approach ensures fairness, as we
refrain from fine-tuning object detectors specifically for
rainy or derained images. The object detection models, pre-
trained on the MS COCO dataset [67], provide an objective
assessment of the efficacy of distinct deraining techniques
from a complementary standpoint.

Fig. 11 illustrates the challenges encountered by object
detection models when applied to rainy images. The presence
of intricate directional rain streaks introduces complexity,
leading to diminished performance. Objects and backgrounds
often lack clarity due to rain-induced distortions, making
even human interpretation challenging. Fig. 12 shows that
by using the baseline LPNet deraining algorithm to remove
rain from images, the resulting images tend to have worsened
performance as compared to using the original rainy images
without applying any deraining mechanism in detecting
objects. Because LPNet produces blurry artifacts that are
not very clear and might remove important and meaningful
information that is why object detection models do not
perform well even after applying the deraining model on rainy
images.

Fig. 13 shows that by using the proposed LPN-IDD
deraining algorithm to remove rain from images, the resulting
images tend to have better performance as compared to using
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TABLE 4. Quantitative analysis in terms of the number of kernel numbers
and the number of parameters.

Datasets
Kernels SSIM/PSNR Parameters
Rainl00OH  Rain100L Rain12
16 0.82/23.4 0.96/33.4 0.95/33.7 7454
32 0.87/27.2 0.97/33.6  0.967/34.7 64554
64 0.88/29.2 0.98/33.9 0.98/35.6 273560

TABLE 5. Quantitative analysis in terms of number of pyramid levels.

Datasets
Pyramids SSIM/PSNR Parameters
Rainl0O0OH  Rain100L Rainl2
3 0.82/23.4  0.96/33.4 0.95/33.7 64554
5 0.87/27.2  097/33.6  0.967/34.7 64554
7 0.87/29.2  0.98/33.9 0.97/35.6 64554

the original rainy images without applying any deraining
model in detecting objects by using various object detection
models.

E. ABLATION STUDY

In this section, different configuration settings are discussed
and their impact on the performance of the proposed
methodology is evaluated.

1) INCREASING KERNAL NUMBER

To accommodate diverse image details or complex back-
ground details we validate our model on a varied number
of kernels for every pyramid level. We use higher kernel
numbers (32, 16) for lower levels and (4, 4, 16) for higher
levels on default. Table 4 demonstrates that our method
outperforms comparative approaches in both SSIM and
PSNR values across all datasets using the default kernel
configuration.

We have conducted experiments with the increased kernel
parameters for different pyramid levels. Using more kernels,
in our opinion, will further enhance performance. But when
the kernel count rises, more storage and processing power
are needed. We use 16 feature maps for layers where we use
8 convolution layers on default. We also perform experiments
by increasing kernel count along different pyramid levels i.e.
8,16,32. As can be seen, increased kernel numbers marginally
enhance PSNR and SSIM metrics but don’t significantly alter
visual quality. So, to attain a balance between effectiveness
and efficiency, we set our kernel parameter to decrease.

2) NUMBER OF PYRAMID LEVELS

The default setting for the number of pyramids is set
to 5, although experiments are conducted for other pyramid
numbers as well. In Table 5, average PSNR and SSIM
comparison is performed based on a different number of
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FIGURE 13. Task-driven evaluation of different object detection models on (a) LPNet and (b) LPN-IDD’s generated derained images.

TABLE 6. Quantitative comparison of LPN-IDD with different
state-of-the-art image deraining methods based on performance.

Datasets Rain100H Rain100L Parameters
LPN-IDD SSIM/PSNR  SSIM/PSNR

Spatial Attention 0.83/23.0 0.93/29.4 64494
Dual Attention 0.87/27.2 0.97/33.6 64554

pyramids for different datasets. Results clearly state that
increasing levels from 3 to 5 gives better performance. But
when we further increase the levels, results show there is a
minor increase in PSNR and SSIM values. This is because,
with five pyramid levels, the image is already split well,
making the learning task simpler. Adding more levels doesn’t
significantly help solve the problem better. Hence, we stick
to the default setting of using five pyramid levels for image
splitting.

3) SUBNETWORK STRUCTURE WITH DIFFERENT ATTENTION
BLOCKS

In this section, we analyze the performance of our model by
using different combinations of attention blocks used in the
subnetworks structure.

We first concatenate only the spatial attention block with
the proposed lightweight pyramid network, then we perform
experiments by concatenating a combination of spatial and
channel attention networks known as dual attention blocks
with the proposed LPN-IDD model. In Table 6 average
SSIM and PSNR comparison is performed based on different
combinations of attention blocks for different datasets.
Results clearly state that there is a huge difference in image
quality as the dual attention block shows remarkable results
in removing rain streaks from rainy images, however, there is
a minor increase in the number of parameters.
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V. CONCLUSION

A lightweight multi-scale LPN-IDD network based on a dual
attention network and Gaussian-Laplacian pyramid for image
deraining is proposed. The proposed method is comprised of
multiple independent subnetworks. Each subnetwork takes
the input from the Laplacian pyramid, enhances the features
of a decomposed image using a feature extraction block,
extracts key features using a multi-scale dual attention
module and predicts corresponding clean Gaussian pyramid
at each scale using recursive blocks. To accelerate the training
speed residual blocks are adopted and to reduce parameters
using a parameter-sharing strategy, recursive blocks are
implemented. Proposed LPN-IDD with approximately 60k
parameters showed outstanding performance as compared
to various other state-of-the-art image deraining methods
consisting of parameters in millions that have been used
for comparison in terms of visual and quantitative analysis.
To get a better generalization capability of the proposed
method, extensive experiments were performed on various
image deraining methods and also tested on real-world
rainy images for rain removal. We also used multiple object
detection methods to perform task-driven evaluations of our
proposed and comparative deraining models. The proposed
method in comparison with other approaches showed a PSNR
score of 23.755114 (dB) and an SSIM score of 0.87.

VI. FUTURE WORK

The proposed model LPN-IDD shows great performance
on the heavy and light rain streaks datasets. Our future
work includes considering more rainy patterns (Rain-drops,
Rain-mist, Rain-drops-streaks) and various rainy conditions
(cloudy, night rain), etc which will help to improve the
model’s ability to generalize well with real-world scenarios.
Increasing the number of training samples using a generative

VOLUME 12, 2024



K. Babar et al.: LPN-IDD: A Lightweight Pyramid Network for Image Deraining and Detection

IEEE Access

adversarial network can be a good choice to enhance the
draining performance. Furthermore, the lightweight and
multi-scale decomposition nature of the proposed model
LPN-IDD can be adapted to other image restoration tasks
like image dehazing. In the future, real-world rainy images
can also be used for training, but the lack of available clean
or reference pairs makes this process challenging. We plan
to shift towards semi-supervised or unsupervised learning to
better utilize unlabeled data particularly and to generalize
well with real-world scenarios. Additionally, our ongoing
efforts will focus on integrating the latest advancements in
deep learning and image processing, ensuring our model stays
advanced and effective for a wide range of image processing
challenges.
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