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ABSTRACT An algorithm for blind source separation (BSS) of the second heart sound (S2) into aortic
and pulmonary components is proposed. It recovers aortic (A2) and pulmonary (P2) waveforms, as well as
their relative delays, by solving an alternating optimization problem on the set of S2 sounds, without the
use of auxiliary ECG or respiration phase measurement data. This unsupervised and data-driven approach
assumes that the A2 and P2 components maintain the same waveform across heartbeats and that the relative
delay between onset of the components varies according to respiration phase. The proposed approach is
applied to synthetic heart sounds and to real-world heart sounds from 43 patients. It improves over two
state-of-the-art BSS approaches by 10% normalized root mean-squared error in the reconstruction of aortic
and pulmonary components using synthetic heart sounds, demonstrates robustness to noise, and recovery of
splitting delays. The detection of pulmonary hypertension (PH) in a Brazilian population is demonstrated
by training a classifier on three scalar features from the recovered A2 and P2 waveforms, and this yields an
auROC of 0.76.

INDEX TERMS Alternating optimization, auscultation, blind source separation, second heart sound.

I. INTRODUCTION
A. MOTIVATION
Cardiovascular diseases are the leading cause of death
worldwide [1]. Among the different cardiovascular diseases,
those associated with pulmonary hypertension (PH) represent
a significant burden for healthcare systems because of
difficulties in the early recognition of their symptoms as
well as the complexity and cost of the corresponding
treatments [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kin Fong Lei .

Direct measurement of pulmonary artery pressure (PAP)
enables the diagnosis of PH and heart failure, but a
non-invasive gold standard for direct measurement does not
currently exist. Direct measurement via Swan-Ganz right
heart catheterization or a CardioMEMS sensor implant [3]
is invasive, expensive, and only suitable for patients with
a high probability of PH. Recent research efforts for
non-invasive estimates of pulmonary pressures use Doppler
echocardiography. While echocardiography is relatively low
cost and has minimal risk, it presents significant limitations
for PAP estimation. Echocardiography requires specialized
equipment and a trained clinician. PAP estimates cannot
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be obtained via echocardiography in approximately 50%
of patients with normal PAP, nor in 10–20% of patients
with elevated PAP, nor in patients with absence of tricuspid
regurgitation [4]. Furthermore, Doppler-based PAP estimates
present an average error of 30% when compared with the
‘‘gold standard’’ offered by right heart catheterization [5].
Moreover, patients receive Doppler PAP estimates when
they have been referred to echocardiography and these
patients typically already present significant symptoms of
PH. Cardiac auscultation with a digital stethoscope offers a
more timely way to perform PH screening, such as in point-
of-care settings where PH exists but is asymptomatic. Digital
cardiac auscultation is lower cost test with minimal training
requirements and wide applicability.

The second heart sound (S2) in particular can be analyzed
to estimate the PAP. The S2 sound is formed by the vibrations
that occur as a result of the aortic and pulmonary valve
closures, and the subsequent vibrations that occur in the
cusps and in the walls and blood columns of the vessels and
ventricles. The S2 sound can be modeled as a summation of
A2 and P2 components. The A2 component represents sound
emitted by the aortic valve closure, and the P2 component
represents the pulmonary valve closure. In medical literature,
the audible delay between the onset of the A2 and P2
components is known as splitting [6]. The delay increases
during inspiration and decreases during exhalation due to
respiration’s effect on thoracic pressure [7], and analysis
of splitting is clinically relevant for diagnosis of diseases
and heart conditions including hypertension. The manual
detection of PH via traditional cardiac auscultation is highly
dependent on the expertise and subjective evaluation of
the operator, where the tasks are to first recognize subtle
differences in amplitude and clicks of the A2 and P2
components, and then decide if the spacing and amplitude is
out of normal range. Fig. 1 visualizes an example human S2
sound.

Evidence from the literature suggests that accurate estima-
tion of the PAP can benefit by computer methods to separate
the A2 and P2 components of the S2 sound [8]. From a
signal processing perspective, the separation of A2 and P2
components is challenging due to the overlap of signals in
the time and frequency domain, and due to the difficulty in
attributing the observed sound to the heart valve that caused
it. Moreover, standard methods for blind source separation,
such as independent component analysis (ICA) [9] and
morphological component analysis (MCA) [10], impose an
assumption of independence between components that does
not model the conditional dependence of the A2 and P2
components on the splitting delay caused by respiration.

In this work, we propose a novel algorithm for the
separation of the A2 and P2 components of S2 heart sounds.
The main outputs of the algorithm, visualized in Fig. 1, are
the A2 and P2 waveforms and the splitting delay. The main
contributions of the paper are:

1) The proposal of a novel, non-parametric and unsu-
pervised S2 separation algorithm that uses alternating

FIGURE 1. The novel unsupervised algorithm analyzes S2 sounds (1a) to
recover A2 and P2 waveforms (1c, left) and associated time delay
(1c, right). The proposed alternating optimization method obtains a single
P2 and A2 waveform for all heartbeats (1b), and the shifted P2 in Fig. 1c.
The shifted P2 is obtained as the difference of the A2 waveform from the
recorded S2 sound for each heartbeat.

optimization to separate a collection of S2 sounds into
a proposed unshifted A2 waveform and unshifted P2
waveform (see Fig. 1b), and a set of splitting delays
and corresponding shifted waveforms (see Fig. 1c);

2) The analysis of the proposed S2 separation algorithm
and its comparison with the state-of-the-art separation
approaches on a set of synthetically generated heart
sounds;

3) The application of the proposed separation algorithm
to real-world cardiac auscultation data to detect PH and
extract relevant features.

The remainder of this paper is organized as follows.
Related works are considered in Section I-B. Section II
contains the description of the proposed approach for
S2 source separation. Section III empirically validates
the separation algorithm on synthetic signals. Section IV
applies the proposed method to real-world heart sounds
for pulmonary hypertension detection. Finally, the obtained
results are discussed in Section V and conclusions are drawn
in Section VI.

B. RELATED WORK
We identify four different classes of approaches that have
appeared in the literature in recent years to separate S2 sounds
into their components: (1) standard BSS algorithms that do
not account for specific characteristics of the S2 sound;
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(2) ad hoc, predetermined waveforms; (3) signal decomposi-
tions; and (4) methods based on splitting statistics/dynamics.

A first class of approaches uses standard blind source
separation (BSS) algorithms to detect A2 and P2 components
of S2 sounds [11], [12]. ICA [9] assumes that the components
constituting the observed signal are statistically independent
and synchronized in the time domain. These two assumptions
do not fit well with the underlying generation of the S2 sound.
For instance, the onset of P2 can be inferred through its
conditional dependence on the onset of A2 and the respiratory
phase. A general mathematical model of shifted ICA [13] can
model splitting statistics. In this work we leverage some tools
from shifted ICA to simultaneously capture the A2 and P2
waveforms and their delays. Explicit separation of the A2 and
P2 components with BSS is an open problem.

A second class of approaches models the A2 and
P2 components via an ad hoc pre-determined waveform
generating function, whose parameters are fitted to the
observed S2 data [4], [14], [15], [16], [17], [18], [19]. For
instance, transient nonlinear chirp models were developed
as a result of analysis of isolated A2 and P2 components
extracted from heart sounds recorded in pigs [4], [14], [20].
Information regarding the concentration of the components
around their instantaneous frequencies was obtained from the
visual inspection of the signal’s Wigner-Ville distribution.
A fully automatic approach to separating the S2 sound into its
components considered Gaussian chirplets [15] fitted to the
observed S2 signal using a statistically optimal null filter [16].
Similarly, [17] uses the continuous wavelet transform to
decompose the observed S2 sounds using a nonlinear tran-
sient chirp as a mother wavelet. The A2 and P2 components
have also been modeled with Gabor wavelets [19]. More
recently, the A2 and P2 components have been modeled via
Gaussian windowed sinusoids, whose parameters (amplitude,
location, and width of the Gaussian windows as well as
sinusoids frequency and initial phase) are obtained by solving
a least-squares optimization problem [18]. By design, the
methods in this class of approaches are limited by the need
to define a hand-crafted waveform or waveform generating
function. Such ad hoc approaches are not flexible enough to
model the natural variation of S2 sounds.

A third class of approaches uses signal decomposition
as a way of retrieving A2 and P2 components [21], [22],
[23], [24]. A Fourier transform of manually cropped regions
of the S2 was used to analyze A2 and P2 components [25].
The continuous and discrete wavelet transforms have been
used to visually represent A2 and P2 components and
manually find their relative delay by visual inspection
[21], [22]. The Hilbert transform has also been utilized,
along with a wavelet transform, for the analysis of the
A2 and P2 splitting delay [24]. A slightly more automated
method for detecting peaks of the A2 and P2 components and
their relative delay uses the Hilbert vibration decomposition
(HVD) followed by an analysis of the smoothed pseudo
Wigner-Ville distribution [23]. However, this work still uses

FIGURE 2. Application to real-world data: Recovery of A2 and P2
components and splitting statistics via an unsupervised alternating
optimization algorithm. Our main contribution is the alternating
optimization step.

visual inspection to choose a number of components retained
from the HVD.

A fourth class of approaches has recently emerged to
provide fully automatic separation of S2 into A2 and P2
components, via analysis of splitting delays due to respira-
tion. In particular, the work by Tang et al. [26] exploits an
assumption that, across many heartbeats, the A2 component
occupies the same position in the S2, whereas P2 component
experiences a relative shift according to the respiration phase.
Therefore, the A2 components are estimated by averaging the
collected S2 sounds and the P2 components are obtained by
subtracting the derived A2 component from the S2 sound.
Secondly, the assumption that A2 is obtained by averaging is
a restrictive assumption that makes the algorithm sensitive to
alignment of S2 sounds. Other work attempts to recover the
A2 and P2 components using a joint multivariate Gaussian
mixture model (GMM) from S2 sounds [27]. However, this
approach is a supervised machine learning approach that
requires the availability of ground truth annotated A2 and
P2 components. An annotated dataset of A2 and P2 sounds
is difficult or impossible to collect on human subjects or in
standard clinical practice because it is not clear how exactly
to separate the superimposed A2 and P2 components, and the
model was not tested on real-world data.

The proposed blind source separation algorithm overcomes
shortcomings of the surveyed literature by extending previous
preliminary results presented in [28] to separate the A2 and
P2 components of the S2.While ad hoc pre-determinedwave-
form restrictions limit the utility of some of the approaches
previously presented in the literature, the proposed method
does not pre-define the waveform. Some approaches study
splitting statistics to obtain A2 and P2, but they require
visual inspection andmanual human intervention. In contrast,
the proposed method is fully automated. Some of the fully
automated approaches suffer from the lack of available data;
the proposed method is unsupervised and requires only S2
heart sound data.

II. PROPOSED METHOD
The proposed algorithm recovers the aortic (A2) and
pulmonary (P2) components as well as their relative delays
from a set of S2 heart sounds. The overall approach
and its underlying modeling assumptions are discussed in
detail. Fig. 2 visually summarizes the approach applied to

34634 VOLUME 12, 2024



F. Renna et al.: Separation of the A2 and P2 Components of the S2 via Alternating Optimization

Algorithm 1 Proposed S2 Sound Source Separation
Algorithm
Require: {sm(tTs) | m ∈ {1..M}, t ∈ {0..N − 1}} ▷ A

set ofM S2 sound samples, each of length N, previously
extracted from a PCG recording ▷

1: Initialize A2 component estimates (See Eq. 3)
â(0)(tTs) =

1
M

∑
m sm(tTs)

τ̂
(0)
A,m = 0 ∀ m ▷

2: Initialize P2 component estimates (See Eq. 4, 5, and 6)
p̂(0)(tTs) =

1
M

∑
m sm(tTs) − â(0)(tTs − τ̂

(0)
P,m)

τ̂
(0)
P,m = argmaxtTsρ

(0)
1 ⊗ ρ

(0)
m ∀ m = 1, . . . ,M

▷

3: Implement Iterative Alternating Optimization
4: for i ∈ {1..I } do ▷

5: Estimate Delays via Projected Gradient Descent (see
Eq. 7 and 10)
[τ̂ (i)A,m,τ̂

(i)
P,m] = argminτA,m,τP,m∑
f

∣∣∣Sm(fFs) − Â(i)(fFs)e−j2π fFsτA,m
∣∣∣ ▷

6: Estimate A2 and P2 Waveforms (via Moore-Penrose
pseudoinverse, see Eq. 11–15)
[â(i+1)(·), p̂(i+1)(·)] = argmina(·),p(·)

∑
m

∑
t∣∣∣sm(tTs) − a(tTs − τ̂

(i)
A,m) − p(tTs − τ̂

(i)
P,m)

∣∣∣2
7: end for ▷

8: Obtain A2 and P2 waveforms (see Eq. 16 and 17)
a(tTs − τA,m)∗ = â(I )(tTs − τ̂A,m)
p(tTs − τP,m)∗ = sm(tTs) − â(I )(tTs − τ̂

(I )
A,m) ▷

9: Return waveforms and delays
return a(·)∗, p(·)∗, {τ̂ (I )A,m}, {τ̂

(I )
P,m}

real-world data, and Algo. 1 presents the proposed method
as an algorithm.

A. SIGNAL MODEL AND SETUP
We are presented with the observation of a series of M
S2 sounds obtained from a single heart sound recording of
a given patient. It is assumed that suitable pre-processing
has been applied to first extract and align the S2 sounds in
the heart sound audio recording. An example preprocessing
approach is described in Section IV-D. The observed S2
signals are assumed to be sampled with period Ts. Moreover,
N samples are collected for each S2 sound, where N depends
on the number of heartbeats in the recording. For example,
Fig. 1 depicts M = 5 recorded S2 sounds, each of N =

200 samples, and sampling period of Ts = 1 millisecond.
Assumptions and Motivation: It is assumed that each

observed S2 sound can be described as a sum of recovered
A2 and P2 components, or informally s(·) = a(·) + p(·).
As a blind method, it is assumed that no prior information
is disclosed about the shape of the waveforms a(·) and p(·).
It is also assumed that the stethoscope and subject do
not move relative to each other during recording and that
the volume of the S2 signal is approximately unchanged

during recording. The model used to recover A2 and P2
components is motivated by the observation that respiratory
activity modulates the morphology of S2 sounds through
changes in the pleural pressure and the pulmonary blood
flow. Namely, at late inspiration and early expiration, the
relative time distance (i.e., the split) between the A2 and
P2 components is increased due to the elevated pressure in
the right ventricle, whereas the morphology of different S2
sounds is kept approximately constant during apnea1 [7]. For
this reason, we assume that the A2 and P2 components in
different S2 sounds of the same recording, respectively, have
the same shape but different delays. The observed S2 sounds
are modeled as follows:

sm(tTs) = a(tTs − τA,m) + p(tTs − τP,m), (1)

where m = 1, . . . ,M indexes the heart sounds of the patient,
t = 0, . . . ,N − 1 indexes samples of the signal, and the τ·,m
terms identify delays (offsets) from the start of the S2 sound.
Objective: The objective of the considered source separa-

tion method is to recover the waveforms a(·) and p(·) and the
delays τA,m and τP,m from the observation of the S2 signal
sm(tTs), for all m = 1, . . . ,M observed S2 sounds.

The method proposed for separating the A2 and the
P2 components of the recorded S2 sounds formulates
a least-squares optimization problem whose solution is
approximated via an alternating iterative approach. The
considered optimization problem is expressed as follows:

[a(·), p(·), {τA,m}, {τP,m}]∗

= argmina(·),p(·),{τA,m},{τP,m}

M−1∑
m=0

N−1∑
t=0

|sm(tTs)

−a(tTs − τA,m) − p(tTs − τP,m)
∣∣2 , (2)

which aims to minimize the mean-squared error (MSE)
between the S2 observations and the superposition of the
separatedA2 and P2 components. This objective assumes that
the A2 and P2 sounds in different heartbeats have the same
respective shapes but different delays.

After an initialization step, the optimal solution (2) will
be approximated by an alternating iterative algorithm which
alternates between finding the sets of delays {τ̂A,m}, {τ̂P,m}

that minimize the MSE with a given pair of waveforms
â(·), p̂(·), and alternately finding the waveforms â(·), p̂(·) that
minimize the MSE for given sets of delays {τ̂A,m}, {τ̂P,m}.
As it will be shown in the remainder of this section, the
proposed alternating optimization approach simplifies the
problem in (2) and outputs an inferred shape of thewaveforms
associated with the A2 and P2 components as well as their
corresponding delays in each heartbeat.

1Apnea is a medical term that describes the temporal cessation of
breathing, such as between inhale and exhale, when there is no movement
of the muscles and the volume of the lungs is not changing.
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B. INITIALIZATION
The initial estimates of waveforms and delays associated to
A2 and P2 components are obtained by applying the method
described in [26], which computes an estimate of the A2
component by simply averaging the observed S2 sounds. This
method assumes the A2 components appear with the same
delay in each observed S2 sound, while the contributions of
the corresponding P2 components have different delays in
each S2 sound, and are zeroed out by averaging. Therefore,
we can write the initial estimate â(0)(tTs) as:

â(0)(tTs) =
1
M

∑
m

sm(tTs), (3)

where we have introduced the use of the superscript (·)(i)

to denote the estimate at the i-th iteration of the algorithm.
According to the model used in [26], the delays associated to
the A2 components are the same in all S2 sounds. Therefore,
without loss of generality, we can assume in our initialization
that τ̂ (0)A,m = 0 for all m = 1, . . . ,M .

The initial values p̂(0)(·) and τ̂
(0)
P,m are obtained by a heuristic

approach in three steps. First, an unaligned P2 representation
is obtained by subtraction in Eq. (4) for allM delays. Second,
delays τ̂

(0)
P,m are obtained in Eq. (5) by finding the position

in time of the maximum cross correlation between the P2
representations of the first heartbeat (m = 1) and each of the
M heartbeats. Third, the P2 waveform is obtained in Eq. (6)
by averaging an aligned P2 representation:

ρ(0)
m (tTs) = sm(tTs) − â(0)(tTs) (4)

τ̂
(0)
P,m = argmaxtTsρ

(0)
1 (tTs) ⊗ ρ(0)

m (tTs) (5)

p̂(0)(tTs) =
1
M

∑
m

sm(tTs) − â(0)(tTs − τ̂
(0)
P,m), (6)

where ⊗ is the cross correlation operator, and where Eq. (4)
and Eq. (5) are evaluated for all m ∈ {1, . . . ,M}.

C. DELAY ESTIMATION
Given the estimates â(i)(·), p̂(i)(·) of the A2 and P2 waveforms
obtained from the i-th iteration of the algorithm, the
corresponding delay estimates {τ̂

(i)
A,m}, {τ̂

(i)
P,m} are obtained as

the solution of the following problem:

[{τ̂ (i)A,m}, {τ̂
(i)
P,m}]

= argmin{τA,m},{τP,m}

∑
m

∑
t

|sm(tTs)

−â(i)(tTs − τA,m) − p̂(i)(tTs − τP,m)
∣∣∣2 ,

(7)

where optimization can be performed independently for the
different indexes m.
In addition, it is possible to express an optimization

problem equivalent to (7) in the frequency domain, by lever-
aging Parseval’s identity, which says that the integral of the
square of a function in the time domain equals the sum of
squares of the function’s Fourier coefficients. We denote with

Sm(fFs), Â(i)(fFs), and P̂(i)(fFs) the discrete Fourier transform
(DFT) of time-domain signals sm(tTs), â(i)(tTs), and p̂(i)(tTs),
respectively, where Fs =

1
NDFTTs

and NDFT ≥ N is the
number of data points used to compute the DFT. Then, the
frequency-domain delay optimization problem for a given
index m can be written as:

[τ̂ (i)A,m, τ̂
(i)
P,m] = argminτA,m,τP,m

∑
f

(8)∣∣∣Sm(fFs) − Â(i)(fFs)e−j2π fFsτA,m (9)

−P̂(i)(fFs)e−j2π fFsτP,m
∣∣∣2 , (10)

where the gradient with respect to [τ̂ (i)A,m, τ̂
(i)
P,m] can be

expressed in closed form. Based on this observation, the
delay estimates {τ̂

(i)
A,m}, {τ̂

(i)
P,m} are obtained by approximating

the solution of (10) via projected gradient descent. At each
gradient descent iteration, the delays are projected to a
physiologically feasible range. The time split between A2
and P2 components usually ranges between 10 ms and
50 ms [26], and we therefore constrain delay values in the
interval [−100, 100] ms.

D. WAVEFORM ESTIMATION
Given the current delay estimates τ̂

(i)
A,m, τ̂

(i)
P,m, and the

observations sm(tTs), the signal waveforms associated to the
(i + 1)-th iteration, â(i+1)(·), p̂(i+1)(·) are obtained again by
minimizing the MSE, that is, they are given by the solution
the following optimization problem:

[â(i+1)(·), p̂(i+1)(·)] = argmina(·),p(·)
∑
m

∑
t

|sm(tTs)

−a(tTs − τ̂
(i)
A,m)−p(tTs − τ̂

(i)
P,m)

∣∣∣2 .

(11)

Assuming that the admissible delay estimates are always
obtained as multiples of the sampling period Ts, rather than
interpolated between samples, the problem in (11) can be
cast as a standard linear least-squares problem, which is
overdetermined whenM > 2. The problem can be expressed
in matrix form as follows:[

a(i+1)

p(i+1)

]
= argmina,p∈RN

∥∥∥∥s − X(i)
[
a
p

]∥∥∥∥2
2
, (12)

where the column vector s ∈ RM ·N concatenates all N
samples of all M observed S2 sound signals of a given
recorded signal, the column vector a ∈ RN contains the
samples of the estimated signal a(·), and the column vector
p ∈ RN contains the samples of the estimated signal p(·).
The binary ‘‘shift’’ matrix X(i)

∈ {0, 1}M ·N×2N is formed
by M × 2 blocks of dimension N × N , each containing a
‘‘shifted version’’ of the N × N identity matrix, where the
values of such shifts depend on the delays τ̂

(i)
A,m and τ̂

(i)
P,m.
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Namely, we can write

X(i)
=



T(i)
A,0 T(i)

P,0
...

...

T(i)
A,m T(i)

P,m
...

...

T(i)
A,M T(i)

P,M


, (13)

where T(i)
j,m ∈ {0, 1}N×N for j = {A,P} and the element in the

k-th row and ℓ-th column of the matrix T(i)
j,m is given by

T(i)
j,m[k, ℓ]=

 δk, ℓ+⌊τ̂
(i)
j,m/Ts⌉

, if τ̂
(i)
j,m ≥ 0

δk+⌊τ̂
(i)
j,m/Ts⌉, ℓ

, otherwise,
(14)

for j = {A,P} and m = 0, . . . ,M − 1, where δk,ℓ is the
Kronecker delta symbol.

When the matrixX(i) has full column rank, the correspond-
ing linear least-squares problem (12) has a unique solution
which is given by[

a(i+1)

p(i+1)

]
= (X(i))†s =

(
(X(i))TX(i)

)−1
(X(i))Ts, (15)

where (·)† represents the Moore-Penrose pseudoinverse.
After I steps, the obtained unshifted waveforms aI and pI ,
such as those shown in Fig. 1b, are subsequently obtained in
shifted form in the next sub-section.

E. TERMINATION
The algorithm is terminated after a fixed number I of
iterations of alternating delay and waveform estimation
processes. After the last iteration, the recovered waveforms
aI and pI are combined with the delays [τA,m] and [τP,m] to
obtain one shifted waveform for each delay:

a(tTs − τA,m)∗ = â(I )(tTs − τ̂
(I )
A,m) (16)

p(tTs − τP,m)∗ = sm(tTs) − â(I )(tTs − τ̂
(I )
A,m). (17)

In Eq. 17, the recovered shifted P2 waveforms p(tTs − τP,m)∗

are not obtained by simply considering p̂(I )(tTs − τ
(I )
P,m),

but rather from the difference of the shifted A2 from the
S2 signal. This choice has precedent in the literature, where
existing approaches obtain the P2 via subtraction [4], [26].

III. NUMERICAL RESULTS WITH SYNTHETIC DATA
This set of experiments examines the performance of the
proposed algorithm when compared to the unsupervised
approach of [26], and the supervised approach of [27] for
the separation of synthetic S2 sounds. The three evaluated
methods share a similar set of assumptions regarding
the variability of A2 and P2 components in different S2
sounds from a same heart sound recording, thus allowing a
meaningful and fair comparison.

Subsection III-A evaluates how well the A2 and P2
waveforms are recovered as the difficulty of the separation
task increases. Subsection III-B evaluates the robustness to

additive white Gaussian noise. Subsection III-C evaluates
how well the predicted splitting delays correspond to the true
splitting delays from the observed synthetic S2 signals.
Generation of Synthetic S2 signals: The numerical results

shown in this section are obtained by considering synthetic
signals generated using the model described in [18]. In par-
ticular, the S2 sounds are obtained as the superposition of
A2 and P2 components modeled via Gaussian windowed
sinusoids. The model is parameterized with respect to the
frequency and phase of the sinusoidal signals as well as
the amplitude, location, and width of the Gaussian window
functions. These parameters are sampled from distributions
obtained by fitting phonocardiogram (PCG) recordings
obtained from a population of 150 subjects with age above 40
that were referred to a coronary computed tomography
angiography with a low or intermediate pre-test probability
for coronary artery disease (see [18] for details).
Proposed Model Hyperparameters: In all the reported

results, the proposed alternating optimization method is run
with a fixed number of iterations, I = 10, and the delay
optimization step consists of 10 gradient descent iterations
with step size γ = 10−12 applied to frequency-domain
signals computed over NDFT = 2048 samples. The method
in [27] is trained using 100 randomly generated heart sounds,
each containing 40 heartbeats. The separation results for
the three considered methods are averaged over 200 ran-
domly generated heart sound recordings, each containing
40 heartbeats.

A. SEPARATION ACCURACY IN THE PRESENCE OF BIAS
A series of tests of increasing difficulty are conducted to
evaluate how well the synthetic A2 and P2 waveforms are
recovered from observed S2 signals. In the real world, some
patients can have wider splitting delays between A2 and P2
components than others [6], [7]. When the splitting delay is
small, the A2 and P2 components overlap and the separation
problem is more difficult. To better understand how the
models might be biased by real-world variability across
patients, it is reasonable to test recovery when the splitting
delay is smaller versus when it is larger. Secondly, within
any given patient, inhalation typically increases the splitting
delay and exhalation decreases the delay. We assume that,
over a set of S2 sounds, the delays of S2 and P2 components,
respectively, are uniformly distributed. To simultaneously
capture statistics of inhalation within any given patient’s S2
sound recording and expose bias to the natural variation of
splitting found across different patients, a maximum delay
1max ∈ {10, 15, 20, . . . , 80} ms between the A2 and P2
components is introduced. For each maximum splitting delay
1max, a dataset of S2 sounds is generated by sampling
splits from the uniform distribution U(0, 1max) ms. These
tests are intended to capture splitting characteristics across
patients, while assuming uniformly distributed splits within
any patient.

The empirical measurement describing how well the
A2 and P2 components are recovered is determined by
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FIGURE 3. Recovers synthesized A2 and P2: The proposed algorithm is
consistently best at recovery, for all tested 1max, including when the A2
and P2 components have small delay between them. The x-axis
represents S2 sounds with wide or narrow splitting (i.e., large or small
1max, respectively) between A2 and P2 signals. All models favor wide
splitting.

normalized root mean-squared error (NRMSE), defined as

NRMSE ≜

∣∣∣∣a(tTs − τA) − a(tTs − τ ∗
A )

∗
∣∣∣∣
2

||a(tTs − τA)||2
+∣∣∣∣p(tTs − τP) − p(tTs − τ ∗

P )
∗
∣∣∣∣
2

||p(tTs − τP)||2
, (18)

where a(·) and p(·) are the ground truth synthesized
waveforms and a(·)∗ and p(·)∗ the predicted waveforms, and
τA, τP, τ ∗

A and τ ∗
P are each vectors of lengthM containing the

respective ground truth or predicted delay values. Note that
τ ∗
A is a zeros vector.
Fig. 3 visualizes the NRMSE values of the proposed

separation algorithm and the methods in [26] and [27] under
varying 1max. As expected, all methods show that NRMSE
error increases as the separation task is made harder by
greater overlap of the A2 and P2 components. The proposed
approach recovers the synthetic A2 and P2 waveforms
more precisely than the methods in [26] and [27] for all
considered A2-P2 splits. Even when then the signals are
largely overlapping in the time domain, where the separation
problem is designed to bemore difficult, the proposedmethod
reconstructs waveforms with the lowest error (e.g. when
1max = 20 ms, NRMSE is less than 0.2). The improvement
over the related methods can be explained by observing that
a key assumption in these baseline methods is relaxed in this
work. Namely, for small values of 1max, the assumption that
expected value of the P2 is approximately a flat signal

1
M

∑
m

p(tTs − τP,m) ≈ 0, (19)

is too restrictive. For instance, Eq. (19) is explicitly defined
in [26] in order for their method to obtain the A2 component
by averaging the S2; our approach initializes A2 by

FIGURE 4. Robust to distortion by noise: The proposed method is better
for SNR > 16 dB. Error increases as noise makes the signal increasingly
random. The proposed unsupervised method can be outperformed by the
supervised method [27] after significant noise corruption, and
outperforms [26].

averaging, but then modifies it with alternating optimization.
The delays obtained via the proposed approach increase
flexibility and degrees of freedom of accurately recover the
A2 and P2 waveforms.

B. ROBUSTNESS TO NOISE
Heart sound recordings are often subject to noise. A series
of experiments test robustness to progressively increasing
amounts of noise. In particular, when independent additive
white Gaussian noise (AWGN) distorts the A2 and P2 com-
ponents of the synthetically generated S2 sounds at different
signal-to-noise ratio (SNR) levels, then the S2 sounds of
different heartbeats are less well modeled by shifted versions
of the same waveforms. Noise therefore challenges the key
modeling assumption that the waveform is static across
heartbeats. Fig. 4 reports the NRMSE obtained with the
considered separation algorithms for different SNR values
and for 1max = 40 ms.

As shown in Fig. 4, the proposed approach outperforms the
method in [26] for all considered SNR values greater than
zero. The proposed approach does not require the A2 sounds
must be perfectly aligned in all the observed S2 recordings,
hence its superior performance. The proposed unsupervised
method outperforms the supervised GMM-based separation
method in [27] for levels of noise below approximately
16 dB, while the supervised approach gives empirically lower
separation errors when there is significant noise (SNR values
below 16 dB). Note that the considered GMM-based method
requires access to separated A2 and P2 components for
training, and this data is difficult or impossible to collect in
real-world human heart sound data and the technology for
practical application of the supervised method does not yet
exist. With similar reasoning, continuing research on noise
cancellation approaches would improve the observed SNR,
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FIGURE 5. Superior recovery of split delays between the synthesized A2
and P2 components. Compared to approaches [26] (left) and [27]
(middle), the proposed method (right) has largest R2 correlation and
lowest error. Each plot visualizes a scatter plot of 120k samples. Red line
is ideal.

and this serves to benefit the proposed algorithm over other
methods.

C. RECOVERY OF A2-P2 SPLIT DELAYS
Time delays between the A2 and P2 components of an
S2 sound are clinically relevant, and estimation of delays
should be accurate and minimally biased. We compare
recovered time delays 1∗

m produced by the considered
separation algorithms to corresponding ground truth time
delays 1m on a dataset of M = 120000 synthetic heart
sounds.

All delays are computed via the same procedure. Given
as input the A2 and P2 components of either a ground truth
signal or recovered signal, a delay is computed as the time
difference between the main peak of the P2 component and
that of the A2 component. For each component, its main
peak is computed using the homomorphic envelogram [29]
of the component [26]. A homomorphic envelogram of a
signal is a strictly positive representation of the signal that
smooths out splits and serrated peaks in the signal, and
it is obtained by applying a low pass filter to the natural
logarithm of the component and then exponentiating. For
instance, the homomorphic envelogram of the P2 component
is hP,m(tTs) = exp(L(ln(p(tTs − τP,m)))) for a low pass
filter L(·). In Eq. (20), the main peak is obtained as the
weighted sum of the time instants, with weights given by the
normalized homomorphic envelogram. Denoting hA,m(tTs)
and hP,m(tTs) for the homomorphic envelograms of the A2
and P2 components of the m-th recorded S2 sounds, the
ground truth A2-P2 split is computed as

1m =

∑
t hP,m(tTs) · tTs∑

t hP,m(tTs)
−

∑
t hA,m(tTs) · tTs∑

t hA,m(tTs)
. (20)

FIGURE 6. Digiscope Collector technology used to record the heart
sounds [33] in the considered real-world dataset.

Given a vector of M ground truth delays 1, and M
predicted delays 1∗, the normalized mean squared error is

NRMSE1 ≜
||1 − 1∗||2

||1||2
. (21)

The scatter plots in Fig. 5 compare the ground truth
delays of the A2-P2 splits as obtained from the generative
signal model to the corresponding estimates obtained from
the source separation algorithms. The proposed separation
method has the lowest error. It has an NRMSE1 of 0.05 com-
pared to 0.16 for the algorithm in [27] and 0.26 for that
of [26]. It also has the lowest R2 coefficient of determination.

IV. APPLICATION TO REAL-WORLD DATA
We also tested the proposed separation algorithm on real-
world data, in order to assess its potential in a real, clinical
environment. In this scenario, in the presence of only PCG
recordings, ground truth values for the waveforms associated
with the A2 and P2 components of S2 sounds are not
directly available. In the absence of separated components
for training, the supervised GMM-based separation algorithm
of [27] cannot be considered for comparison in this section.
Moreover, the separation performance of the proposed
method is gauged indirectly by evaluating the statistical
significance for detecting PH of features extracted from the
resulting separated A2 and P2 components.

The features analyzed are chosen to reflect the observation
that specific characteristics of the S2 have been linked to the
pulmonary blood pressure. In particular, features extracted
from separated A2 and P2 components, as the time split,
peak-to-peak ratio, energy ratio, etc., are widely recognized
as potential indicators of PH [5], [30], [31]. In fact, the
analysis of the S2 has been studied as a potential way to
provide non-invasive estimates of the PAP [4], [32].

A. MATERIALS
The heart sounds used for this studywere collected in the Real
Hospital Português, Brazil, using a Littmann 3200 electronic
stethoscope, and the DigiScope Collector software [33]
(Fig. 6). Auscultation was performed over the second left

VOLUME 12, 2024 34639



F. Renna et al.: Separation of the A2 and P2 Components of the S2 via Alternating Optimization

intercostal space, collecting sounds of duration approxi-
mately 60 seconds in a quiet environment. All collected
heart sounds were collected at 4 kHz and the amplitudes
were quantized to 8-bit resolution. The heart sounds were
anonymized and analyzed in Portugal with the approval
of Real Hospital Português and the Ethics Committees of
University of Porto, Portugal (approval reference number
391.391 of September 6th, 2013).

The considered dataset comprises a total of 43 heart sound
recordings collected from 43 adult patients, 11 of which
were diagnosed with PH, while the remaining 32 were not
diagnosed with PH.

B. PRE-PROCESSING
The raw PCG signals were first filtered with high-pass
and low-pass Butterworth filters of order two with cut-off
frequencies equal to 25 Hz and 400 Hz, respectively, in order
to keep the main spectral information associated to both
A2 and P2 components while rejecting out-of-band noise.
Then, the spike removal algorithm presented in [34] was
applied to the filtered signals to address ambient noise, and
then each recording was normalized to zero mean and unit
variance.

C. SEGMENTATION
The pre-processed PCG signals were segmented to determine
the exact localization of S2 sounds using the combined
convolutional neural network (CNN) and hidden Markov
model (HMM) approach presented in [35]. However, further
manual correction was applied, due to the presence of
segmentation errors induced by variable heart rates and due
to the presence of significant systolic murmurs in some of the
patients affected by PH.

D. S2 ALIGNMENT
The S2 segments extracted from each PCG recording are
first aligned, in order to allow the use of the initialization
procedure described in Section II-B and in order to facilitate
the extraction of the A2 and P2 components. Alignment is
performed in two stages: (i) coarse alignment and (ii) fine
alignment.

Coarse alignment is obtained by computing first the
homomorphic envelogram [36] of the PCG to determine the
time intervals of S2 sounds where the majority of the energy
is contained. The homomorphic envelograms of the different
S2 sounds extracted from a given PCG are aligned using
a cross-correlation analysis. In particular, for each of the
S2 sounds, the alignment shift was obtained as the lag index
that maximizes the correlation between the first S2 sound of
the recording and the given S2 sound within a search window
of 200 ms centered around the zero-lag index.

Then, fine alignment is obtained by applying the approach
again, and directly to the filtered PCG signal of the coarsely
aligned S2 segments. Also in this case, the lag index that
maximizes the cross-correlation between the first S2 in the

FIGURE 7. Example S2 sounds extracted from a PCG recording of the
considered real-world dataset before (left) and after (right) the alignment
procedure. Periodicity of respiratory phase is visible in the aligned S2
sounds.

recording and the given S2 sound is searched for within
a window of 200 ms centered around the zero-lag index.
Moreover, only segments corresponding to a normalized
correlation coefficient greater than 0.2 are retained, in order
to exclude S2 segments affected by excessive artifacts and
noise levels.

Note that the proposed two-step alignment procedure
mainly aims to increase robustness against noise by consider-
ing the homomorphic envelogram of the S2 sounds in the first
step. Fig. 7 reports an example of S2 sounds extracted from a
PCG recording of the considered dataset before and after the
two-steps alignment procedure. Fig. 1 shows an example of
the source separation into the A2 and P2 components.

E. DISCRIMINATING PH
First, the separation of A2 and P2 components is performed
by applying the procedure described in Section II or the
method described in [26] to the aligned S2 segments of a PCG
recording.

Then, features are extracted from the obtained A2 and P2
components in order to discriminate heart sounds recorded
from patients with and without PH. In particular, it has been
observed that, most commonly, heart sounds of patients with
PH present louder P2 components [31], along with larger
A2-P2 time splits [4].

The features extracted from the recorded PCG signals are
also extracted from the outputs of our proposed separation
algorithm, and also the algorithm of [26]. They are:

• Mean time split: We compute the mean relative time
delay between A2 and P2 components from the homo-
morphic envelope as it was defined in Eq. 20,

M
1̂

=
1
M

M−1∑
m=0

1̂m. (22)
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TABLE 1. Meaningful features for PH detection on real world data are
obtained via our proposed method. The first three rows of the table verify
that the features extracted from proposed A2 and P2 components of the
S2 sound are each independently discriminative of PH. The values in
these first three rows are p-values corresponding to two sample
Kolmogorov-Smirnov tests of PH and not-PH patients. The remaining
rows report predictive performance of a PH classifier trained jointly on
the three features. Columns compare the algorithm presented in [26] with
the proposed method.

• Energy ratio: This feature is obtained by computing
the average over the S2 sounds contained in a PCG
of the ratio between the energy of the P2 component
and the energy of the corresponding S2 sounds, i.e.,

RE =
1
M

M−1∑
m=0

∑
t |pm(tTs)|

2∑
t |sm(tTs)|2

. (23)

• Peak-to-peak ratio: This feature is obtained by comput-
ing the average over the S2 sounds contained in a PCG
of the ratio between the peak-to-peak amplitude of the
P2 component and of the corresponding S2 sound, i.e.,

RP =
1
M

M−1∑
m=0

|maxt {pm(tTs)} − mint {pm(tTs)}|
|maxt {sm(tTs)} − mint {sm(tTs)}|

. (24)

Table 1 demonstrates that features derived from the
proposed A2 and P2 components are predictive of PH.
The first three rows verify that each of the three features
independently are useful for PH via two sample Kolmogorov-
Smirnov (KS) statistical significance tests. The KS tests
evaluate the null hypothesis that there is no difference, given
the feature and dataset, of whether a subject has PH. The
KS test supports varying size samples; there are 11 PH
negative and 32 PH positive samples in each significance
test. The remaining rows evaluate all three features jointly
with a predictive model trained to detect PH. The classifier
model is a kernel ridge regression classifier with two degree
polynomial kernel trained on the three features described
in the table, and it was evaluated via leave one out cross
validation with metrics including the area under the ROC
curve (auROC) and Average Precision (AP). For comparison
to the method in [26], the first two steps in Fig. 2 and the
features obtained are identical for both methods, and only
the obtained A2 and P2 components depend on the method.
The results suggest that the proposed model is at least as
accurate as the method of [26]. The features analyzed verify
that the A2 and P2 components obtained by our proposed
method contain information useful for discrimination of PH.

V. DISCUSSION
The proposed separation method stems from the observation
that heart sounds are modulated by the respiratory activity.

This observation has also been made in previous state-of-
the-art approaches in [26] and [27]. In particular, inspiration
increases displacement between the A2 and P2 components
while exhalation decreases displacement. This observation
implies that averaging aligned and segmented S2 signals in
order to reduce noise may introduce significant distortion
to P2 components. In fact, the method in [26] relies on
simple averaging to completely remove P2 components from
S2 sounds, thus obtaining A2 estimates.

The proposed approach enhances this formulation with a
more flexible mathematical framework to recover the A2 and
P2 components. It does not require any prior information
on the specific shape of such waveforms, and it does
not impose the assumption that averaging removes the P2
components. The proposed method is shown to have accurate
and robust separation performance, includingwhen aortic and
pulmonary components have small delay between them.

The computational complexity of the proposed alternating
optimization method is mainly dominated by a pseudoin-
verse, which has computational complexity of O(MN 3)2

and a frequency-domain projected gradient descent with
complexity O(MN logN ).
Future work: The proposed method achieves automatic

separation of previously segmented S2 sounds. Future work
should automate the pre-processing steps to denoise, segment
and align the S2 signals. A future adaptation of this work
could improve robustness to severe noise or could consider
an objective that relaxes the assumption during optimization
that the waveform generating function is identical across
heartbeats.

VI. CONCLUSION
We have presented a novel unsupervised blind source
separation algorithm to identify the A2 and P2 components
and a set of delays representative of respiration rate from
S2 recordings. The proposed approach has the advantage of
flexibly modeling aortic and pulmonary components without
using predefined waveforms. The reconstruction of the A2
and P2 components is defined in terms of an optimization
problem whose solution is approximated via alternating
optimization of a least squares objective.

The proposed separation method is shown to provide
accurate and robust reconstructions of the aortic and
pulmonary components, and the method can outperform
previous approaches in the literature that were formulated
on similar premises. We report consistent improvement
of 10 percent lower normalized root mean-squared error
(NRMSE) over the state-of-the-art in the reconstruction of
aortic and pulmonary components on a synthetic dataset.
Moreover, the proposed approach has higher coefficient
of correlation (R2) and lower NRMSE than comparable
related works when recovering delays between components
on a synthetic dataset. The proposed method allows for

2Note that, given the sparsity patterns characterizing the matrices X(i),
efficient inversion algorithms specifically designed for sparse matrices could
be used to find the solution of the corresponding linear least-squares problem.
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the extraction of discriminative features from A2 and P2
components for detection of pulmonary hypertension from
real-world heart sounds, and on the evaluated dataset, the
features were shown give superior classification performance
to a comparable competing method.

The proposed approach needs only segmented S2 heart
sounds; it does not require a respiration rate measurement,
annotations of the A2 and P2 components, or other auxiliary
data. The presented separation method establishes the
foundation for a series of improvements that will be the focus
of future research.
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