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ABSTRACT Brain hemorrhages have become increasingly common and can be fatal if left untreated. Current
methods for monitoring the progression of the disorder that rely on MRI and PET scans are inconvenient and
costly for patients. This has spurred research toward portable and cost-effective techniques for predicting
the current stage and malignancy of the hemorrhages. In this study, simulated S-parameter data obtained
from a two-antenna system placed over the head is used in conjunction with machine learning to detect the
dielectric changes in the brain caused by hemorrhage non-invasively. Several machine learning classifiers
are used to analyze the data, and their performance metrics are compared to determine the optimal classifier
for this case. The study revealed that Decision Tree, KNN, and Random Forest classifiers are better than
SVM and MLP classifiers in terms of accuracy, precision, and recall in predicting Brain hemorrhage at the
most probable locations. Contrary to conventional microwave imaging systems requiring several antennas
for brain hemorrhage detection, this study demonstrates that integrating machine learning with microwave
sensors enables accurate solutions with a reduced antenna count. The results present a transformative strategy
for monitoring systems in clinics, where a simple, safe, and low-cost microwave antenna-based system can
be intelligently integrated with machine learning to diagnose the presence of Brain hemorrhage.

INDEX TERMS Brain hemorrhage, wearable devices, antenna systems, machine learning classifiers.

I. INTRODUCTION

The monitoring and diagnosis of diseases in the biomedical
sector have been made significantly easier by microwave-
based technology, which has been successful in achieving the

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

research goal that was set forth for it [1]. In the monitoring
of respiratory health [2], [3], bone fracture detection [4],
[5], breast cancer detection [6], [7], and the detection of
a variety of other abnormalities [8], the work using this
technology has shed new light in being a future role model in
medical diagnostics. Current diagnostic methods in hospitals
for detecting illnesses or abnormalities in human bodies are
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lengthy and involve collecting various types of medical data,
including blood tests, ECG, X-RAY, USG, and MRI scans,
to determine the disease and its severity. Unusual bodily
functions or discomfort in a patient may indicate a potentially
fatal condition. Early detection can prevent the patient’s
condition from worsening severely. Microwave technology
has become increasingly prominent in the last decade due to
its ability to offer portability, safety, cost-effectiveness, and
early illness detection.

The brain, heart, lungs, liver, and kidneys are vital organs
that sustain the body’s health. The brain is the primary
organ in the human nervous system responsible for regulating
various functions such as interpretation, synthesis, regulation,
decision-making, and directing the body. Any abnormalities
related to the brain require immediate attention for correction.
Brain hemorrhage, which is the major cause of death and
deformity affecting the brain’s primary cells, is currently one
of the greatest concerns [9]. It is a severe medical illness
that occurs when a blood vessel gets ruptured, resulting in
the build-up of blood in various parts of the brain. The brain
is enclosed by multiple layers of protection, including the
skin, fat, bone, and three layers of brain tissue: the dura
mater, arachnoid, and pia mater. The ventricles of the brain
contain cerebrospinal fluid (CSF) that safeguards the brain
from potential damage caused by accidents, brain tumors,
strokes, or high blood pressure. Factors like age, blood
thinners, and alcohol increase the risk of brain hemorrhage
which can result in unconsciousness or even death [10].
The suggested research focuses on two locations of Brain
Hemorrhage that are prevalent in the majority of instances.
Bleeding can occur within the brain’s interior areas as well as
between its protective layers, suggesting a similar prototype
of a spherical anomaly in the mentioned places [11]. In recent
studies, the total incidence of intracerebral hemorrhage (ICH)
was measured at 19.1 per 100,000 people [12] and this rate
did not significantly change throughout the studies. Both the
in-hospital mortality and one-year fatality rates were found
significantly high (32.4 % and 45.4 % respectively). The
fatality rate was 49.5 % after two years. Just 14.5 % of
patients were able to be released back to their homes [12].

Methods such as computer tomography (CT), magnetic
resonance imaging (MRI), functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), positron
emission tomography (PET), single photon emission com-
puted tomography (SPECT) and electroencephalography
(EEG) are examples of common brain imaging techniques.
Some of their disadvantages include emitting ionizing radia-
tion and having a bulky and costly setup. The focus of current
and upcoming trends is on either the investigation of novel
methods to circumvent these constraints or the combination
of these drawbacks into multi-modal approaches.

In the past two decades, microwave has been capable of
providing portable, safe, cost-effective, and early detection
of a wide range of diseases [13], including cardiovascular
disease [14], breast cancer [7], brain diseases and chronic
diseases like diabetes [15] etc. Microwaves possess the
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potential to diagnose diseases due to their ability to penetrate
human body tissues.

In recent times, many researchers have conducted studies
to diagnose the presence of a brain stroke or brain hemorrhage
using microwave techniques [16], [17], [18]. However,
these are microwave systems with more antenna units for
microwave imaging (MWI) of human heads. Due to the
utilization of multiple antennas, the overall configuration
becomes complex and bulky.

With the goal of improving accuracy and performance
while enabling real-time monitoring of biological problems
and vital signs in the biomedical field, several artificial
intelligence (AI) techniques have been integrated with
microwave technology [19], [20], [21].

This article introduces a method that uses microwave
technology for the non-invasive identification of brain hemor-
rhage, utilizing simulated data for validation. The diagnostic
system is configured using a microwave sensor system and a
machine learning-based framework. The microwave sensor
system comprises two bow-tie antennas with resonance-
based reflectors (RBRs) operating within the 1.5 - 3.17 GHz
range (70.5%) and a peak gain of 5.7 dBi to collect the
Transmission Coefficient (S>1). Using two antennas enhances
portability and eliminates the drawbacks of employing
multiple antenna units. To improve the effectiveness of
medical investigations, various potential alterations to the
anomaly’s size and location have been considered. The
machine learning processing unit identifies three probable
hemorrhage sites based on scattering parameters obtained
from the antennas: left subdural, right subdural, and intra-
cerebral, which have higher risks of bleeding. Various
machine learning classifiers, including Decision Tree, KNN,
and Random Forest, effectively predict brain hemorrhage in
the expected regions.

In the upcoming section, the configuration of the
microwave sensor system has been described including
crucial information about the human brain and hemorrhage,
antenna selection, antenna performance, and orientation of
antennas for maximizing its effectiveness in detecting the
probable locations of the hemorrhages. In further sections,
machine learning for microwave systems, the proposed
machine learning framework utilizing different machine
learning classifiers, and their performance metrics are
described.

Il. CONFIGURATION OF THE PROPOSED
MICROWAVE-BASED MODEL
This section describes the processes that are utilized in the
EM simulations to obtain S-parameter data, as well as the
generation of analytical hemorrhage in the head models.
Subdural and intracerebral bleeding are two critical
sites for the progression of brain hemorrhage, which
poses a life-threatening risk to individuals. They can also
occur without any external injury. Subdural hemorrhages
occur in the brain’s outer lining near the skull, while
intra-cerebral hemorrhages occur in the brain’s core region.
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TABLE 1. Comparsion table for microwave-based system for hemorrhage detection.

Antenna

Background

Ref. System configuration number Frequency Mediom ML model
Multistatic approach with waveguide . Lo
(22] antennas, switching circuit, and VNA L7 0.9-1.8 GHz Matching liquid NA
Multistatic system with printed
[23] monopole antennas connected to a 12 1-1.75 GHz Matching liquid NA
two-port vector network analyzer
through a switching matrix
Multistatic approach with folded par-
[24] asitic antennas, switching circuit, and 16 1-2.4 GHz Air NA
VNA
Microwave imaging system composed
[25] by coaxial-fed slot bow-tie antennas, 10 1 GHz Air z{gzz%i‘fl}iaases%ﬁas_
switching matrix, and VNA g
Microwave imaging system with broad- Supervised learnin
[26] band antennas, switching matrix and 12 Matching liquid b perv . . &
VNA ased classification
Microwave imaging system with SpaceDivision-Based
[27] compact wideband microstrip patch, 8 0.9 - 3 GHz Air Decision-Tree Learning
switching matrix and VNA Method
[28] Transmission coefficient analysis with 9 1.55-2.05 GHz Air NA
antennas and VNA ) )
. Transmission coefficient (Magnitude
This and Phase) analysis with Bow-tie an- 2 1.5-3.17 GHz  Air SVM, MLP, DT, KNN,
work GB, and RF

tennas with RBR

Subdural hemorrhage can occur in any age group [2],
while those over 50 are at higher risk for intracerebral
hemorrhage, which increases with each decade of life [1].
The proposed system targets the detection of the three
most probable brain hemorrhage locations (left subdural,
right subdural and intra-cerebral) by processing transmission
coefficient S»; parameter (both magnitude and phase) using
the machine learning algorithm. Two wearable antenna
sensors, a vector network analyzer (VNA), and a processing
unit (PU) are the components that comprise the presented
antenna-based system shown in Fig.1. CST Microwave Stu-
dio [29] is utilized to develop and simulate the antenna-based
system with head models (healthy i.e., without abnormality,
and patient head models with hemorrhage) and collect the
required S-parameter viz., transmission coefficient (Sap).
To simulate bleeding, an analytical spherical blood accumu-
lation is implanted in the head model of Gustav (a male body
model from the CST voxel family). This is done while taking
into account three different locations in the patient’s brain
that have a higher likelihood of developing a hemorrhage.

A. THE HUMAN BRAIN AND HEMORRHAGE
The brain and spinal cord are vital components of the human
nervous system. The brain is the central element responsible
for interpreting, synthesizing, controlling, decision-making,
and communicating decisions to other body parts. Decipher-
ing the architecture of the human brain is highly challenging.
The brain regulates the body’s organs and enables it to
perceive and react to external stimuli. The brain comprises
the cerebrum, cerebellum, and brainstem [30].

The Head model comprises different tissue layers such
as Skin, fat, bone, brain, and other tissues. The cross-
sectional view of the head model (Gustav), available in CST
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FIGURE 1. Proposed antenna-based diagnostic system for non-invasive
detection of Brain Hemorrhage using Machine Learning.

FIGURE 2. Cross-sectional view of the human head model available in
CST.

microwave studio [29], is shown in Fig. 2. It is widely
known that the skin layer is both highly conducting as well
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TABLE 2. Dielectric properties of various tissue layers of the head model
in 2.4 GHz ISM band.

Tissue Conductivity Relative Loss

(S/m) Permittivity  Tan-

gent

Skin 1.440 38.063 0.283
Fat 0.102 5.285 0.145
Bone 0.384 11.41 0.252
Brain 1.189 36.226 0.246
Muscle 1.705 52.791 0.241
Blood 2.502 58.347 0.321
(Hemorrhage)

as lossy, whereas the fat layer and the bone layer have a
lower dielectric constant [31]. To get the optimal variation
in transmission coefficient S2; (both magnitude and phase),
the electromagnetic wave must penetrate through all of the
different tissue layers that are being taken into consideration
as well as bleeding. The electrical characteristics of various
brain layers and the hemorrhage are studied [32] (at 2.4 GHz
ISM band) and listed in Table.2.

The analysis and performance of a wearable antenna
surrounded by biological tissues causing signal loss differ
from those of a free-space antenna. Therefore, it is important
to undertake an EM near-field study [33]. Using CST
Microwave Studio [29], a 3-D human head model has been
incorporated into the antenna system design. This model
comprises the following primary head tissues: skin, skull,
muscle, fat, bone, blood, and brain tissues. Human tissues
can be classified into two categories based on their water
content: high-water content tissues (e.g. skin and muscle) and
low-water content tissues (e.g. fat). Skin and muscle thickness
affect EM signal loss in antennas [31]. The antenna system is
strategically placed above the ear region for optimized results
for subdural or intra-cerebral bleeding, as shown in Fig.3.

Diverse spherical hemorrhages of varying volumes (radius
starting from 0.25 mm to 20 mm) are strategically positioned
within the cranial model, specifically in the most probable
regions - left and right subdural, and intracerebral areas. This
configuration allows for a comprehensive examination of the
effects and dynamics of hemorrhages within the framework
of the head model.

B. ANTENNA SELECTION

Antennas designed for disease detection must possess
essential characteristics, including a directional radiation
pattern featuring high gain, a wideband or tunable bandwidth,
a compact design for seamless integration, and a low Specific
Absorption Rate (SAR) to ensure safety. The directional
radiation pattern with high gain enhances the antenna’s
ability to detect signals accurately, while a wideband or
tunable bandwidth allows flexibility in adapting to different
human bodies and diverse disease detection scenarios. The
compact design facilitates integration into medical devices,
and maintaining a low SAR is critical for ensuring the
safety of individuals during the detection process. These key
properties collectively contribute to the efficacy and safety
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(@)

(b)
FIGURE 3. Analytical Hemorrhage locations; (a) side and (b)Top view for

left subdural, right subdural, and intracerebral hemorrhage (from left to
right).
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FIGURE 4. RBR reflector: (a)designed and fabricated structure,
(b) Simulated surface Impedance Z;, parameter.

related to antennas for disease detection. Hence, a bow tie
antenna incorporating a resonance-based reflector [34] has
been employed for this purpose, leveraging its unidirectional
radiation pattern and wide frequency range.

The surface impedances of PEC and PMC can be defined
as Zs ~ 0 and Zs ~«, respectively. Therefore, the reflection
phase of the PEC reflector is 180 °, while the PMC reflector’s
reflection phase is 0 °. The RBR has a reported reflection
phase of 0° to 180° in its operating frequency range. It can
reflect electromagnetic waves at frequencies higher than the
resonance frequency, as it is designed to make the planar
antenna unidirectional. An RBR is designed and fabricated,
as can be seen in Fig.4, in which the ring’s width is denoted
by w and the radius of the ring is denoted by ri. A bow tie
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(a) (b)

FIGURE 5. Bow tie antenna structure (a) design, (b) fabricated.

TABLE 3. Antenna dimensions.

Parameter 1 ro T3 w wr h ha [

Dimension 33 1875 26 2 0.1 0.8 134 120°
(mm)

antenna surrounded by a ring is taken since it is unidirectional
and can be operated over a wideband frequency range [35]
(1.5 GHz-3.17 GHz) covering the ISM Band of 2.45 GHz and
optimized to suit the application. The structure is developed
on RT Duroid 6002 substrate with a relative permittivity of
2.94 and a thickness of 0.8 mm. The design and dimensions of
the antenna are presented in Fig.5 and Table.3; respectively.

Antenna parameter such as the Reflection Coefficient
(S11), which is illustrated in Fig.6, depicts the wideband
characteristics of the antenna ranging from 1.5 to 3.17 GHz.

Designing antennas for biomedical applications within the
GHz range presents numerous advantages when compared
to lower frequencies. One notable benefit is the enhanced
precision offered by shorter wavelengths at GHz frequen-
cies, resulting in superior resolution in techniques such
as radar-based scans and near-field microwave imaging.
This improved resolution facilitates detailed visualization of
tissues, enabling the identification of potential abnormalities
with greater accuracy.

Another advantage lies in the greater tissue penetration
achieved by GHz waves compared to lower frequencies.
These waves penetrate deeper into the body with reduced
attenuation, making them well-suited for applications like
brain imaging, and deep tissue hyperthermia treatment. This
capability allows for exploring and examining previously
inaccessible regions, thereby enhancing diagnostic and
treatment capabilities.

Furthermore, utilizing GHz frequencies often necessitates
lower power levels to achieve the desired effects, in contrast to
lower frequencies. This lower power requirement minimizes
heating effects and potential tissue damage, contributing to a
safer and more comfortable patient treatment experience.

Additionally, using GHz frequencies offers additional
benefits, such as the potential for miniaturization. The
smaller wavelengths associated with GHz frequencies allow
for the design of compact antennas, a critical factor for
developing implantable devices or wearable sensors. This
miniaturization potential opens up new possibilities for
creating smaller, more discreet biomedical devices without
compromising on performance.
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FIGURE 6. (a) Antenna with reflector (designed and fabricated) and
(b) simulated reflection Coefficient or S;; for antenna placed in free
space and on head model.

In addition, the frequency range encompasses the 2.4 GHz
ISM band. The unidirectional radiation pattern with a good
peak gain of the incorporated antenna encourages penetration
inside the head. Radiation characteristics of antenna in free
space are presented in Fig. 7.

C. COUPLING ANALYSIS

The examination of antenna coupling holds significant
importance in electromagnetic design and the optimization
of communication systems. This process entails investigating
and assessing interactions between antennas, and analyzing
the potential impact of their proximity and electromagnetic
fields on each other’s performance.

We conducted an analysis to assess the coupling between
the transmitting and receiving antennas in our proposed
wearable antenna system. The coupling coefficient data is
visually represented in Fig. 8, illustrating the relationship
between the antennas in this study.

D. ANTENNA PLACEMENT AND FIELD ANALYSIS

To achieve optimal data collection and hemorrhage detection,
a pair of antennas are placed above each ear in the frontal
region of the head (5 mm gap from the head surface). The
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FIGURE 7. Simulated radiation characteristics: (a) Radiation pattern of
antenna at 1.66 GHz, (b) gain and front-to-back ratio (FBR) plot, and
() efficiency of antenna.

antennas are diametrically opposite and arranged linearly to
cover the entire brain, including subdural and intracerebral
spaces. Positioning the antennas above the ears on the head
model induces a shift in resonance frequency while minimally
impacting the overall operating bandwidth. Consequently, the
antenna has been calibrated to operate within the specified
frequency range, ensuring effective signal penetration for
hemorrhage detection.

This section outlines the near-field analysis, which primar-
ily examines the E field, H field, EM wave penetration, and
SAR within the Gustav head model. The antenna’s perfor-
mance is evaluated by analyzing the EM signal’s ability to
penetrate head tissues. Fig. 10 depicts the E-field and H-field
distribution in the Y-Z plane at a frequency of 2.26 GHz.
It has been seen that the antenna remains directional
towards the model and the EM wave can penetrate the head
tissues.
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FIGURE 9. Antenna placement: (a) Front view (b) Top view (c) Isometric
view.

Specific Absorption Rate (SAR) is the rate at which the
human body absorbs electromagnetic energy from EM fields.
It assesses potential health risks related to exposure from
microwave radiation on the brain when it penetrates the skull.
The SAR analysis is essential in considering brain modalities
for microwave applications to ensure patient safety. The SAR
value is determined by the following equation [36].

|E|2xo
SAR = —

where E stands for the electric field, M for the mass density,
and o for the tissue conductivity in the human head model.
The IEEE radiation exposure standard mandates a maximum

SAR value of less than 1.6 W/kg [37]. In this study, | mW
of input power is supplied to the antenna, and the SAR
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FIGURE 10. (a) E-field and (b) H-field distribution; and Specific
Absorption Rate (SAR) distribution for (c) 1 gm average mass and
(d) 10 gm average mass at 2.26 GHz with 1mW input power.

calculated for 1 gm and 10 gm of average mass at 2.26 GHz,
is as shown in Fig.10.

E. COLLECTION OF DATA

Simulated scattering parameters are collected and processed
to detect the type of hemorrhage. S»; is the forward trans-
mission coefficient that describes the amplitude, intensity,
or total power of a wave as it travels from the transmitter
to the receiver. This parameter is influenced by the medium
(i.e., head model) between the two antennas, which affects
the power transfer from one antenna to the other antenna.
The head model consists of layers such as skin, fat, bone,
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FIGURE 11. Simulated transmission coefficient(S,;) (a) magnitude and
(b) phase plot for healthy condition and hemorrhages of the radius of
analytical bleeding = 10 mm.

and brain, which act as intermediary mediums. In the process
of gathering simulated data, the transmission coefficient
S21, both in terms of its magnitude and phase, is recorded
distinctly for each type of hemorrhage. The radius of the
analytical bleeding sphere is varied parametrically from
0.25 mm to 20 mm with a step size of 0.25 mm for different
stages of the disease, ranging from early stages to severe
cases. For intra-cerebral hemorrhage, a spherical bleeding
object is inserted in the central back space of the brain,
and a total of 80 variations of transmission coefficient (S71)
are gathered, including 79 variations for different stages of
the disease and 1 for healthy, and are forwarded for further
investigation. Similarly, data collection for the other two
hemorrhage spaces has been done. Transmission coefficients
are plotted in (Fig.11) against 1000 frequency points in the
frequency range of 1 to 3 GHz.

Ill. MACHINE LEARNING IN MICROWAVE SYSTEMS
Antenna-based microwave imaging (MWI) is an innovative
method that offers a cost-effective and non-invasive approach

37185



IEEE Access

A. Singh et al.: Microwave Antenna-Assisted ML

to medical diagnosis and treatment. By utilizing electromag-
netic waves in the microwave frequency range, MWI can
examine the dielectric properties of biological tissues, which
can provide valuable information about their overall health.
One of the many applications of MWI is the detection of
conditions such as breast tumors, stroke, brain injuries, skin
diseases, and other ailments.

Nonetheless, MWI faces several obstacles, including low
resolution, complexity, noise, and artifacts. To address these
issues, machine learning (ML) can be implemented to
enhance the precision and efficiency of MWI systems.
By analyzing microwave signals or images gathered by MWI
systems, ML can identify significant features or patterns
that aid in diagnosing diseases. In recent times, several
research works have been reported where ML is successfully
integrated with MWI systems.

The authors of a recent study [38] aimed to develop
an improved predictive model for diseases. The study
collected data on 5145 cases and investigated 39 diseases
using 86 attributes from various datasets. The study used
machine learning algorithms, including light gradient boost-
ing machine and extreme gradient boosting, along with
a deep neural network to create an ensemble model that
achieved high prediction accuracy and Fl-score for the
five most common diseases. The study analyzed feature
importance using the confusion matrix and SHAP value
methods.

Another study [39] describes a machine learning-based
system for breast lesion detection using microwave ultra-
wideband devices. The system utilizes several machine
learning algorithms, including nearest neighbor, MLP neural
network, and support vector machine, to create an intelligent
classification system. The study shows that the support vector
machine with a quadratic kernel can classify breast data with
98% accuracy.

In a new report [40], researchers have developed a fully
textile antenna-based sensor system for detecting breast
tumors. The proposed system utilizes machine learning
algorithms to differentiate between malignant and benign
breast tissues, achieving a 100% classification accuracy on
tested datasets. The sensor is compact and made entirely of
textiles, fitting comfortably on the breast.

Lastly, a recent study [41] proposes a fast and accurate
machine-learning algorithm to predict breast lesions using
microwave signals. The study shows that the support
vector machine algorithm with a third-degree polynomial
kernel achieves 99.7% accuracy, outperforming conven-
tional binary classification algorithms. This method could
assist radiologists in detecting tumors accurately and
early. The study highlights that microwave imaging is a
safe and non-ionizing screening method for breast cancer
detection.

IV. PROPOSED MACHINE LEARNING FRAMEWORK
In the current study, the S-parameter data obtained from
the proposed two-antenna system is used to train various
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FIGURE 12. Proposed Machine Learning framework. Input features to the
machine learning models are ‘Frequency’, ‘Angle (S,;)’ and ‘Magnitude
(S21)- The output is the position of the brain hemorrhage i.e. ‘Left;, ‘Right;
‘Central Back’ or ‘Normal".

machine learning models to predict the position of brain
hemorrhage inside a human subject. Specifically, the input
to the machine learning models is ‘Frequency’, ‘Angle
(821)’, and ‘Magnitude (S>1)’ which are extracted from ‘S»;’
parameters obtained from the proposed antenna system. The
model attempts to predict the position of the hemorrhage
inside the human brain. The positions considered in the
current study are ‘Left’, ‘Right’, and ‘Central Back’. In case
of no hemorrhage, the model classifies the input data to
the ‘Normal’ class. Thus, the input to the machine learning
models is a 3-dimensional vector. Now, to solve such
classification problems where the data samples are structured,
machine learning models that are used in the current study
are some of the most suitable ones. The framework outline is
depicted in Figure 12.

A. MACHINE LEARNING CLASSIFIERS

The Support Vector Machine (SVM) is a classification
algorithm that identifies a hyperplane in the feature space
to segregate classes with maximum margin. In the given set
of training data (x1, y1), ..., (xn, ¥n), where x; denotes the
ith data point and y; € —1,1 is its corresponding label,
SVM resolves an optimization problem, with the objective of
minimizing %|w|2, subject to the constraint that y;(w-x;+b) >
1,i = 1,2,...,n. Here, |w| represents the weight vector’s
norm. The hyperplane equation is w - x + b = 0, where w
denotes the weight vector, b is the bias, and - denotes the dot
product. By utilizing various kernel types, including linear,
polynomial, and radial basis function (RBF) kernels, SVM
can handle both linear and nonlinear data.

Multilayer Perceptron (MLP) is a neural network archi-
tecture that includes several interconnected layers of nodes
or neurons. During training on a given set of data
(x1,%1)s -+, (xn, ¥n), MLP can be viewed as a function
f(x; 6) that maps input x to output y. The parameters 0 are
learned from the training data by minimizing a loss function
L(y,f(x; 0)). The output of a neuron in MLP is determined
by the weighted sum of its inputs plus a bias, which is
then transformed by the activation function to introduce
nonlinearity into the model.

The output of MLP is obtained by applying the softmax
function to the weighted sum of the first hidden layer
outputs using the weight matrix W and bias vector b
of the output layer. The first hidden layer output V) is
computed from the input data x using the same process as
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FIGURE 13. Test phase Confusion Matrices of different classifiers used in the current study.

the output layer but with different weight matrices and bias
vectors.

The Decision Tree (DT) algorithm is widely used for
classification tasks. DT constructs a tree-like model that
makes decisions based on the features of the data. It learns
a set of if-then rules, represented as a tree, where each node
corresponds to a test on a feature and each branch corresponds
to the outcome of the test. The leaves of the tree represent
the class labels. DT recursively builds the tree by selecting
the feature that provides the most useful information about the
target variable. The usefulness of a feature is determined
using the entropy or the Gini index, which quantifies the
impurity of a set of data.

KNN is an easy-to-understand classification algorithm that
relies on similarity. When presented with a new data point,
KNN identifies the K most similar data points in the training
set and uses the majority class among them to classify the new
point. To achieve this, KNN uses the Euclidean distance to
measure the distance between two data points. The Euclidean
distance formula is a way to calculate the distance between
two points in a multi-dimensional space. It calculates the
square root of the sum of the squared differences between
each feature of the two points.

Gradient Boosting (GB) is an ensemble learning technique
that combines multiple weak models to create a stronger
model. It constructs the model in stages, with each subsequent
model attempting to fix the errors of the previous model.
The ultimate model is a weighted combination of the
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individual models. Given a training dataset (xi,yi), ...,
(%7, yn), GB minimizes a differentiable loss function
L(y, f(x)) to predict the label f(x) from the true label y.
The loss function is often the mean squared error or the
log loss. The model is built in stages, with each subsequent
model minimizing the loss function of the residual errors
from the previous model. The final model is a weighted sum
of the individual models, and the weights are determined by
the performance of each model on the validation set.

B. PARAMETRIC SETUP

The classifiers used in the current study are implemented
using the Python based scikit-learn library [42]. For SVM,
a linear kernel with a C value of 1.0 is used. For MLP,
a three-layered network with a ReLU activation function
and 100 hidden neurons with a learning rate of 0.001 is
used. The decision tree is constructed using the Gini
impurity criterion and set to a maximum depth of None.
For KNN, the number of neighbors is set to 5. GB uses
100 trees with a learning rate of 0.1, while random forest is
trained with 100 trees and a maximum depth of None. All
classifiers are implemented using default settings provided by
scikit-learn.

To assess classifier performance, several metrics are used,
such as accuracy, precision, and recall. Accuracy is the
proportion of correctly classified instances, while precision is
the proportion of true positive predictions out of all positive
predictions, and recall is the proportion of true positive
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TABLE 4. Performance of machine learning-based prediction for brain hemorrhage.

Test Data  Frequency (GHz) Sp; (Magnitude) S21 (Phase) Hemorrhage (Target) Hemorrhage (Predicted)
1 2.11 0.005994 -123.398465 Right Right
2 2.54 0.009638 -2.420771 Left Left
3 3 0.003521 -168.993605 Central Back Central Back
4 2.41 0.003549 57.453285 Central Back Central Back
5 2.88 0.005405 -5.906295 Central Back Central Back

TABLE 5. Performance comparison of machine learning models to predict
brain hemorrhage using two antenna system.

Accuracy Precision Recall
SVM 53 72 53
MLP 71 71 71
DT 92 92 92
KNN 93 93 93
GB 69 78 69
RF 94 94 94

predictions out of all actual positive instances. These metrics
are calculated using the following formulas:

TP +TN
Accuracy =
TP+ TN + FP + FN
o TP
Precision = ——
TP + FP
TP
Recall = ——
TP + FN

Here, TP refers to the number of true positive predictions,
TN refers to the number of true negative predictions, FP
refers to the number of false positive predictions, and FN
refers to the number of false negative predictions. To prevent
overfitting, the dataset is split into training and testing sets
using the held-out method, with 70% of the data for training
and 30% for testing. This process is repeated ten times to
ensure the results’ reliability.

C. PERFORMANCE COMPARISON AND ANALYSIS

The test phase confusion matrices of different classifiers used
in the current study are reported in Figure 13 and the results
are presented in Table 4. The accuracy of the classifiers varied
greatly, with Decision Tree and Random Forest showing the
highest accuracy of 92% and 94%, respectively. K-Nearest
Neighbors (KNN) also showed good performance with an
accuracy of 93%. The Support Vector Machine (SVM) and
Gradient Boosting (GB) performed relatively poorly with an
accuracy of 53% and 68%, respectively.

Looking at the precision and recall values, Decision Tree,
KNN, and Random Forest all showed 93-94% precision
and recall, indicating that they have good performance
in correctly identifying both positive and negative cases.
MLP also showed consistent precision, recall, and accuracy
scores of 73%. In contrast, SVM and GB showed lower
precision and recall scores, indicating that they struggled to
correctly identify positive cases. In Table 5, a few randomly
selected test samples are shown along with predicted values
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obtained from the best-performing classifier i.e. Random
Forest (RF).

Overall, the results suggest that Decision Tree, KNN, and
Random Forest are the best classifiers in the current study
for this particular dataset, as they showed high accuracy,
precision, and recall values. The low performance of SVM
and GB can be attributed to the fact that they may not be
well-suited for this case.

V. CONCLUSION AND FUTURE SCOPE

In this study, a two-antenna system utilizing Machine Learn-
ing classifier models has been presented for the non-invasive
detection of Brain Hemorrhage. The system comprises
directional bow-tie antennas with adequate gain, placed
around a human head model to provide information about
the presence and type of Hemorrhage. Scattering parameters
were obtained from a simulated system comprising the
Head model, Hemorrhage at three distinct sites, and the
antennas placed at various positions over the head model.
The data were processed by several categories of classifiers to
generate a result indicating the type of hemorrhage. The study
evaluated the performance of the classifiers using accuracy,
precision, and recall, which demonstrated that Decision
Tree, KNN, and Random Forest were the most appropriate
classifiers for diagnosing Brain Hemorrhage. The results of
this study show that the antenna system implemented with
ML classifiers is highly efficient and effective in diagnosing
Brain Hemorrhage. However, the study suggests that future
approaches should collect a large amount of training and
testing data from diverse body models available in simulation
environments, phantom measurements, and real-time human
trials to improve the system’s performance and its ability to
diagnose Hemorrhage at any site inside the human head.

To conclude, the two-antenna system presented in this
study, integrated with Machine Learning Classifier models,
provides a cost-effective and non-invasive method for diag-
nosing Brain Hemorrhage. The system’s accuracy, precision,
and recall demonstrate its potential for use in clinics and
monitoring systems.
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