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ABSTRACT Users of virtual reality (VR) technology, especially head-mounted displays (HMDs), often
experience cybersickness, similar to motion sickness, with feelings of nausea, dizziness and sweatiness.
Cybersickness typically increases with duration of wearing a HMD and is commonly evaluated in user
studies with physiological measures, in-situ verbal reports and post session questionnaires. However,
in addition to being time-consuming, user studies only provide insight into the specific configuration of
the VR experience under study and can be limited to participant numbers, duration of VR exposure and
the impact of cybersickness on VR experience dropout and completion rates. This paper presents a formal
approach to modelling cybersickness. AMarkov chain is used to define a general cybersickness model where
probabilities represent changes in a user’s state of cybersickness. The Markov chain can be populated with
historical user study data and interrogated to gain further awareness of the VR experience under evaluation.
The approach is exemplified with a custom Markov chain model generated from a public VR experience
dataset. The resulting model is shown to be representative of the ground truth user experience from the
source material. Examples are presented to demonstrate how the model can be explored to gain insight for
(i) scaled up parameters, such as exposure duration and participant numbers, and (ii) acceptance thresholds
for minimum/maximum cybersickness. Limitations on the generation of the model and its utility across
different user populations and environment types are considered and discussed in the context of future work.

INDEX TERMS Virtual reality, cybersickness, head-mounted display, Markov chain, prediction.

I. INTRODUCTION
There is increasing use of virtual reality (VR) technology.
Much of this has been facilitated by the accessibility to
high quality and relatively low cost head-mounted dis-
plays (HMDs). Also VR technologies support good use
cases across entertainment, sport, simulation, education,
defence, rehabilitation and psychological therapy [22], [25],
[27]. However, users of VR technology often experience
cybersickness [15], [21], similar to motion sickness, with
reported symptoms of nausea, oculomotor discomfort and
disorientation [10]. Poor virtual reality experiences involving
cybersickness can deter users from the future use of such
technologies [5] and this impedes commercial expansion and
wider adoption [7], [11], [19], [24].
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Research on cybersickness typically involves user studies.
However, specific user studies are limited to the number of
participants evaluated, the demographics of the participants,
the specific virtual environment, and the associated hardware
being considered. Although it would be desirable to consider
large sample sizes in studies with factorial designs [27],
large participant-based studies are time consuming and
expensive [26] and proportionally more likely to be impacted
by dropout rates [24] than smaller studies.

Also, the measurement of cybersickness is difficult as it
is either intrusive, for example attaching physiological bio-
metric devices [7], [18] or use of concurrent verbal protocols
[19], or relies on post-session recollection, for example
the use of questionnaires, i.e. the Simulation Sickness
Questionnaire (SSQ) [13]. This constitutes an additional
barrier to running large scale cybersickness evaluations.

An alternative approach is the use of predictive mod-
elling when considering the detection and prediction of
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FIGURE 1. Overview of approach using a cybersickness dataset to populate a custom Markov chain model to support predictions of upscaled impacts.

cybersickness experiences. Recent work has considered
machine learning approaches to cybersickness predic-
tion [10], [11], [20] and there is ongoing interest in the use of
formal modelling approaches to explore human experiences,
for example to capture erroneous human task behaviour [1].

This paper presents a new approach where user study
data on participants’ experiences of cybersickness is used
to generate a custom Markov chain model. Markov chain
models are state-based representations that describe a suc-
cession of probable events, with predictions or probabilities
for the next state. They can be designed to model real-world
processes, and in this case used to model increasing and
decreasing states of cybersickness. As a modelling tool, they
formalize the relations between the modelled states and the
probability of transitions between states. As cybersickness
has a cumulative impact, based on exposure duration [26],
our work aims to explore how this cumulative impact
can be modelled and used to predict future cybersickness
states.

Once a Markov chain model has been defined it can be
interrogated with a variety of parameters in order to predict
the impact of upscaling participant sizes and duration of
exposure to a VR experience. An overview of the proposed
approach is shown in Fig. 1. There are four contributions to
the research described here:

• A new formal approach to modelling cybersickness.
• Development of a general Markov chain representing
cybersickness experiences.

• Presentation of a case study using a custom
cybersickness Markov chain.

• Examples of insight that can be gained from exploring
the customMarkov chain model, including predicting (i)
expected participant dropout rates, (ii) limits to exposure
duration and (iii) VR experiences across large numbers
of participants.

This paper is organised as follows: In Section II, related
work on cybersickness prediction and the use of formal mod-
els for human experiences are presented. The processes of

developing general and customised Markov chain models for
cybersickness are defined in Sections III and IV respectively.
Section V presents examples of how the customised Markov
chain model can be explored with upscaled parameters. The
limitations of the approach are considered in Section VI and
our conclusions presented in Section VII.

II. RELATED WORK
There is increasing ongoing work in the area of cybersickness
with recent literature reviews covering use of the Simulator
Sickness Questionnaire (SSQ) [24], individual susceptibil-
ity [27], causes and measurements [4] and the adverse effects
relating to virtual reality [25]. The following section will
focus on the related work for the two main contributions
of the research presented here, namely the prediction of
cybersickness and the use of formal models to capture human
experiences.

A. PREDICTION OF CYBERSICKNESS
Hadadi et al. [10] proposed a machine learning approach
to cybersickness prediction based on physiological and
subjective data. Their aimwas to explore the predictive nature
of different physiological measures collected with a wrist
sensor. They considered a range of classifier algorithms and
the assessment of the classification performance. Topological
data analysis [3] was used as the feature extractor to
classify participants’ multivariate physiological time series
during a virtual-navigation experiment (n = 53). Pre and
post session SSQs were used to determine cybersickness
where participants whose SSQ score was equal to or greater
than 20 were assumed to suffer from cybersickness and
labeled as ‘‘sick’’, while others were labeled as ‘‘non-sick’’.
In comparison to [10], our model is built with in-situ, minute-
by-minute, verbal reports of nausea rather than pre-post
surveys noted here and has a finer granularity of reporting
any cybersickness experiences.

Similarly, Islam et al. [11] observe that the SSQ is not
suitable for the automatic detection of cybersickness during
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TABLE 1. Summary of cybersickness prediction methods. (FMSS = Fast Motion Sickness Scale [14], SSQ = Simulator Sickness Questionnaire [13].)

immersions due to the pre-post nature of the data collection.
Islam et al. [11] describe the development of a simplified
convolutional long short-termmemory classifier that can pre-
dict cybersickness severity two minutes into the future using
the previous two minutes of physiological measurements.
Their approach has 97.44% accuracy for detecting current
cybersickness severity and 87.38% accuracy for predicting
future cybersickness severity. Our work is based on their user
study dataset but differs in that our predictions are much
broader in scope, in terms of exploring the cybersickness
impact space, beyond real-time and two-minute predictions.
These approaches are complimentary where Islam et al. [11]
can monitor users currently in virtual environments, i.e.
to support stopping the experience as needed, and our work
provides insight into the impact of upscaled use of an
environment, i.e. via increased participant numbers or longer
durations of VR exposure.

Wang et al. [28] describe a two phase approach where a
first phase is to train a machine learning model based on a
deep long short term memory (LSTM) network for each user.
The model is trained to identify features when the user does
not feel any VR sickness. A second phase uses this model to
detect and alert abnormal signals which are obtainedwhen the
user is in another physiological state and feels VR sickness.
The network prediction was validated with SSQ scores. The
use of a pre-generated network is both an advantage, with the
potential to be used for real-time cybersickness monitoring,
and a disadvantage, with the need for individual networks
for users, of the method. In contrast, our approach considers
group and large scale predictions, rather that a focus on
individual user’s experiences. Thus, cybersickness detection
and real-time analysis are outside the scope of the current
work.

In addition to enabling the comparison of virtual environ-
ments for cybersickness [26], VR image data can be used
for cybersickness detection. Padmanaban et al. [20] built a
dataset of stereoscopic 3D videos and their corresponding

sickness ratings via a user study (n= 12). Amachine learning
algorithm was then trained on features (quantifying speed,
direction, and depth as functions of time) from each video,
learning the contributions of these various features to the
sickness ratings. They noted that the predictor generally
outperforms a naïve estimate, but is ultimately limited by the
size of the dataset. As with [10], cybersickness reports were
gathered using the SSQ after participants watched each video.
Similar to our work here, this approach explores the VR space
without needing new user studies. However, it is limited to the
visual aspects of the VR experiences and, as noted by [20],
the choice to constrain head motion, i.e. participants’ views
were fixed in place watching the videos, and, thus, was not a
truly interactive VR experience.

An alternative approach is to look at participant and
task characteristics as cues to predicting susceptibility to
cybersickness [12], [27]. Jasper et al. [12] explored partic-
ipant demographics, the task to be completed, the virtual
environment design and the VR hardware used as the four
main factors contributing to the likelihood of cybersickness.
Based on a user study (n = 150), they constructed hier-
archical multiple regression models to examine individual
characteristics, such as motion sickness history, previous VR
use, gender, age and personality, and task characteristics,
particularly workload.

Jasper et al. [12] concluded that who the user is and
what they are doing is critical to user-based prediction of
cybersickness. However, individual differences is out of the
scope of the work presented here. Our aim is to define a
general model of cybersickness that can be populated with
specific case studies. However, further customisation of any
model would benefit the inclusion of user characteristics and
the context of any tasks. Thus [12] is complimentary to our
future plans to extend the formal modelling presented here.

Table 1 provides a summary of approaches to cybersick-
ness prediction, comparing key aspects of each approach. Our
proposed method is included for comparison.
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B. FORMAL METHODS FOR HUMAN EXPERIENCES
Formal methods are rigorous, mathematically-based
approaches that have demonstrated their ability to verify
systems across critical properties such as reliability, safety,
security, more generally, dependability and performance [9].
A full overview of formal methods for system analysis is
outside the scope of the current work (for recent systematic
reviews see [2] and [17]) but our interest is in how formal
methods, specifically the use of modelling, can be used to
gain insight from systems involving humans.

Human reliability analysis [16] is often combined with
formal methods, via probabilistic and statistical modelling,
so that the relative likelihood of different outcomes can be
determined [1]. This is useful to determine whether predictive
behaviours in a system are normal or erroneous behaviours.
Also, when no ground truth is available, probabilistic
modelling can be used to forecast future states.

Fudolig and Howard [6] use a SIR compartmental
model with compartments on susceptible (S), infected (I)
and removed (R) to formalise the characteristics of an
emerging disease, in this case COVID-19. The model allows
simulations to be run across different levels of population
vaccination until the system reaches equilibrium. Similar to
our work, the aim is to gain predictive insight into the future
based on varying initial parameters that drive the model.
SIR models, with their simple yet powerful structure, were
an initial candidate considered for our work on modelling
cybersickness. However, the use of strict compartments in the
model was too restrictive and a more general approach was
required.

Sánchez et al. [23] consider how human behaviour
modelling for welfare technology can be used to recognise
an individual’s behaviour patterns. The aim is to identify
abnormal behaviour so that this can be consideredwhen a safe
environment, for example a smart house, is constructed for
that person. A Hidden Markov Model (HMM) was used for
predicting the behaviour of a person. HMMs are a subclass of
Bayesian networks known as dynamic Bayesian networks [8].
The model was found to have accuracy of 72% when trained
with an open source real-world dataset. Similar to our work,
a public dataset was used to construct the model. However,
HMMs require training and function with hidden states and
observable states. For our work, a more simple model, with
no hidden states, was the starting point for characterising
cybersickness impacts. The aim was to build a model that
refined itself via probability propagation in a ‘chain’ of
iterative steps. This approach is detailed in the next section.

III. MODELLING CYBERSICKNESS AS A MARKOV CHAIN
A. MARKOV CHAIN MODELS
A Markov chain is a stochastic model which defines a
sequence of possible events where the probability of an
event is only determined by the current state. For a finite
state Markov chain there is a discrete, i.e., countable, set of
possible states. The Markov chain is memoryless, in that the

transition to a next state is solely determined by the current
state and probabilities associated with any transitions. For
example, the Markov model in Fig. 2 has two states, S1 and
S2 where each state has a probability of transitioning to the
other state (p1 and p3) and a probability of staying in the same
state (p2 and p4). The sum of the probabilities for any state
will equal 1.

FIGURE 2. Example Markov chain.

More formally, a Markov chain can be defined as:

P(Xn+1 = x | Xn = xn) (1)

The probability of the next state (n + 1) of the random
variable X is a specific value x and this depends on the current
state of the random variable Xn = xn. This process can
be represented as a series of matrix operations. An example
transition matrix, T , with random probabilities but where the
sum of all state probabilities equal 1, would look like the
following:

T =

[
0.30 0.70
0.40 0.60

]
(2)

If (2) was the transition matrix for Fig. 2, T1,1 = 0.30 is
the probability of staying in S1, i.e. probability p2, and T2,1 =

0.70 is the probability of transitioning to S2, i.e. probability
p1.
AMarkov chain can be seeded with an initial configuration

vector. Continuingwith the current example, the first iteration
of the chain could start with 50% in each of S1 and S2 and
the transition matrix is then multiplied with the initial vector:

Xn=1 =

[
0.30 0.40
0.70 0.60

] [
0.50
0.50

]
=

[
0.35
0.65

]
(3)

Thus, after one iteration, the distribution across the states
would be 0.35 in S1 and 0.65 in S2. To calculate Xn=2,
or further iterations, the new result vectors are applied against
the original transition matrix (2).

B. A CYBERSICKNESS MARKOV CHAIN
To model cybersickness as a Markov chain, four states are
used to represent the cybersickness experiences across no,
light, moderate and strong impact [7], [11]. Fig. 3 shows
an initial Markov model for cybersickness. Cybersickness
states are defined as no cybersickness (OK), light cyber-
sickness (CSL), medium cybersickness (CSM) and strong
cybersickness (CSS). The transitions between state nodes are
probabilities to another state or for remaining in the current
state.

Although Fig. 3 captures the states of an experience across
a four state model of cybersickness, it does not consider
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any exiting criteria. When considering the prediction of
cybersickness, the end of a virtual reality experience, and
whether this was triggered by cybersickness impact, is of
significant interest.

FIGURE 3. Initial cybersickness Markov chain. Cybersickness states are
no cybersickness (OK), light cybersickness (CSL), medium cybersickness
(CSM) and strong cybersickness (CSS).

Therefore, we can extend the model to have absorbing
states, which will capture the probability of users exiting the
experience.

C. ABSORBING MARKOV CHAINS
An absorbing Markov chain is a Markov chain that has states
that are impossible to leave. Thus there are states in the model
that can be reached but the probability of remaining in an
absorbing state is 100%, e.g. an absorbing state is a state i in a
Markov chain such thatP(Xn+1 = i |Xn = i) = 1. In addition
to having absorbing states, to be an absorbing Markov chain,
all other states must eventually reach an absorbing state.

The transition matrix T for an absorbingMarkov chain can
be defined as:

T =

[
Q R
0 Is

]
(4)

where Q is a t × t matrix, R is a t × s matrix (the transitions
to the absorbing states), 0 is the s × t zero matrix (the
transitions from the absorbing states, i.e. 0) and Is is the s× s
identity matrix (the self transitions of the absorbing states).
Fig. 4 shows the cybersickness Markov chain extended with
absorbing states.

One issue with the models in Figs. 3 and 4 is that each of
the main cybersickness states can, theoretically, transition to

all other main cybersickness states. In practise, this is very
unlikely for some transitions, for example, from a strong
cybersickness impact state back to an ok state. Also for the
model to be useful for predictive analysis by iterating through
the resulting Markov chain, a custom probability matrix is
required.

FIGURE 4. Cybersickness Markov chain with absorbing states to
represent exiting the virtual reality experience.

IV. BUILDING A CUSTOM CYBERSICKNESS MARKOV
CHAIN
Islam et al. [11] conducted a user study to collect data for
their work on the detection and prediction of cybersickness
severity from a user’s physiological signals. In addition to
their IEEE publication, they have provided the complete
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dataset from their study.1 The dataset includes heart rate,
breathing rate, heart rate variability, galvanic skin response
and verbal reports of nausea for 23 participants.

FIGURE 5. Diagrammatic view of the Markov chain transition matrix from
the virtual roller-coaster dataset [11].

The verbal responses to nausea were extracted from the
dataset to populate the cybersickness Markov chain (Fig. 4.).
In [11], the participants rated nausea every minute on a
shortened version of the Fast Motion Sickness Scale [14]
from 0 (no sickness at all) to 10 (feeling very sick and want to
stop) while riding a virtual reality roller-coaster. The verbal
nausea scores were then mapped to the definition proposed
by [7] across 0 (no nausea), 1-3 (light nausea), 4-6 (medium
nausea) and 7+ strong nausea.

Custom R2 scripts generated probability totals from the
nausea reports. Each transition from a changing state, e.g.,
ok (0 verbal report) to light cybersickness (1-3 verbal report)
represented theminute byminute verbal nausea reports across
the 8-state model. The transitions from each state were
totalled to determine a probability range of 0-1 for each state.
The final transition matrix from the [11] data, as a specific
encoding of an absorbing Markov chain, i.e. (4), was:

TIslam2020

=



0.41 0.48 0.09 0 0.02 0 0 0
0.02 0.88 0.09 0 0 0.01 0 0
0 0.07 0.62 0.29 0 0 0.02 0
0 0 0.14 0.62 0 0 0 0.24
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(5)

1https://github.com/shovonis/CyberSicknessClassification [last access
9/11/2023]

2All R scripts and processing done using RStudio version 2023.09.1+494
and R version 4.3.2 (2023-10-31). All scripts completed in under 3 seconds
on a MacBook Pro (14-inch, 2021), Apple M1 Pro chip with 16 GB memory
running macOS Monterey version 12.0.1.

TABLE 2. Probabilities of final states with OK = 1 seed vector (6).

Fig. 5 is the graphic representation of transition matrix (5)
and highlights some interesting deviations from the general
cybersickness Markov model (Fig. 4). For example, there are
no transitions from medium or strong cybersickness states
back to an ok state or from the ok state directly to the strong
state. This first observation is indicative of the cumulative
nature of cybersickness [26] and the second is likely an
indication on how the virtual reality roller-coaster used in [11]
was able to gradually induce cybersickness.

V. EXPLORING A CYBERSICKNESS MARKOV CHAIN
With a custom Markov chain defined, it is possible to
run iterations through the model by adjusting two core
parameters, firstly the number of iterations which in this case
are minutes exposed to the virtual environment, and secondly,
the seed vector representing the initial configuration of the
chained iterations. In the models here, the seed vector can be
considered the starting distribution of participant cybersick-
ness, i.e. the likelihood that participants already have some
level of nausea. These parameters can then be applied across
varying theoretical numbers of participants and VR exposure
durations to see how the virtual environment experience
scales. However, the accuracy of the Markov model needs
to be determined and the model refined to better match the
source dataset.

A. REFINING THE MODEL
From [11], an initial assumption is that all participants start
in an ok state and that they are exposed to the virtual
roller-coaster for a maximum of 13 minutes, i.e. 13 iterations
through the Markov chain. This would be represented as the
seed vector (SV) in (6) and results in the iteration chain shown
in Fig. 6.

SV1t=0 =


1
0
0
0

 =


pok
pcsl
pcsm
pcss

 (6)

As cybersickness has been found to steadily increase with
time spend in an environment [22], Fig. 6 conforms to
expected state transitions for a virtual roller-coaster with
rapid onset of cybersickness [7] with increasing numbers
of participants exiting the virtual environment with strong
cybersickness. The chain also provides the final model
states, shown in Table 2. The final state probabilities can be
multiplied by 23 (n = 23 in [11]) and compared with the
ground truth participant experiences extracted from [11] (see
Table 3).
A raw measure of the model accuracy can be determined

with the edit distance between the ground truth and the seed
vector (6) results. In this initial case the edit distance is 4 and
gives an overall model accuracy of 82.61%.
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FIGURE 6. Markov chain transitions through 13 iterations from the virtual
roller-coaster dataset [11].

TABLE 3. Comparing probabilities of final states from the Markov chain
to the ground truth (GT) data from [11] (n = 23), with seed vectors
(6) and (7).

However, the assumption here is that all participants started
the virtual roller-coaster in an ok state, i.e. no feelings of
nausea. As the verbal reports are subjective, the degree of
ok that the participants were feeling will likely have been
from varied physical starting points, for example being in
different states of alertness or tiredness. Also individual
participants will be at different levels of susceptibility
to cybersickness impacts. Islam et al. [11] administered a
pre-VR exposure simulator sickness questionnaire (SSQ) and
found the participants (n = 23) had a mean SSQ score of
8.29 (stdev = 12.71), indicating an initial level of nausea.
To capture this and to improve the match to the ground truth
experiences from [11], a variety of seed vectors were tested,
by trial and error, to improve the initial seed.3

SV2t=0 =


0.55
0.3
0.15
0

 =


pok
pcsl
pcsm
pcss

 (7)

3Automating the optimisation of a seed vector for a known ground truth
is the focus of future work.

FIGURE 7. Markov chain transitions through 26 iterations.

The results from the refined seed vector (7) are shown in
Table 3, with an edit distance of 2. This improves the model
accuracy to 91.30%. This result matches 6 of the 8 states
to the ground truth and, importantly, matches all the exit
states. This seed vector results in one more person with
strong, rather than medium, cybersickness at the end of the
13 iterations. This is a minor difference when both medium
and strong cybersickness are undesirable outcomes from
a virtual environment experience. Thus, unless specifically
noted, this is the seed vector that will be used in the following
sections as it better represents the ground truth experiences
from [11].

B. EXPLORING DROPOUT RATE
The states of theMarkovmodel be can simplified as the states
where participants completed the VR experience, i.e., states
ok , CSL, CSM and CSS, and the four exit states where the
participants exited early, i.e. the dropout rate. Also within
each of these pairings it is possible to determine the level of
cybersickness that the participants reported at the end of their
experience.

From Table 3 we can determine, for n= 23 and 13 minutes
of VR exposure, that the dropout rate was 48% (agreed by
ground truth and the SV2 chain) and for participants that
completed the VR experience, 30% had no or only light
cybersickness and 22% had medium or strong cybersickness.

However, if the exposure time is doubled, to 26 minutes,
the model generates the chain of transitions shown in Fig. 7
and the probabilites in Table 4. The total dropout rate has
increased to 78.5% and VR experience completions with no
or light cybersickness has decreased to 11.46 %.
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TABLE 4. Probabilities of final states with SV2 (7), n = 23 and
26 iterations.

If a specific dropout rate was required, for example
no more that 20% of participants dropout of the VR
experience with medium/strong cybersickness, the model
can be explored to see at what minute this threshold is
broken. In this case, it is 7 iterations where the probability
of medium/strong cybersickness dropout is 16.68% and
probability of completing the experience with no or light
cybersickess is 46.32%.

C. EXPLORING EXPOSURE THRESHOLDS
The model can also be explored for maximum duration to
achieve different levels of participants’ final cybersickness.
For example, the model can show that for 90% of participants
to complete the experience with no cybersickess would be
impossible. Even after 1 iteration, only 23.1% of participants
would complete with no cybersickenss, with 53.7% with
light, 16.9% with medium and 4.29% with strong cybersick-
ness. Also 2.04% of participants would have already dropped
out (although 0% with strong cybersickness). This is likely
due to the model being based on a virtual reality roller-coaster
which was used specifically to induce cybersickness [19].
From a health and safety perspective, whether a participant

completes or drops out of the VR experience may not be
relevant. The concern may be on a participant’s level of
cybersickness at the end of their experience. For example,
if the maximum threshold at end of experience (completion
or dropout) was for only 20% of participants to have strong
cybersickness, then the maximum number of iterations would
be 5, with 19.98% made up of 12.1% CSS completions and
7.88% CSS dropouts (see Fig. 8).
Another example could be to know the duration limit

when 80% of participants will likely have medium or higher
cybersickness. This would be after 44 iterations with 79.92%
probability of medium or higher cybersickness at end of
the VR experience. However, at this point only 7.12%
would have completed the experience and 67.7% would have
already dropped out with strong cybersickness.

D. EXPLORING PARTICIPANT NUMBERS
All the examples in Sections V-B and V-C were based on
the participant numbers from the source data, i.e. n = 23.
At the Markov chain level, participant numbers are not used
as the probabilities for each state are range from [0..1] with
the sum of probabilities in a state= 1. However, if participant
numbers are required, these can be applied to the final state of
the Markov chain, as seen in Table 3 with n = 23 from [11].
If it is useful to consider how a VR experience might

scale, then larger numbers of participants can be simulated.
However, when considering increasing participant numbers,
one limitation is rounding errors. For example with the

FIGURE 8. Markov chain transitions through 5 iterations.

TABLE 5. Comparing approaches to mapping probabilities to whole
participants for n = 100 and the final states from Table (4).

double duration chain, with duration set to 26 minutes
(Table 4), a simple upscaling would be to consider the
impact on 100 participants. As the results have fractional
components, these need to be converted to whole participants.
Three conversion approaches are to (i) round to the whole
person, i.e. a ceiling function, (ii) truncate any fractional
component, i.e. a floor function, or (iii) simply use a standard
rounding function with > 0.5 rounded up and other values
rounded down. These options for the current example can
be seen in Table 5, with floor and ceiling functions under
and over populating the results respectively. Although the
round function has worked well in this example, there is no
guarantee that this will always be the case.

Ultimately it comes down to the context in which the
participant numbers are to be used and whether there is a
preference for underestimating (and using a floor function),
for example when considering health and safety issues, or if
a more balanced rounding approach is better. As there are
only eight states to consider, as a worst case, the error rate
will be ±8 participants. When estimating large numbers of
participants, the impact may be negligible.

VI. DISCUSSION
The results have shown that a Markov chain model
based on a user study dataset can simulate participant
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cybersickness attributes close to the ground truth of the source
material. This can provide insight into dropout rates and
completion times on variations of the VR experience. This
new approach is in contrast to other work on predicting
cybersickness that focused on the use of physiological predic-
tors [10], [11], visual image properties [20] or participant/task
characteristics [12].

A formal model, as introduced here, adds utility to
data collected in user studies and supports exploring the
implications of scaling up any VR experiences, both in
terms of participant numbers and/or the duration of exposure.
In terms of health and safety, minimum and maximum
thresholds for acceptability can be defined and simulated in
the model.

However, the work presented here is not without its
limitations. Firstly, the general cybersickness Markov chain
needs to be populated with representative data to build the
custom model. This may still require user studies to gather
the initial probabilities. Nevertheless, these user studies may
be of a smaller scale and only need to be representative of the
target VR experience. The results can then be scaled up in
the generated model, without the need for further studies or
added risk to participants, i.e. if insight into longer duration
of VR exposure was needed.

Alternatively, historical datasets of similar experiences
may be used, as described here, to provide insight into the
type of environment used, in this case a virtual realty roller-
coaster, or provide a baseline for either further user studies
or to model simulation of different VR environments. For
example, it may be useful to show that a new VR experience
is at least as cybersickness inducing as a virtual roller-coaster,
if it was being used to habituate VR users.

Secondly, the approaches to optimise model parameters
and result thresholds would benefit automation. This was
particularly evident with the optimisation of the seed vector
(Section V-A) and the exploration of minimum andmaximum
thresholds for duration (Section V-C). This is a focus for
future work.

Finally, the model predictions are based on participants
from a specific user study and they may be from a limited
demographic. The effect of cybersickness may not be the
same for different individuals [12], [27]. It would be more
useful if the demographics of the user population could
be integrated into the Markov chain model construction.
Then, if insight of cybersickness impact was needed from
a different demographic, for example older VR users, the
probability matrix could be adjusted accordingly to better
represent the target demographic. The aim would be to
define transformationmatrices that either amplify or diminish
the original probability matrix so that participants from a
demographic with either known susceptibility or resistance to
cybersickness could be modelled. A similar approach could
be considered for VR experiences of different intensities,
with transformation matrices for more or less intense
experiences used to further customise the Markov chain
probability matrix. A number of datasets and case studies

are being explored to feed into this approach and is ongoing
work.

VII. CONCLUSION
This paper outlines a new formal approach to modelling
cybersickness in virtual reality. A Markov chain is generated
from verbal reports of in-situ cybersickness and used to
explore a probability model across a number of variations
including dropout/completion rates, increased duration of VR
exposure, impact by number of participants and thresholds of
acceptable VR exposure.

The approach has been demonstrated using an independent
dataset from a VR user study. The generated Markov chain
has been shown to be representative to the ground truth results
of the source dataset. Limitations to the approach have been
identified and will become the focus of future work, namely
the automation of parameter optimisation and extending the
utility of the formal model to participant populations of
different demographics and virtual environments of differing
intensity. This is ongoing work.
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