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ABSTRACT The quadruped robot has to assess the feasibility of upcoming terrains before making
contact to safely traverse various environments. This assessment is called traversability in the literature
on quadruped robots. Trasversability has recently posed challenges due to a high-dimensional system
that leads to long computational times. Furthermore, exteroceptive observations often suffer from noise
that potentially causes misinterpretations of terrains and results in an inaccurate assessment. This paper
proposes a robust traversability predictor to tackle these issues by utilizing a Convolutional Neural Network
(CNN) encoder, CNN decoder, and Multi-layer Perceptron (MLP) to predict multiple costs associated
with traversability. The integration of the CNN encoder and decoder helps mitigate the effect of noise in
exteroceptive observations, while the MLP network serves as a predictor for multiple costs. The proposed
method utilizes the information collected from a physics simulator to avoid hand-crafted multiple-cost
labeling. It can predict a comprehensive set of costs that overcomes the limitations of relying on a single cost
metric. It also achieves faster computational time by utilizing neural networks, in contrast to the model-based
approach in the literature. The robustness of the proposed method is validated by comparing it to a baseline
noise-free prediction model and an existing method in the literature. The results indicate that the proposed
method exhibits the lowest prediction errors. Therefore, despite the noise in exteroceptive observations, the
proposed multiple cost-based traversability predictor has better accuracy and robustness than the baseline
and existing methods.

INDEX TERMS Machine learning, quadruped robot, reinforcement learning.

I. INTRODUCTION
A. BACKGROUND
Quadruped robots have gained popularity for their capability
to navigate various terrains without falling. However, when
the robot encounters unknown environments, this capability
declines due to limitations both in the locomotion controller
and the kinematics of the robot itself. To ensure the robot
successfully traverses such challenging scenarios, it becomes
crucial to equip the robot with the ability to assess its
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surroundings and internal state. This assessment provides
essential information to determine the most efficient path to
traverse. It guarantees the robot grasps the potential obstacles
and upcoming terrain conditions during traversal. It is also
crucial for enabling the robot to evaluate the feasibility of
reaching its desired position before making contact. This
assessment is known as ‘‘traversability’’ in the literature on
quadruped robots.

In nature, humans and animals possess the innate ability
to determine safe and efficient routes during traversal. They
can use their foresight to perceive the current state and
the upcoming terrain to understand its surroundings. This
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ability allows them to assess their surroundings, process the
information from their sensors, and calculate the optimal
path to ensure their safety and efficiency during traversal.
In contrast, the quadruped robot relies on multiple sensors,
including an Inertial Measurement Unit (IMU), to monitor
its internal state and Lidar as exteroceptive observations to
perceive the terrain. These sensors serve as counterparts to
the sensory systems found in humans and animals. Therefore,
the robot is expected to be able to assess its surroundings by
utilizing these sensors and determine the safe path to traverse.

Recently, quadruped robots have faced challenges in
determining the feasibility of transitioning from their current
state to the desired state when provided with information
concerning their current state and external observations.
This issue arises from the computationally intensive nature
of the calculation itself. That is because the calculation
involves a high-dimensional state to assess its feasibility
transition accurately. Furthermore, another problem arises
when the robot traverses in environments where potential
noise in exteroceptive observations frequently occurs, espe-
cially when navigating reflective and deformable terrains.
These conditions distract the robot’s ability to perceive the
terrain appropriately, resulting in insufficient performance.
Additionally, it is advisable to avoid relying solely on human
intuition-based assessments when operators estimate the
traversability based on their intuition. It is because of the
uncertainties inherent in robot locomotion that cannot be
calculated explicitly. These uncertainties can indirectly lead
to suboptimal assessments.

B. PREVIOUS WORKS AND MOTIVATIONS
Previous studies in the literature have employed pre-scanned
terrain maps, as explained in [1] and [2]. These maps
have served as the foundation for calculating cost-affecting
traversability by leveraging human intuition. Subsequently,
this cost has been employed to optimize the robot’s trajectory
in a step-by-step manner. Hereafter, other approaches involve
labeling traversability based on expert driver paths [3],
[4]. This path is assumed to be a highly traversable
path. Additionally, another method involves a geometric
analysis of the failure costs of quadruped traversability [5].
In pursuing an optimal trajectory through complex motion
planning, these hand-crafted labeling approaches presuppose
prior knowledge of the complete terrain layout and the robot’s
states. Nevertheless, this methodology relied on human
intuition to assign cost values in the intricate geometry of the
terrain, resulting in imprecise assessments.

The model-based approach outlined in [6], focuses on
planning footstep placements for walking robots. It considers
obstacle awareness and non-convex constraints. However,
thismethod relies heavily on the availability of several convex
formulations and obstacle-free regions, potentially leading
to local optimal trajectories. In contrast, Winkler et al.,
as described in [7], utilize trajectory optimization to deter-
mine gait sequences and foothold positions for navigating
on non-flat terrains. They employ a nonlinear programming

FIGURE 1. Multiple Anymal robots training in randomly generated terrain
using Isaac Gym simulation.

solver for this purpose. Nonetheless, this approach simplifies
the robot’s model and limits its ability to fully exploit the
potential of high-dimensional legged robots. An alternative
approach presented in [8] utilizes violation constraints to
assess the feasibility of transitioning to the next state for
legged robots. This approach assumes legged robot motion
as a nonlinear optimization problem. However, it suffers
from significant computational challenges when transitioning
between the current and next states. Several approaches use
the Gaussian Process (GP) to predict the likelihood of falling
cost in rover operations [9], [10]. However, it suffers from
expensive computations during operation.

To address challenges related to high computational
demands and simplify calculations, deep learning approaches
have been employed to predict traversability costs, as dis-
cussed in [11] and [12]. Sevastopoulos et al. [13] compared
the performance between model-based and deep-learning
methods for the traversability of mobile robots. They explain
that deep learning significantly improves traversability esti-
mation. Deep learning overcomes challenges faced bymodel-
based approaches, particularly in handling environmental
complexity. Various studies have demonstrated the effective-
ness of deep learning approaches employing CNN to predict
traversability costs for mobile robots [14], [15], [16], [17],
[18], [19]. These approaches are effective for mobile robot
applications. However, these approaches have limitations in
accurately predicting the feasibility of movement for legged
robots due to their distinct and intricate body movements.
In the work of Yang et al., [20], traversability is calculated
for a given terrain in conjunction with the goal position.
However, this approach overlooks the robot’s internal state,
which can significantly impact costs during traversal on the
same terrain. CNN has proven effective in handling large
image datasets, as outlined in [21], with the potential for
continuous and real-time height map data feeding in robot
perception.

Gan et al. [22] propose that incorporating inertial features
can enhance model fidelity and provide a reward dependent
on the legged robot’s state during deployment. An alternative
method involves using a CNN to extract information from
3D voxel maps and the robot’s internal state to predict a
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single falling cost, as proposed in [23]. However, the network
in this approach is trained without considering the presence
of noise in exteroceptive observations commonly occurring
in light-based external sensors. Furthermore, relying on a
single cost prediction may be insufficient for an accurate
assessment, as various factors affecting traversability, such as
stumbling, getting stuck, and collisions, should be taken into
consideration.

The previous method focused solely on pre-scanned
terrain and neglected considerations for terrain properties or
common noise during perception. To address this limitation,
DogTouch [24] utilizes a force sensor at the foot’s tip, and
Feng [25] deploys an extended wheel to inspect forthcoming
terrain. However, these sensors can only perceive a small
area near the robot’s feet. Another approach involves a neural
network to identify non-traversable and flexible plants for
mobile robots [26], providing a robust perception of plant
properties, which is often misinterpreted by exteroceptive
sensors. Additionally, another method implicitly perceives
terrain properties by integrating multiple networks [27].
Furthermore, CNNs prove effectively extract unimportant
features, such as noise in height maps, generating a
noise-free height map suitable for real-time locomotion
control [28]. Based on these findings, CNNs have the
capability to reconstruct noise-free height maps from con-
tinuously fed, noisy height map data. Subsequently, this
reconstructed height map serves as input to the traversabil-
ity predictor for determining the associated traversability
cost. To the best knowledge of the author, such robust
perception has not been previously utilized in traversabil-
ity predictors to predict multiple costs associated with
traversability.

C. CONTRIBUTIONS
This paper proposes a robust traversability predictor for the
operation of the robot in random terrains. It can decide
whether a robot can safely transition from its current state
to the next state without fail. The proposed method is
devised based on four essential costs related to traversability
assessment, including fall, stumble, stuck, and collision costs,
even in the presence of noise in exteroceptive observations.
Each of these costs holds notable implications for the
feasibility of the robot’s movements during traversal. The
detailed explanation of these multiple costs is described in
section III-C. The proposed method takes into consideration
various sources of information, including terrain perception,
the robot’s internal state, the orientation of the robot,
and its target command. It is expected to make accurate
multiple-cost predictions by comprehending its surroundings
and orientations.

Moreover, the robust traversability predictor is integrated
with a CNN encoder-decoder architecture. This integration
has the purpose of handling noise in exteroceptive observa-
tions. It can efficiently compress noisy measurements, filter
out nonessential data such as noise, and result in noise-free
information.

In contrast to existing approaches, this paper presents a
robust traversability predictor using multiple costs designed
for quadruped robots navigating in random terrains with
noisy exteroceptive observations. This work contributes in the
following ways:

• The proposed method can predict multiple costs asso-
ciated with traversability, such as fall, stumble, stuck,
and collision costs. It exceeds the limitation of previous
works that only consider a single cost.

• The proposed approach integrates CNN encoder and
decoder networks to mitigate the effect of noise in
exteroceptive observations. This integration can extract
irrelevant features, such as noise, and reconstruct noise-
free observations. As a result, it outperforms previous
methods that rely solely on noise-free observations and
enhances overall performance immensely.

• The cost label for training the proposed method is
calculated from physical simulation in Isaac Gym. This
avoids human labeling that can lead to poor prediction
since the quadruped robot is a severe nonlinear system
comprising of complicated hardware and software.

II. PRELIMINARIES
The quadruped robot perceives the internal state of its body
using proprioceptive sensors, such as the IMU and joint
encoder. Define the internal state of the robot vB, ωB ∈ R3

as the linear and angular velocities of the robot base B
with respect to the global frame. g ∈ R3 represents the
gravity vector of the robot. q, q̇ ∈ R12 are joint angular
positions and velocities, respectively. The robot orientation
can be represented with Euler angles ε = [φ ϕ ψ] as the
roll, pitch, and yaw of the robot respectively. The robot uses
actions at ∈ R12 as a joint torque for each joint to move
its leg. To simplify the internal state of the robot, it can be
expressed as:

8 =
[
vB ωB g qt q̇t at−1

]
∈ R45 (1)

The desired velocity are given with high-level commands
c = [v∗x v

∗
y ω

∗
t ] as the body velocity targets in the x and y

directions, and the yaw rate target, respectively. Additionally,
the robot is assumed to be able to perceive the terrain
information by extracting the robo-centric height map using
the light-based sensor. H : R2

× R → R80×80 represents
the height map with size −4m to 4m both in the x and y axis
of the robot with a 10 cm resolution. The robot used in this
paper is an Anymal robot [29] which has length 0.9m, width
0.53m, and height 0.89m.

III. METHODOLOGY
A. OVERVIEW
This section outlines the learning process for the robust
traversability predictor. Initially, the locomotion controller is
designed by utilizing the internal robot state, commands, and
height map information as observations to generate optimal
actions for navigating challenging terrains. This optimal
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FIGURE 2. Illustration of the robust traversability predictor training process. The locomotion controller utilizes robot state 8, commands c , robot’s
orientation ε, and height map H for optimal terrain navigation. Multiple costs (fall, stumble, stuck, and collision costs) are computed in real-time, while
artificial noise is injected into the height map. The CNN encoder and decoder integration reconstructs a noise-free height map from the noisy height maps.

locomotion controller enables the robot to traverse various
terrains successfully.

Subsequently, the optimal locomotion controller is
assigned random commands to explore a different map
than the map used during training. During this exploration,
multiple costs are directly assessed from its current state.
Various scenarios are labeled as costs in traversability, such
as the robot falling on stairs, getting stuck in a pit, stumbling
over stones, or colliding with obstacles. These labels are
made exclusively from experiences in a physical simulator to
mitigate potential biases and suboptimal cost labeling which
are often associated with human-crafted labeling.

Additionally, artificial noise is intentionally introduced
directly into the height map during exploration to reduce
the reality gap in the learning process. This noise replicates
common misinterpretations of terrains encountered in real-
world scenarios. Consequently, the artificial noise effectively
transforms the height map into a noisy height map. This noisy
height map can make the traversability prediction become
suboptimal. Therefore, the integration of CNN encoder and
decoder is employed to mitigate the impact of noise. The
integration of neural networks operates to reduce the effect
of noise in the noisy height map and reconstruct a noise-free
height map.

Moreover, this reconstructed noise-free height map, com-
bined with the robot’s internal state and commands, serves
as an input for the traversability predictor network. This is
the main network in this learning process. It is responsible
for estimating multiple costs based on the current state.
This prediction is crucial for the locomotion controller to
make real-time adjustments while ensuring safe and efficient
movement.

The robust traversability predictor undergoes training via
classical supervised learning. It uses information from a noisy
height map, the robot’s internal state, the robot’s orientation,
and the target command as inputs. Furthermore, multiple
cost labels and the original height map from exploration are
used as outputs to train the network. An overview of the
robust traversability predictor learning process is depicted in
Figure 2.

Additionally, it is worth noting that while this paper
employs specific robot models and controllers tailored to
optimal locomotion, this framework is flexible. It allows
for the use of alternative robots and locomotion controllers
to adapt to different scenarios. This adaptability enhances
the versatility and applicability of the system across various
robotic applications.

B. LOCOMOTION CONTROLLER
The locomotion controller is designed to generate the
optimal actions while simultaneously ensuring the robot’s
body balance. To accomplish this, the locomotion controller
has access to important information, including the robot
state 8, orientation ε, and the ground truth terrain height
map H. Additionally, the controller also receives high-level
navigation commands c, which are used to determine body
linear and angular velocity targets.

The locomotion controller has to produce the optimal
actions a∗ to track the velocity targets. In this paper, the
reinforcement learning approach in [30] is used to produce
the optimal locomotion controller as an optimal policy.
Reinforcement learning has the goal of maximizing the
accumulative return over the given horizon. This can be
assumed as Markov Decision Process (MDP), which can be
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formulated by (s, a, r, s′, a′). s ∈ S is a state s in the set of
states S, a ∈ A is an action a in the set of actions A, and r ∈ R
is a reward r in the set of rewards R.
The policy can be represented using a multi-layer per-

ceptron, denoted as πp(st |θ ), operating on the state s with
parameter weights θ . The output of this policy yields a
probability distribution over the next actions a′

∈ A for
state s ∈ S. In order to enable the policy to produce the
optimal action a∗, the weights must be iteratively updated to
maximize the expected return in the MDP until the optimal
weights θ∗ are achieved, and σ p represents the variance
of policy actions. This optimal policy can be expressed as
follows:

a∗
t ∼ N

(
πp

(
8, c, ε,H|θ∗

)
, σ pI

)
(2)

C. TRAVERSABILITY CALCULATION
A set of traversability costs are calculated directly from the
next circumstance of the robot after implementing the optimal
actions a∗. It considers the next internal state of the robot 8′

and the next orientation of the robot ε′. This calculation can
be expressed as:

T = f (8′, ε′, c|a∗) ∈ R4 (3)

where T denotes multiple costs associated with traversability.
This paper introduces a comprehensive approach to robust

traversability assessment, exceeding the existing works in
the literature, which focused solely on a single cost factor.
The proposed method considers four distinct costs, each
representing a robot’s capacity to navigate various properties
of terrains. The considered multiple traversability costs
include falling, stumbling, stuck, and collision costs.

Each of these traversability costs operates on a binary
labeling. 1 represents the presence of a particular risk
and 0 means it is safe. These binary labels facilitate a
straightforward way of assessing the various challenges and
potential hazards that the robot may encounter during its
terrain traversal. The value of these costs can be expressed as:

T =
[
Tfall Tstumble Tstuck Tcollison

]
∈ R4 (4)

Tfall =


1

∣∣φ′
∣∣ > 45◦ roll’s constraint

1
∣∣ϕ′

∣∣ > 45◦ pitch’s constraint
0 otherwise

(5)

Tstumble =

{
1 feet hitting vertical surfaces
0 otherwise

(6)

Tstuck =

{
1

∥∥v′∥∥2 − ∥c∥2 < 0.1
0 otherwise

(7)

Tcollision =

{
1 body collision with terrains
0 otherwise

(8)

First, the falling cost is designed to evaluate the risk
of the robot falling after it has violated the predetermined
orientation’s constraints on the terrain. This assessment
relies on measurements of the robot’s body orientation to

ensure that the robot maintains a stable posture throughout
its traversal. In this paper, the predetermined orientation
threshold is set to ±45◦ in roll and pitch Euler angles. This
value is considered the maximum angle where the robot
cannot return to the original position due to its mechanical
properties.

Second, the stumble cost operates as an alert detecting
where the robot legs collide with vertical surfaces. These
collisions can lead to a loss of stability and divert the robot’s
movement. This stumble cost preserves the robot’s stability
and anticipates forthcoming obstacles during its traversal.

Third, the stuck cost assesses the robot’s mobility fol-
lowing the given target velocities. This evaluation serves to
determine whether the robot is capable of moving or immobi-
lizing within challenging terrain conditions. It guarantees the
robot’s ability to overcome terrain conditions and maintain
the tracking movement.

Fourth, the collision cost indicates whether the robot’s
body has made contact with the terrain surface. This
cost prevents unintended collisions of the robot with its
surroundings, which could result in potential damage.

D. ARTIFICIAL NOISE
The distinction between the height map obtained from
exteroceptive measurements and the original terrain can be
ascribed to the presence of noise. This noise introduces blur
to the original height mapH, making it become a noisy height
map H̃. In the context of exteroceptive perception, noise
often arises due to the limitations of light-based sensors when
perceiving reflective and deformable surfaces [28]. This
noise potentially leads to inaccuracies in terrain perception.
Moreover, Gaussian noise assumptions are employed to
model this noise, as its characteristics cannot be precisely
quantified with specific values [28]. This modeling approach
utilizes σH as an artificial signal-to-noise ratio parameter to
simulate the noisy height map. Furthermore, this assumption
is applied in training a robust traversability model with
a noisy height map. The noisy height map from sensor
measurements is expressed as follows:

H̃ ∼ N (H, σHI ) (9)

E. CNN ENCODER
The noisy height map H̃ is delivered into the CNN encoder
to reduce the effect of noise. This is achieved through the
CNN encoder’s ability to compress the input data, effectively
filtering out irrelevant information, such as noise in the
height map. This CNN encoder network is denoted as πe

with weights µ and employs a Relu activation function. The
network’s size progressively decreases until it reaches the
size of the latent output l, which serves as its output. This
latent layer produces compressed information representing
the estimated height map. The relationship between the CNN
encoder and the noisy height map is represented as follows:

l = πe
(
H̃|µ∗

)
(10)

VOLUME 12, 2024 32511



F. Muhamad et al.: Robust Traversability Prediction Using Multiple Costs for Quadruped Robot

TABLE 1. Parameters of all maps.

F. CNN DECODER
The CNN decoder is assigned to reconstruct the predicted
height map Ĥ from the latent output l. This process is
achieved by progressively increasing the network size until
it matches the dimensions of the original height map. The
decoder is denoted as πd and shares weight µ parameters
with the encoder network. It utilizes a ReLU as its activation
function. The optimal construction of the height map is
obtained by finding the optimal weights µ∗, which are
updated iteratively by minimizing the error between the
constructed height map Ĥ and the ground-truth height map
H. The CNN decoder is expressed as follows:

Ĥ = πd
(
l|µ∗

)
(11)

G. TRAVERSABILITY PREDICTOR
The role of the traversability predictor is to assess whether the
upcoming terrain is feasible for traversal. It considers the
command, robot orientation, and the latent output as its
inputs. This latent output represents the noise-free height
map extracted from the upcoming terrain. It also considers
different command and robot orientation values, which
can result in varying costs and accurate predictions. The
traversability predictor is constructed using a multi-layer
perceptron network denoted as π t , with independently
learned weights represented as λ, and it employs a Sigmoid
activation function. The optimal weights λ∗ for the predictor
are determined through iterative updates tominimize the error
between the ground truth multiple costs T and the predicted
multiple costs T̂ . The optimal traversability predictor is
represented as follows:

T̂ = π t
(
c, ε, l|λ∗

)
∈ R4 (12)

IV. RESULTS
A. EXPERIMENTAL SETUP
In the experimental setup, three randomly generated maps
are utilized in IsaacGym to validate the proposed method.
Thesemaps incorporate various challenging features to create
diverse testing environments, including slopes, stairs, discrete
stones, steps, gaps, and pits. Each map is characterized by
a specific distribution (‘dist’ in the Table 1) and level for
each terrain type. The distribution denotes how frequently a
particular terrain appears on the map, while the level signifies
the height of the vertical surfaces or the inclination of terrains.

FIGURE 3. The third map has a higher distribution and level of terrain
than the first and second maps to validate the robustness purpose.

The first map is identical to the one used in [30], featuring
slopes, stairs, and discrete stone terrains. This first map serves
as the training ground for the locomotion controller. In the
second map, additional terrains such as stepping stones, gaps,
and pits are introduced to train the traversability predictor
and CNN encoder-decoder networks. The second map differs
in the distribution and level of each terrain compared to
the first map, facilitating learning in scenarios the robot
never encounters during locomotion training. The second
map is intentionally designed to be more challenging, with
increasing distribution and level of each terrain. This is to
make traversability costs more observable. The second map
is illustrated in Figure 1.

Furthermore, a third map is introduced with the highest
number of terrain distributions and levels among all maps,
as illustrated in Figure 3. It means the third map has higher
difficulty with more various terrain types, higher steps,
and higher inclination degrees than other maps. This third
map validates the robust comparison between the proposed
method and an alternative method in the section IV-G. The
distinctions between the maps are detailed in Table 1.
The training process is conducted on Ubuntu 20.04 with

multiple Anymal robots [29] to enable parallel learning.
This parallel learning can significantly reduce the training
time. To efficiently distribute the training load, the entire
program is implemented using PyTorch and executed on
two NVIDIA®Titan V GPUs. Additionally, termination
conditions, such as detecting the robot falling or reaching the
maximum step limit, are incorporated. These conditions are
considered to ensure the robot’s safe operation and reset it to
its initial state when necessary.

In this paper, the entire experiment is conducted solely in
simulation to mitigate the uncertainties that may arise in
the real world due to the complexity and non-linearities
of the robot. These uncertainties can affect the dynamic
characteristics of the robot and deviate from the main
objective. The full potential of the robot can be realized
by avoiding these uncertainties and focusing on the main
objective of the proposed method. Features such as body
inertia, sensor bias, and friction are also incorporated to
minimize the reality gap. Several existing studies in the

32512 VOLUME 12, 2024



F. Muhamad et al.: Robust Traversability Prediction Using Multiple Costs for Quadruped Robot

literature also employ similar simulation-based approaches to
mitigate the impact of such uncertainties [7], [31], [32].

B. TRAINING THE LOCOMOTION CONTROLLER
The locomotion controller’s primary objective is to navigate
across as much terrain as possible while maintaining the
robot’s balance. The locomotion controller is trained as
a policy using the Proximal Policy Optimization (PPO)
algorithm [33] and locomote in the first map. The PPO
algorithm refines the policy by minimizing the actor loss,
continually updating the network parameters until it con-
verges to the optimal weights θ∗. Parallel learning regimes
are implemented to address the issue of sample inefficiency
often associated with reinforcement learning. This can be
achieved by employing 1000 robots that significantly reduce
the training time. This training is completed in one hour.
The effectiveness of the optimized policy is demonstrated
by its ability to successfully navigate diverse and randomly
generated terrains without experiencing falls.

C. ADDITIONAL NOISE
Once the optimal locomotion controller is obtained, the
subsequent phase of this approach involves training the
traversability predictor using noisy exteroceptive observa-
tions. This replicates real-world conditions where sensors
often encounter challenges such as reflective or deformable
surfaces. This paper incorporates artificial noise directly
into the robot’s exteroceptive observations, as outlined in
the equation (9). In this setup, the signal-to-noise ratio
parameter σH is set to a value of −10% ≤ σH ≤ 10%
specifically for heightmapmeasurements. The signal-to-ratio
parameter value used in this paper is the same as the one
employed in the existing results in [30]. This artificial noise is
essential to ensure that the traversability predictor can make
robust assessments even in the presence of noise caused by
exteroceptive sensors.

D. TRAVERSABILITY TRAINING
The robust traversability predictor has the objective of
predicting multiple costs for upcoming terrain based on
inputs, including the recent command, robot orientation, and
a noisy height map.

The learning process of this method involves utilizing
the second map, which is different from the first map used
during the locomotion controller training, as illustrated in
Figure 1. Initially, the optimal locomotion controller receives
a random command to explore the map. The height map is
then extracted and subjected to artificial noise to generate a
noisy height map. Subsequently, the costs are labeled directly
based on the robot’s experience during the exploration.

To ensure accurate predictions, the network first addresses
the need to eliminate noise from the height map. This task is
achieved by utilizing a CNN encoder and decoder, working
collaboratively to reduce the effect of noise within the noisy
height map input and generate a noise-free representation as
output. Subsequently, the traversability predictor processes

TABLE 2. Hyperparameters in the traversability training process.

FIGURE 4. Losses in the traversability training process.

the noise-free height map, the robot’s internal state, and
command, to calculate and predict multiple costs. This
comprehensive approach enables the traversability predictor
to provide precise assessments of the robot’s ability to
traverse forthcoming terrains.

In this paper, two distinct losses are introduced. The first is
the reconstruction loss, which quantifies the error between
the reconstructed and original height maps without noise.
It employs the Mean Square Error (MSE) metric for error
calculation. The second loss is the traversability loss, which
measures the error between the predicted and ground truth
costs. The Binary Cross-Entropy (BCE) metric is used for
error computation. These loss functions can be expressed as
follows:

LMSEreconstruction =
1
N

N∑
i=1

(
Hi − Ĥi

)2
(13)

LBCEtraversability = −
1
N

N∑
i=1

(
Ti logT̂i + (1 − Ti) log(1 − T̂i)

)
(14)

To get a noise-free height map and accurate multiple cost
prediction, classical supervised learning is employed with the
hyperparameter, as shown in Table 2. Its main objective is
to minimize the reconstruction and traversability losses by
updating the weight until the optimal CNN encoder-decoder
and traversability predictor weights (µ∗, λ∗) are obtained.
The optimization problems can be expressed as:

µ∗
= argmin

µ
LMSEreconstruction

= argmin
µ

1
N

N∑
i=1

(
Hi − Ĥi

)2
(15)

λ∗
= argmin

λ

LBCEtraversability

= argmin
λ

−1
N

N∑
i=1

(
Ti logT̂i + (1 − Ti) log(1 − T̂i)

)
(16)
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FIGURE 5. Traversability prediction based on the internal state and a noisy height map.

The losses from the training of the proposed method are
illustrated in Figure 4. As depicted in the figure, both the
reconstruction and traversability losses converge to zero. This
indicates the success of the proposed method in learning
to reconstruct a noise-free height map from a noisy height
map and accurately predict multiple costs associated with
traversability.

E. TRAVERSABILITY VALIDATION
Figure 5 illustrates the results derived from the proposed
method. The process begins with the robot extracting the
original height map H from the simulation using an extero-
ceptive sensor. Subsequently, artificial noise, equivalent to a
signal-to-noise ratio of 10%, is introduced into the original
height map. This results in the creation of a noisy height map
denoted as H̃.

The subsequent step involves the integrated operation
of the CNN encoder and decoder networks. It aims to extract
the noise from the noisy height map H̃ and reconstruct a
height map with reduced noise effects in perception, denoted
as Ĥ. The visual representation in the figure highlights the
effectiveness of the integration of CNN encoder and decoder
networks in successfully reconstructing a noise-free height
map from a noisy height map.

The performance of the proposed method is further
validated through its capability to predict the percentage
of costs incurred as the robot encounters an upcoming
terrain. As illustrated in Figure 5, the traversability predictor
adeptly predicts the likelihood of various costs by leveraging
information from the internal state, command inputs, and the
constructed height map.

Specifically, the figure indicates that the robot faces a 10%
chance of falling, a 0.5% chance of stumbling, no probability

of getting stuck (0%), and a significant 50% chance of
colliding when confronted with an upcoming vertical object.
This validation highlights the method’s ability to reduce
the noise effect and provide predictions regarding potential
incidents in traversing upcoming terrains.

F. VALIDATE USING COLOR
The method’s ability is further demonstrated through
extended validation using colors across various challenging
terrains, as depicted in Figure 6. This visual representation
proves the robot’s ability to assess its capacity to navigate
various forthcoming challenging terrains safely.

A color spectrum that transitions from green to red,
has been thoughtfully employed to indicate traversability
percentages. The green color denotes that the robot can safely
traverse the terrain without unnecessary risk (< 50% chance
of falling), while the red color indicates the presence of a
potential risk of the robot falling or encountering obstacles
(≥ 50% chance of falling).
Furthermore, the robot demonstrates its proficiency in

predicting traversability across terrains, including slopes,
rugged stone surfaces, stairs, and stepping stones. This
variety of terrains emphasizes the adaptability and versatility
of the proposed method. It makes a worthwhile assessment
for navigating complex terrains with precision.

In Figure 6a, the robot assesses the traversability of a
downslide slope terrain. In the flat area of the slope, the
mask is dominated by green, indicating that the area is safe.
However, on the inclined side of the slope, the color shifts
to orange-red, signifying a higher risk of failure. Figure 6b
illustrates the assessment of the side of discrete obstacles
with a vertical surface, where the orange-red color denotes
a potential risk of the robot failing.
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FIGURE 6. The fall cost prediction in the color spectrum on various terrains. The green color
indicates safety (< 50%) and the red color indicates the robot has a high possibility of falling
(≥ 50%).

FIGURE 7. A comparison of the robustness between the proposed method and the baseline approach.

In the downstairs pyramid with a four-sided surface
(Figure 6c), different colors (i.e., green and red) are observed
evenwhen the robot is on the same side of the stairs.When the
robot moves perpendicularly to the stair steps, the proposed
method predicts that the robot can move safely, which is
masked by the green color. On the other hand, when a
different command is given, which asks the robot to move
diagonally with the stair steps, a bigger risk of falling is
predicted, which is meant by the red color. What can be
observed from Figure 6c is that both the commands given to
the robot and the orientation are important in determining the
traversability of the robot in addition to the terrain properties.
This is in sharp contrast with the existing results in which

the focus is solely on the terrain without considering the
command and orientation.

Furthermore, in Figure 6d, the robot can assess the risk
of stepping stones even before making contact with the
upcoming terrain, as indicated by the red color near the
stepping stones.

The video demonstration of the proposed method’s valida-
tion can be found at: https://youtu.be/emqNSuAdi7E

G. VALIDATE THE ROBUSTNESS
To assess the robustness and efficiency of the proposed
method, this paper conducted a performance comparisonwith
both a baseline approach and an existing method outlined
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in [23]. The baseline approach represents a multiple-cost
prediction model trained in the absence of noise in exterocep-
tive observations. In contrast, the existing method is a cost
prediction model trained without noise and solely relies on
a single fall cost. The primary objective of this comparative
analysis is to validate the impact of noise and the significance
of considering multiple costs in traversability prediction.

The third map is employed to examine the capabilities
of the proposed method, as visually depicted in Figure 3.
Unlike the first and second maps, this map poses a higher
difficulty level and has never been used during the training
phase. The map’s composition aligns with the second map.
However, it differs from the second map by featuring more
uneven terrain, the absence of flat surfaces, and an elevated
level of terrain complexity.

The graphical illustration in Figure 7 serves as a visual
validation of the robustness of the proposed method.
Comparative analysis reveals that the proposed method
consistently produces the smallest errors compared with the
baseline and existing approaches. This figure shows the
predictive accuracy of the proposed method across various
costs, including fall, stumble, stuck, and collision costs.
It demonstrates the method’s proficiency in handlingmultiple
cost considerations.

The results of this validation demonstrate that incorpo-
rating multiple costs enables a more accurate assessment
of traversability for forthcoming terrains. It overcomes the
limitations of the existing approach, which relies solely on a
single fall cost.Moreover, the validation shows the robustness
of the proposed method in effectively mitigating the impact
of noise in exteroceptive observations, emphasizing that the
proposed method has advantages over the baseline approach.
This evaluation demonstrates the method’s capabilities as a
robust method for traversability prediction in the presence of
real-world complexities.

V. CONCLUSION
This paper presents a robust traversability predictor by
employing both multiple costs and a combination of a CNN
encoder-decoder and a multi-layer perceptron. This network
demonstrates its capability to effectively handle noise that
is commonly encountered in external sensors during exte-
roceptive observations. The collaborative operation of the
CNN encoder and decoder is crucial in extracting important
information from noisy height maps while filtering out
unnecessary values, such as noise. Moreover, it possesses the
ability to predict a set of costs that collectively affect the
traversability. It contrasts to tackle the limitations associated
with single-cost predictions. Additionally, the utilization
of simulation-based labeling proves essential in obtaining
precise cost estimations, as opposed to relying solely on
human-crafted labels.

A limitation of the proposed method lies in its reliance
on a height map as an exteroceptive observation. Height
maps offer computational efficiency. However, they fail to
fully leverage the three-dimensional (3D) terrain features.

Notably, it is error-prone in the face of overhanging obstacles,
multi-floor structures, or low-ceiling scenarios, resulting in
the exclusion of certain poses in the 3D space from the
path planning considerations [23]. Future work will involve
integrating the proposed method with a voxel-based 3D
map to address this limitation. It aims to enhance terrain
perception and overcome the challenges associated with the
limitations of height maps. Subsequently, it will improve
performance and the applicability of the proposed approach
in complex and various environments.
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