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ABSTRACT Steel surface defect detection is an indispensable part of industrial production and processing
processes. It helps to reduce production costs, ensure product quality, improve production safety and
compliance, and maintain sustainability and competitiveness. To address the low detection accuracy of
traditional methods, this paper developed and investigated an improved algorithm based on YOLO for
steel surface defect detection: ECA(Efficient Channel Attention) -SimSPPF (Simplified Spatial Pooling -
Fast) -SIoU (Scylla Intersection over Union) -Yolov5. First, deformable convolutions were used to replace
some conventional convolutions in the model, which expanded the receptive field and improved detection
accuracy. Additionally, Efficient Channel Attention was integrated into the model to improve the weight
of important information. Then, the SimSPPF was employed in place of the SPP module in the model,
reducing computational complexity. Finally, the SIoU loss function was utilized to handle bounding
box regression more effectively. The paper conducted different ablation experiments, and the improved
ECA-SimSPPF-SIoU-Yolov5 algorithm demonstrated superior detection performance. Using the NEU-DET
dataset, the mAP reached 78.8%, which was a 7.1% improvement higher than the original model, while
the Recall reached 76.4% and improved by 3.7% compared to the original model. The improved model
showed significant improvements in terms of mAP and Recall. Furthermore, the paper conducted multiple
comparative experiments, comparing the model with other attention mechanisms and loss functions. The
results demonstrated that the improved ECA-SimSPPF-SIoU-Yolov5 algorithm achieved good detection
results in terms of mAP and Recall. In the third comparative experiment, the model was compared with
YOLOv5 model with different network depths and the latest Yolov8 model, and the improved model also
achieved good detection accuracy.

INDEX TERMS Defect detection, deep learning, object detection, convolutional neural network, defect
classification.

I. INTRODUCTION
Steel, as a raw material, is highly applied in multiple fields
such as aerospace, automotive, and chemical industries. With
the development of production technology, the quality of
steel has become increasingly important. Surface defect

The associate editor coordinating the review of this manuscript and

approving it for publication was Sawyer Duane Campbell .

detection of steel is an essential part of steel quality inspection
[1]. There are different types of defects on the surface of
steel, most of which are caused by multiple factors such as
environment and equipment when producing and processing,
as shown in Figure 1. The images in Figure 1 are from the
NEU-DET dataset [2] created by Northeastern University.
The service life and strength of steel will be influenced
by these defects, thereby impacting the quality and sales
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of subsequent products. Therefore, it is very important to
timely and effectively complete the detection of defects on
the surface of steel.

FIGURE 1. Steel surface defect (a) crazing; (b) inclusion; (c) patches;
(d) scratches.

The traditional method for detecting surface defects on
steel is the stroboscopic method, which is one of the manual
inspection methods. However, this method has significant
drawbacks such as low efficiency, low reliability, noticeable
false negatives, and high labor requirements [3]. Due to the
rapid growth of artificial intelligence in recent years, neural
network has been utilized to various detection fields, includ-
ing steel defect detection. The models that use deep learning
to complete defect detection are divided into two categories:
two-stage detection and one-stage detection. When using the
two-stage detection, features are first extracted, followed by
the generation of region proposals, and finally, the defect
detection is performed. The R-CNN (Regional Convolutional
Neural Network) series [4] are the representative algorithms
of the two-stage detection. On the other hand, one-stage
detection eliminates the generation of region proposals and
directly performs detection after feature extraction. The most
popular YOLO (You Only Look Once) series algorithms
[5] currently are representative algorithms for single stage
detection. SSD (Single Shot MultiBox Detector) algorithms
[6] also belong to a category of single stage order taking.
The former tends to achieve better detection accuracy, while
the latter offers faster detection speed. The surface defect
detection of steel materials involves various task require-
ments, such as object detection, instance segmentation,
or semantic segmentation. U-Net is commonly employed for
semantic segmentation tasks due to its proficiency in learning
high-resolution semantic features from input images. When
the dataset comprises images with relatively small defect
sizes or dense defect distributions, U-Net may demonstrate
enhanced effectiveness. However, in the context of the dataset
in this study, where defects are larger and sparsely distributed,
the YOLO algorithm is deemed more suitable. YOLOv8,

the latest object detection model released by Ultralytics,
incorporated numerous advanced features and technologies.
However, given its recent release, it had not undergone
extensive market validation or practical application testing.
In contrast, YOLOv5 was a mature and thoroughly validated
object detection algorithm that had gained widespread
recognition and adoption in both academia and industry. Its
stability and reliability had been proven in numerous practical
projects. Hence, the paper chose to build upon the foundation
of YOLOv5.

To solve the task of detecting surface defects in steel,
a modified algorithm based on YOLOv5 was investigated in
the study with the aim of improving the average precision of
detection tasks. The main work of this study is as follows:

(1) Improvement of the detection accuracy of irregular
defects. Some convolutions in the YOLOv5 model were
replaced with deformable convolutions. This increases the
receptive field during sampling, allowing for a detection that
was closer to the actual shape of irregular defects and thus
improving the detection accuracy.

(2) By incorporating the ECA [7] (Efficient Channel
Attention) attention mechanism into the model, we increased
the weight of important information channels, thus improving
detection accuracy. Moreover, ECA introduces only a small
number of parameters to the model.

(3) The spatial pyramid pooling in the model was
replaced with the SimSPPF (Simplified Spatial Pooling -
Fast) structure, reducing computational complexity. Because
SimSPPF, with the replaced activation function, achieved
better results in testing detection speed.

(4) The SIoU (Scylla Intersection over Union) substituted
for the CIoU (Complete Intersection over Union) in the
original model, leading to better inference results and
improved detection accuracy.

II. RELATED WORK
A. APPLICATION OF YOLOv5 IN OBJECT DETECTION
When it comes to computer vision, object detection will
never be forgotten because it is currently one of the
most challenging issues. Completing the classification of
objects is its main task, and on this basis, further posi-
tioning tasks can be completed. Current research efforts
primarily focus on object classification and localization,
which are collectively referred to as detection tasks. Two-
stage detection and one-stage detection have their own
advantages and disadvantages. However, from the perspective
of practical applications, one-stage detection can greatly
improve detection speed while sacrificing a small portion
of detection accuracy, making it more promising for the
future. YOLOv5 is one of the most widely used algorithms
in this field, including various detection scenarios such
as agricultural disease detection, industrial part inspection,
assisted medical diagnostics, pedestrian detection, vehicle
detection, and more.

Liu et al. [8] utilized YOLOv5 combined with SimAM
attention mechanism and added a layer of small object
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detection in the layer of Neck to detect tassels in corn,
achieving an mAP (mean average precision) of 44.7%,
which was a 2.1% improvement over the original algorithm.
However, further improvements in detection accuracy are still
necessary for real-world applications.

Ma et al. [9] replaced the convolutional layers in YOLOv5
and applied it to fire and smoke detection scenarios, achieving
a detection accuracy of 87.6%. However, since it was
applied to fire and smoke detection, further improvements
in detection accuracy are required for practical real-life
applications.

Li et al. [10] completed the detection of typical satellite
components using YOLOv5 and achieved an mAP of 95.8%,
while reducing the model size by 66%. This provided a
possibility for practical applications in this domain.

B. OBJECT DETECTION IN STEEL DEFECT SCENARIOS
In recent years, researchers have continuously achieved
results in the research direction of object detection technol-
ogy. With the increasing demand in industrial settings, many
researchers have applied object detection techniques to defect
detection in industrial environments, including steel surface
defects. Early works mostly relied on image processing
techniques to detect defects. They used image detection
techniques to identify the presence of defects and then further
highlighted the defects using gradient algorithms or region-
growing algorithms. However, with the advancement of deep
learning, subsequent works have predominantly utilized deep
learning for defect detection.

Yu et al. [11] employed the anchor-free FCOS (Fully Con-
volutional One-Stage) detection framework and incorporated
a channel attention mechanism. They used the FPN (Feature
Pyramid Network) in place of BFFN (Bidirectional Feature
Fusion Network). Experimental results showed an mAP of
76.68%, which was a 4.43% improvement over the original
algorithm. This approach achieved good detection results, but
it had a drawback of having a large number of parameters,
which might impact its industrial applicability.

Feyza Selamet et al. [12] added SFS(Shape From Shading)
to the Faster R-CNN model to address the influence of
environmental factors such as lighting on detection. The
experimental mAP reached 83%, meeting the detection
requirements effectively. Although this research achieved
good detection accuracy, it still suffered from the common
issue of two-stage detection such as low detection speed.

Yang et al. [13] incorporated the CBAM (Convolutional
Block Attention Module) into YOLOv5 and preprocessed
images using a filtering algorithm. They achieved an mAP
of 82.7%. However, this experiment had the drawback of
insufficient generalization performance, with lower detection
accuracy for two types of defects: cracks and scratches.
Further improvements are required in this regard.

C. ATTENTION MECHANISM
Generally speaking, the larger the total number of parameters
contained in a model, the better its expressive power will

be. However, as the total number of parameters in a model
increases to a limit, it can lead to information overload,
causing computers to struggle in processing the information
within images, which subsequently affects the subsequent
detection results. Attention mechanisms have been proposed
to address such issues. Themain task of attentionmechanisms
is to identify important information, increase the weight of
relevant information, at the same time decrease the weight of
irrelevant information. They can help alleviate information
overload to some extent and improve detection accuracy
and speed, especially when computational resources are
limited.

Attention mechanisms such as SENet (Squeeze-and-
Excitation Networks) [14], CBAM (Convolutional Block
Attention Module) [15], ECA (Efficient Channel Attention),
CA (Coordinate Attention) [16], NAM (Normalization-based
Attention Module) [17], and others have been widely applied
in neural network models to enhance the performance of
various detection tasks. Chen et al. [18] incorporated SENet
into YOLOv3 and applied it to nut detection. He et al. [19]
combined the ECA module with the ResNet model, and
Wang et al. [20] combined multiscale transformer and
CBAM, both applied to remote sensing image detection.
Dou et al. [21] added the NAMmodule to YOLOv5, resulting
in a 17% in-crease in computational speed. Xuan et al. [22]
added the CA module to YOLOX and applied it to defect
detection in printed circuit boards (PCB), achieving improved
detection performance.

D. TYPES OF CONVOLUTIONS
Convolutions, as the fundamental building blocks in neural
networks, are widely used and modifying the convolutions
in a model can have a significant impact. Many researchers
have focused on the study of convolutions and have
proposed different types of convolutions, such as group
convolution [23], depthwise separable convolution [24], and
dilated convolution [25]. These convolutions have their own
advantages and disadvantages, and researchers from various
fields have extensively applied them in the field of detection.

Group convolution can lead to a decrease in the total
number of parameters in the model, thereby achieving the
goal of reducing computational costs. Chen et al. [26]
utilized the advantage of group convolution to achieve
aerial image segmentation. Depth-wise separable convolution
significantly reduces the number of convolution parameters
but may have an impact on detection accuracy. Training
on GPUs with depthwise separable convolution is generally
slower. Yan et al. [27] leveraged the characteristics of
depthwise separable convolution to build a lightweight face
recognitionmodel and improving real-time detection. Dilated
convolution expands the receptive field while reducing
computational complexity. Compared to the face residual
model, the total number of parameters in this model has been
reduced by about 45%. However, it can lead to insufficient
continuity of feature information in the image during
sampling. Yang et al. [28] combined dilated convolution
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into a neural network for image classification, achieving
a classification accuracy of 93.5% and saving half of the
training time.

III. METHODS
The improved network architecture, ECA-SimSPPF-SIoU-
YOLOv5, is depicted in Figure 2. Several convolutions
in the backbone and neck have been replaced with
deformable convolutions. The SPP structure in the backbone
has been replaced with the SimSPPF structure, and two
additional layers of SimSPPF structure have been added.
An ECA attention mechanism has been incorporated into
the backbone, and the loss function has been replaced with
SIoU.

FIGURE 2. Improved YOLOv5 framework.

A. SimSPPF
The SPP (Spatial Pyramid Pooling) module was proposed
by He et al. in 2015 [29] to address the problem of image
distortion and significantly improve the speed of generat-
ing candidate boxes, thereby saving computational costs.
Building upon this, Glenn Jocher, the author of YOLOv5,
introduced the SPPF (Spatial Pyramid Pooling - Fast) mod-
ule. The SPPF module transforms the separate max-pooling
operations in the SPP module into sequential operations,
leading to a decrease in the total number of parameters in the
model, thereby achieving the goal of reducing computational
costs. However, the authors utilized the SimSPPF (Simplified
Spatial Pyramid Pooling - Fast) module in this paper. Its
structure is shown in Figure 3. The difference between
SimSPPF and SPPF lies in the activation function used
within the module. While SPPF employs the SiLU activation
function, SimSPPF utilizes the ReLU activation function.
Using SimSPPF yields better detection speed compared to
SPPF.

FIGURE 3. SimSPPF structure.

B. ECA ATTENTION MECHANISM
The SE attention mechanism is a method that allows neural
networks to automatically determine the importance of
feature channels and assign different weights accordingly,
aiming to achieve better detection accuracy. In this paper,
the ECA attention mechanism was utilized, which is an
improved version of the SE attentionmechanism. Its structure
is depicted in Figure 4.

FIGURE 4. ECA structure.

In SENet, it is necessary to consider the relationships
among all channels to achieve weight distribution. However,
this approach also incurs significant computational costs.
On the other hand, ECA overcomes this issue by replacing the
fully connected layer with a convolutional layer, significantly
reduced the total parameter count of the model after adding
attention mechanisms. Comparatively, the ECA attention
mechanism can achieve good detection results with only a
small increase in parameters.

The size of the convolution kernel in Figure 4 is obtained
through an adaptive function, which is defined as follows:

k =

∣∣∣∣ log2cγ
+
b
γ

∣∣∣∣
odd

(1)

where k represents the size of the obtained convolution
kernel, c denotes the size of the number of channels, γ and
b are set to 2 and 1, respectively. The notation ||odd indicates
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that the resulting convolution kernel size can only be an odd
number.

C. DEFORMABLE CONVOLUTION
When using regular convolutions for image sampling, the
same receptive field is applied to extract features from objects
of different sizes and irregular shapes. This feature extraction
method is clearly not ideal. In this paper, deformable
convolution [30] was employed, which could address some
of the limitations of regular convolutions. The convolution
operation of deformable convolution is depicted in Figure 5.
The left side of Figure 5 illustrates the regular convolution
operation, while the right side demonstrates the deformable
convolution. From the convolution operation, it is evident that
deformable convolution can obtain a larger receptive field
compared to regular convolution. The range of receptive field
during sampling can be changed as the size of the detected
target changes, making the feature extraction process more
aligned with the actual detection objects.

FIGURE 5. Deformable convolution operation.

FIGURE 6. Deformable convolution structure.

The structure of deformable convolution is depicted in
Figure 6. The input feature map is first passed through
a convolutional layer to obtain an offset field, where N
represents the size of the convolutional kernel, resulting in
N offsets. Since the image is a 2D image, there are a total
of 2N offsets, which correspond to the displacement values.
These displacement values are then incorporated into the

computation of regular convolution. The goal of expanding
the receptive field can be achieved, thereby ultimately
completing the task of matching the size of the detection
target. The formula for incorporating the displacement values
into regular convolution is as follows:

y(p0) =

∑
pn∈R

w (pn) ∗ x (p0 + pn + 1pn) (2)

where y(p0) represents a point on the output feature
map, where p0 is the center point of the convolutional
kernel, pn represents the offset of regular convolution,
R ∈ {(−1, −1) , (−1, 0) , . . . , (0, 1) , (1, 1)}, w (·) denotes
the weight of the corresponding offset point, and 1pn is the
offset amount for deformable convolution. However, since the
generated offsets are usually floating-point numbers, bilinear
interpolation is utilized to obtain the corresponding pixel
values after the offset.

Due to the range of the receptive field exceeded the
scope of the detected objects in the initial version (v1) of
deformable convolution, which aimed to expand the receptive
field. As a result, the extracted features extended beyond
the detection range. To address this issue, a second version
(v2) was proposed. In this version, a penalty mechanism
was introduced to penalize the weights that extend beyond
the detection range. This mechanism helps reduce such
occurrences. The deformable convolution used in this paper
specifically referred to the v2 version.

D. SIOU LOSS FUNCTION
Loss functions can be used to determine the similar-
ity between predicted bounding boxes and ground truth
boxes in object detection tasks. The higher the similarity
between these two boxes, the better the detection result.
The detection performance of the entire model will be
better by properly utilizing loss functions. Several loss
functions have been proposed to address the bounding
box regression problem, such as IoU(Intersection over
Union), GIoU(Generalized-IoU), DIoU(Distance-IoU), and
CIoU(Complete-IoU). In YOLOv5, the CIoU loss function
was chosen. However, these loss functions only consider
aspects such as the overlapping area, distance between
centers, and aspect ratios, without considering the mismatch
in orientation between the two. This paper used SIoU instead
of CIoU in the original model. It redefines the penalty
mechanism and considers the angle between the predicted
and ground truth boxes, which effectively improves the
detection accuracy.

IV. RESULTS
A. DATASET
The NEU-DET dataset [31], created by Northeastern Uni-
versity, was used in this experiment. This dataset consists of
6 classes of defects: crazing (Cr), inclusion (In), patches (Pa),
pitted surface (Ps), rolled-in scale (Rs), and scratches (Sc).
There are 300 images in every types of defect, resulting in a
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total of around 1800 imageswith approximately 4200 defects.
The images have a resolution of 200 × 200 pixels.

B. HYPERPARAMETER OPTIMIZATION
The hyperparameter settings of the network can impact
the detection results of the model. After multiple repeated
experiments and comparisons, a set of optimal model training
parameters was selected. Initial learning rate was 0.01, cyclic
learning rate was 0.2, and the number of training epochs was
200 epochs. The SGD optimizer was used, and the weight
decay was set to 0.0005.

C. PERFORMANCE METRICS
Using accuracy alone is not sufficient to effectively measure
the detection performance of the model. Therefore, evalua-
tion primarily focused on mAP (mean Average Precision),
recall, and the total number of model parameters to assess the
detection performance of the model in this experiment. mAP
represents the average precision across all defect classes,
providing an overall measure of detection accuracy.

D. ABLATION EXPERIMENTS
In order to validate the effectiveness of each improvement
module in this experiment, several ablation experiments were
conducted using the NEU-DET dataset. Each improvement
module was evaluated using a controlled variable approach.

The specific results and experimental model of the
ablation experiment are shown in Table 1. The second row
represents the model without any improvement modules.
Here, ‘‘DCNv2’’ refers to deformable convolution.

TABLE 1. Ablation experiment.

From Table 1, it can be observed that each individual
improvement module, when added to the original model, can
moderately increase mAP. The inclusion of SimSPPF can
also reduce model parameters by nearly 3%. When all four
improvements were added to the original model, it is evident
that the mAP improved by approximately 7%, reaching
78.8%, with a 3.7% increase in recall, reaching 76.4%.
These results indicated that the improved model exhibits
good detection performance. The obvious comparison of
three key data in the ablation experiment is shown in
Figure 7.

In Figure 7, first Y-axis from left represents the magnitude
of mAP values, and different improvement methods are
represented by black line graphs. Second Y-axis from left

FIGURE 7. Ablation experiment.

represents the size of parameters in blue. Third Y-axis from
left represents the magnitude of recall values in red. A blue
line graph is used to compare the parameter sizes of models
improved by different methods, while a red line graph is used
to compare the recall values of models improved by different
methods. It is evident that each improvement can increase the
model’s mAP, and when all improvements were added, the
highest mAP of 78.8% and recall of 76.4% were achieved.
This is significantly better than models with only one type
of improvement. Additionally, the model only increased the
parameter size by less than 1% compared to the YOLOv5s
model.

E. COMPARATIVE EXPERIMENTS
In order to validate the effectiveness of the detection method
in this experiment, certain improvement modules were
replaced. For example, while keeping other improvement
modules unchanged, the type of attention mechanism in the
model was changed. The ECA attention mechanism was
replaced with other types of attention mechanisms such
as SA, SE, and NAM, among others. These comparative
experiments were conducted to verify the advantages of
the improved methods selected in this experiment. The
experiments conducted in this study focused on attention
mechanisms and loss functions. The specific results of the
experiment can be well reflected in Tables 2 and 3.

From the various data in Table 2, it is easy to conclude that
using different attention mechanisms only causes an increase
or decrease of less than 1% in the total parameter quantity of
the model. Among the five different attention mechanisms,
the ECA mechanism achieves the best AP among three types
of defects: inclusion, pitted surface and scratches. It also
achieved the best mAP and Recall results in models that use
different types of attention.

From the various data in Table 3, it is easy to conclude
that compared to the other three different loss functions, the
proposed algorithm achieved the best AP between two types
of defects: patches and pitted surface. It also achieved the
best mAP and Recall performance among all the models with
different loss functions.
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TABLE 2. Comparative experiments of attention.

TABLE 3. Comparative experiments of loss functions.

Based on the information presented in Tables 1-3, it was
evident that the introduced enhancements in our model had
yielded favorable outcomes. The incorporation of deformable
convolution allowed the model to closely align with the
shape of defects during the sampling process, facilitating the
extraction of superior features. Additionally, the inclusion
of the ECA attention mechanism effectively amplified
the significance of crucial information in the detection
process, thereby enhancing detection accuracy. Furthermore,
the paper had refined SPP into SimSPPF to reduce the
computational complexity associated with using this module.
Lastly, by substituting the SIoU loss function, the paper had
taken angles into account, effectively addressing the issue of
bounding box regression. The obvious comparison of three
key data on attention mechanisms and loss functions are
illustrated in Figure 8 and Figure 9.

FIGURE 8. Comparative experiments of attention mechanisms.

Figure 8 presents a comparison of different attention
mechanisms. First Y-axis from left represents mAP, while
second Y-axis from left represents the parameter size in
blue. Third Y-axis from left represents Recall in red. The
gray bars in the graph represent the magnitude of mAP,

FIGURE 9. Comparative experiments of loss functions.

FIGURE 10. Other comparative experiments.

the blue bars represent the parameter size, and the red
bars represent the Recall. From the graph, it becomes more
visually apparent to observe the differences in mAP under
different attention mechanisms. It can be observed that the
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TABLE 4. Other comparative experiments.

proposed ECA-SimSPPF-SIoU-Yolov5 achieved the highest
mAP of 78.8%, surpassing the second-ranked SA-SimSPPF-
SIoU-Yolov5 with an mAP of 77.7%. It also achieved the
highest Recall of 76.4% with the least number of parameters,
which was only 7,073,864 in this comparison group.

Figure 9 illustrates the comparison of different loss
functions for detecting different defects. It is evident that
the proposed method demonstrated good detection results for
various defects. The detection accuracy of patches reached
the highest of 94.9%, and the detection accuracy of pitted
surfaces reached the highest of 89.1%.

In order to validate the effectiveness of the improved ECA-
SimSPPF-SIoU-Yolov5 model, comparative experiments
were conducted with other models from the YOLO series,
such as different network depths of YOLOv5 models and
some models from the YOLOv8 series. The specific results
of these comparative experiments can be well reflected in
Table 4, demonstrating the effectiveness of this experiment.

From Table 4, it is easy to conclude that the proposed
method showed the best detection effect for five out of six
defects, excluding the ‘‘rolled-in scale’’ defect. It achieved
the highest detection accuracy of 59.1% for ‘‘crazing,’’ 83.7%
for ‘‘inclusion,’’ 94.9% for ‘‘patches,’’ 53.5% for ‘‘rolled-in
scale,’’ and 92.2% for ‘‘scratches.’’ The AP for all five defect
classes reached the highest value, and the mAP also reached
the highest value. Figure 10 presents a radar chart comparing
the proposed method with other approaches.

In the radar chart, the red color represents YOLOv5x, the
blue color represents YOLOv8n, the green color represents
YOLOv8s, and the purple color represents the proposed
method. YOLOv8 is the latest algorithm introduced in the
YOLO series. From the radar chart, it is evident that the
ECA-SimSPPF-SIoU-Yolov5 model proposed in this paper
outperformed the latest generation YOLOv8 in terms of
detection accuracy. Compared to YOLOv8n, the proposed
model achieved higher detection accuracy while reducing the
overall parameter size.

V. CONCLUSION
This study improved upon the YOLOv5 model by making
several modifications. First, the convolutional layers were
enhanced by replacing conventional convolutions with de-
formable convolutions, which increased the receptive field
and extracted larger features. Second, an ECA mechanism
was introduced to assign higher weights to important feature
information. Third, the pooling module was replaced to
reduce computational complexity. Lastly, the loss function
was replaced to better address the bounding box regression
problem.

The algorithm proposed in this article was validated
through the highly recognized NEU-DET dataset, and the
experimental results demonstrated that the ECA-SimSPPF-
SIoU-Yolov5 algorithm achieved good detection accuracy.
It yielded an mAP of 78.8%, which was a 7.1% improvement
over the original YOLOv5s model. It also outperformed other
comparative experiments, achieving a Recall of 76.4%,which
was a 3.7% improvement over YOLOv5s model without any
improvements added. The total parameter size only increased
by a small amount.

However, all the deep learning models proposed in this
study still exhibit relatively low detection accuracy for the
‘‘crazing’’ and ‘‘rolled-in scale’’ defects. The images of these
defects reveal that the exhibited characteristics of these two
types of defects are less pronounced compared to other
defects. Consequently, directly extracting these two types of
defects from the background is not an easy task, leading to a
lower detection accuracy for these specific defects. In future
work, we plan to address this issue by increasing training data
for these two types of defects, employing data augmentation
techniques, and optimizing the model.
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