
Received 6 February 2024, accepted 23 February 2024, date of publication 29 February 2024, date of current version 8 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3371499

Compiler Provenance Recovery for Multi-CPU
Architectures Using a Centrifuge Mechanism
YUHEI OTSUBO 1,2,3, AKIRA OTSUKA 3, (Member, IEEE), AND MAMORU MIMURA 3,4
1National Police Academy, Fuchu, Tokyo 183-0003, Japan
2National Police Agency, Chiyoda, Tokyo 100-8974, Japan
3Institute of Information Security, Yokohama, Kanagawa 221-0835, Japan
4National Defense Academy, Yokosuka, Kanagawa 239-0811, Japan

Corresponding author: Yuhei Otsubo (dgs157101@iisec.ac.jp)

ABSTRACT Bit-stream recognition (BSR) has a wide range of applications, including forensic
investigations, detecting copyright infringement, and analyzing malware. In order to analyze file fragments
recovered by digital forensics, it is necessary to use a BSR method that can accurately classify classes while
addressing various domains without preprocessing the raw input bitstream. For example, it is important to
note that in the case of compiler provenance recovery, a type of BSR, the same bit sequence can have different
meanings for different CPU architectures. As a result, traditional methods that rely heavily on disassembly
tools, such as IDA Pro, may have limited in applicaballity scope to programs designed for specific CPU
architecture. To address the aforementioned limitation, we proposed a novel learning method. Our method
involves the upstream layers (sub-net) capturing global features and instructing the downstream layers (main-
net) to shift focus, even when a portion of the input bit-stream has identical values. Through our experiments,
we utilized a model that was less than 1/300 the size of the state-of-the-art model. Despite its smaller size, our
method achieved the highest classification performance of 99.54 on amulti-CPU architecture, outperforming
existing methods.

INDEX TERMS Binary analysis, compiler provenance recovery, machine learning, transfer learning,
fine-tuning.

I. INTRODUCTION
Bit-stream recognition (BSR) is a classification task that
takes a bit-stream as input and outputs a class label. In the
field of cybersecurity, which is the practice of protecting
systems, networks, and programs from digital attacks, various
studies have used methods involving BSR models, includ-
ing the classification of malicious programs [25], author
identification of programs [36], discovering vulnerabilities
in programs [28], function recognition [11], [19], [34],
and recovering corrupted files [7]. Bit-streams sometimes
appear to be very complicated, as they are mostly produced
by artificial generative models such as program compilers
and audio codecs. Because the bit-stream structure varies
greatly depending on the artificial generative model and the
location or context from which the bit-stream was taken, data

The associate editor coordinating the review of this manuscript and

approving it for publication was Ines Domingues .

engineering (DE) is among the most significant steps for
achieving classification accuracy.

Compiler provenance recovery (CPR), one of the applica-
tions of BSR, refers to the task of identifying the environment
in which given program binaries were created. When CPR
is applied to malware analysis, it can provide important
information for determining the author of the malware [27].
For the analysis of file fragments recovered by digital
forensics, we need a BSR method that takes a raw input
bitstream and enables highly accurate class classification
while simultaneously addressing various domains without
any preprocessing. However, there are still only a few
studies that use raw bit-streams as training data and has
high classification accuracy while simultaneously addressing
various domains [6]. CPR is mainly a classification for
machine language instruction sequences. However, because
the model cannot be trained efficiently with raw bit-
streams, various methods for creating feature vectors have

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 34477

https://orcid.org/0000-0001-7395-5092
https://orcid.org/0000-0001-6862-2576
https://orcid.org/0000-0003-4323-9911
https://orcid.org/0000-0002-2334-7280


Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

been proposed, including replacing disassembled machine
language instructions with several categories of symbols to
see the flow of program code [31] and creating feature vectors
on a per-function basis [33], [35]. Otsubo et al. proposed
o-glassesX [27], which can be trained with data that are
relatively close to raw bit-streams, and then classification can
be performed with high accuracy by dividing the bit-stream
into instruction units in pre-processing.

Most existing BSR models are domain dependent and are
designed to improve classification accuracy by narrowing
down the input bit-stream target domain and specializing the
DE for a particular purpose. Similarly in CPR, the key to
highly accurate classification is to limit the corresponding
CPU architecture and DE according to its type. There are few
generic BSR methods exist that can apply existing models to
other BSR problems without redesigning the DE to achieve
high classification performance. Therefore, in this study,
we aim to propose a CPRmethodwithout DE that can classify
bit-streams with high accuracy.

It is also known that, in general, losses in natural language
processing models decrease as the size of the model, the
size of the data set, and the computational power used for
training increase [10]. In CPR, there has been a trend toward
the giant size of models, as seen in the publication of a
method using RoBERTa [6]. On the other hand, there are
issues such as increasing the size of the data set for training in
accordance with the model size increase, and the increase in
the computational cost of training limits the fields in which it
can be applied. Therefore, our other goal is to propose a more
lightweight and accurate classification method.

We propose a centrifuge mechanism in which the upstream
sub-net transitions the input to a space corresponding to
sub-labels. The key idea of the centrifuge mechanism
is to utilize a sub-net predictor that captures global features to
automate the process of narrowing down the target domain,
which has been done manually in the past. The centrifuge
mechanism consists of a sub-net that learns global features
and a broadcast concatenator. The broadcast concatenator
concatenates an input of the sub-net and the sub-net’s output.
This concatenation changes operations that use local features
of the main net to those that consider global features.

The centrifuge allows the downstreammain-net to focus on
more difficult classifications. For the centrifuge mechanism,
we checked the accuracy and characteristics of the main-net
and sub-net predictions using various learning methods. One
of them pre-trains the main-net using the sub-label’s ground
truth instead of the sub-net’s output. This method was able to
give the sub-net the role of sub-label prediction without using
a loss function for sub-label classification. Additionally,
we found that sub-predictions tend to be highly accurate when
the sub-label classification contributes to the essence of the
main prediction.

The contributions of this paper are as follows.

• Our proposed model is a lightweight CPR model able
to simultaneously support multiple CPU architectures,

and it has achieved cutting edge performance for CPR
in terms of classification performance.

• We demonstrated that a single loss function can be used
to generate a sub-net in the model that allow subclass
classification independent of the main class.

• We proposed a new learning method that improves the
interpretability of the output by explicitly assigning roles
in the model.

II. RELATED WORK
There are few BSR models that use raw bit-streams as
training data and has high classification accuracy has yet
been developed. In this section, we describe existing work
on CPR as an example of BSR problems. In this paper,
we experimentally demonstrate our model’s applicability to
CPR.

A. COMPILER PROVENANCE RECOVERY FOR SINGLE-CPU
ARCHITECTURE
Rosenblum et al. used a conditional random field (CRF [21])
and set up a classifier that took a bit-stream as input to identify
one of the three compiler families with a 0.924 accuracy
rate [35]. They disassembled the bit-stream with an IA-32
architecture and found a typical matching instruction pattern
called ‘‘idioms’’ that predicted the compiler families. Their
early result is only for the relatively easy compiler family
identification with three classes. Rosenblum et al. have
improved their method and proposed a tool named ORI-
GIN [33]. ORIGIN’s linear support vector machine [4] takes
the feature of an independent ‘‘function’’ as input and predicts
both the optimization level and the version in addition to the
compiler family, but it has difficulty identifying the compiler
versions. ORIGIN’s CRF takes the same features of multiple
adjacent functions as input for the prediction and performs
with a higher accuracy of 0.9 and above, despite the number
of classes having increased from 3 to 18. However, the size
of the input data required for predicting compiler provenance
is larger.

Rahimian et al. developed BinComp [31], an approach in
which the syntax, structure, and semantics of disassembled
functions are analyzed to extract the compiler provenance.
In their experiments, BinComp had an identification accuracy
of 0.801 in 8-class classification.

Otsubo et al. proposed o-glasses [26], which separates
machine instructions from other data with high precision.
Yang et al. proposed BinEye [40], a method for identifying
compiler optimization levels. These two methods achieve
highly accurate classification by processing each instruction
in a CNN. o-glasses targets the x86 architecture and
uses a disassembler to decompose a byte sequence into a
machine language instruction sequence. BinEye, on the other
hand, is for the ARM architecture, and takes advantage of
ARM’s fixed-length instructions to achieve instruction-by-
instruction processing by breaking them down into 4-byte
units without disassembler.

34478 VOLUME 12, 2024



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

o-glassesX [27] has succeeded in identifying compilers
with very high accuracy by dividing the raw bit-stream
into x86/x86-64 machine language instruction units and
combining a convolutional neural network (CNN [15]) and
an attention mechanism [18]. o-glassesX can identify the
compiler family and the optimization level and version with
high accuracy merely by analyzing instruction sequences
without regard to functions.

Tian et al. proposed NeuralCI [38], which performs
compiler estimation on a function-by-function basis, and
NeuralCI performs instruction normalization, which replaces
the address values of extracted machine instructions, and
instruction embedding using skip-gram model [23]. There
are two types of network models: CNN-based and GRU-
based [2], [3], both of which can perform compiler estimation
with high accuracy.

Benoit et al. proposed a graph neural network-based [41]
compiler identificationmethod named the site neural network
(SNN) [1]. To attain scalability at the binary level, they made
feature extraction simplified by forgetting almost everything
in a binary code’s structured control flow graph (CFG) [20]
except transfer control instructions and performing a para-
metric graph reduction.

All of these existing studies require pre-processing,
such as disassembly of machine language instructions and
structural analysis of functions, to achieve their high precision
classifications. We show that our method achieves high
accuracy classification without pre-processing.

B. COMPILER PROVENACE RECOVERY FOR MULTI-CPU
ARCHITECTURE
Several compiler identification tools are already available
(i.e., IDA Pro1 and PEiD.2 These tools are roughly
signature-based and typically rely on metadata or other
details in the program header. Their exact matching algorithm
may fail if even a slight difference between signatures is
present, or if the header information has been stripped or is
otherwise unavailable.

Pizzolotto and Inoue proposed the Optimization Detec-
tor [30], which uses CNN or LSTM [8], [9] to identify the
compiler’s optimization level. They checked the classifica-
tion performance of binaries with two different compilers and
five different optimization levels for each of seven different
CPU architectures. As a result, they confirmed that the
classification performance is better with raw byte strings than
with encoded input data, provided that the input data is of a
certain length. Their experimental results show the possibility
of supporting multiple CPU architectures simultaneously by
using raw input data, which is demonstrated by BinProv [6],
described next.

He et al. propose BinProv, an end-to-end compilation
provenance identification framework with the contextual
semantics in binary code using RoBERTa [16]. BinProv is a

1https://www.hex-rays.com/products/ida/
2https://www.aldeid.com/wiki/PEiD

FIGURE 1. Outline of the centrifuge mechanism.

FIGURE 2. Transition of the input x by the first linear layer of the
main-net.

compiler classification method that simultaneously supports
multiple CPU architectures and shares the same objectives
as our proposed method. In this paper, we compare the
classification performance between BinProv and our method.

III. CENTRIFUGE MECHANISM
The structure of bit-streams differs greatly depending on the
type of file. Even if we consider only the case of machine
language instruction strings, a general linear layer cannot
transform the input bit-stream into the instruction vector
sequence since bit-blocks with the same value have different
meanings on different CPU architectures. We therefore pro-
pose a centrifuge mechanism that transforms local features
like bit-blocks into a feature vector by considering global
features.

Even bit-blocks with the same value can have different
meanings if the CPU architecture is different. Assuming
that the sub-net learns the global features such as the CPU
architecture of the input bit-stream, we expect the output of
the linear layer after sub-net embedding to produce a feature
vector sequence similar to the instruction vector sequence.

A basic form of the centrifuge mechanism is shown in
Figure 1. Any model can be set up as a main-net and sub-net.
When the input of the sub-net is x2 and the sub-net model is
Sub with parameter wS, the output yS is expressed by

yS = Sub(x2;wS). (1)

When an operator ⊕ represents a broadcast concatenator
operation, the input of the main-net is x1 ⊕ yS. Then, the
output yM is expressed by

yM = Main(x1 ⊕ yS;wM), (2)

where the main-net model is Main with parameter wM.
We assume that the first layer of the main-net is a linear

layer. When the parameter of the linear layer is {w1,w2}, the
output of the linear layer x′ is given by

x′
= Linear(x1 ⊕ yS) = x1w1 + ySw2. (3)

VOLUME 12, 2024 34479



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

Then, assuming that the sub-net has acquired global features
like the CPU architecture, x′ is expected to be a transition of
input x to the space for each global feature, a process shown
in Figure 2 that resembles the action of a centrifuge.

x2 can take any value regardless of x1. In this paper,
we refer to the centrifuge when x2 and x1 are equal as the
self-centrifuge and when x2 and x1 are different as the source-
target centrifuge.

For the sub-net to explicitly acquire global features such
as the CPU architecture, either a loss function or a learning
method needs to be devised. Next, we provide an overview
of transfer learning, fine-tuning, and an objective function
combining two loss functions.

A. TRANSFER LEARNING
Transfer learning [29] is a learning method that focuses
on storing knowledge gained while solving a problem and
applying it to a different but related problem.

1) UPSTREAM TRANSFER LEARNING: PRE-TRAINING
SUB-NET
Empirically, models such as AlexNet that are trained on
vast amounts of labeled data such as Imagenet learn generic
features in the layer close to the input (upstream). These
features are also effective in other tasks, so transferring
the weights of this learned model can reduce training time
and create a highly accurate model when there are little
labeled data in the destination environment. A common
approach to transfer learning is to work with a trained
model as a feature extractor. We name this approach
upstream transfer learning (UTL) to distinguish it from the
downstream-focused approach described in the next section,

To apply UTL to our model, we pre-train the upstream
sub-net to work them as feature extractors. When the ground
truth for the subclass is tS, the scheduled learning rate is α,
the weight decay [12] coefficient is λ and the loss function
for the subclass is LS, the pre-learning of the sub-net is given
by

wS := wS − α

(
∂LS(yS, tS)

∂wS

)
− λwS. (4)

After completing the pre-training, the parameters of the
main-net are updated using

wM := wM − α

(
∂LM(yM, tM)

∂wM

)
− λwM, (5)

where tM is the ground truth for the main class and LM is the
loss function for the main class.

2) DOWNSTREAM TRANSFER LEARNING: PRE-TRAINING
MAIN-NET (PROPOSED METHOD)
In this section, we describe transfer learning focusing on
downstream (downstream transfer learning (DTL)), in con-
trast to the upstream-focused approach in the previous
section. When the upstream weights of the network are fixed,
the upstreamworks as a feature extractor. In contrast, if we fix

Algorithm 1 DTL Algorithm
Input: Data augmentation function DA, Loss function LM,

main-net predictor Main, sub-net predictor Sub, training
dataset S :=

⋃n
i=1{(x1i, x2i, tSi, tMi)}, mini-batch size

b, weight decay coefficient λ, scheduled learning rate α,
initial weight w0, epochs e.

Output: Trained weight w = {wS,wM}

1: Initialize weight w = w0.
{Main-net training}

2: for i = 1 . . . e do
3: while not converged do
4: Sample a mini-batch B of size b from S.
5: yM := Main(DA(x1) ⊕ tS;wM)
6: Lall := LM(yM, tM)
7: wM := wM − α

(
∂Lall
∂wM

)
− λwM

{Sub-net training}
8: for i = 1 . . . e do
9: while not converged do
10: Sample a mini-batch B of size b from S.
11: yS := Sub(DA(x2);wS)
12: yM := Main(DA(x1) ⊕ yS;wM)
13: Lall := LM(yM, tM)
14: wS := wS − α

(
∂Lall
∂wS

)
− λwS

15: return w

the weights downstream, near the exit layer of the network,
then the downstream can be viewed as a loss function in
complex formulas.

To apply DTL to the centrifuge mechanism, we pre-train
the downstream main-net to work them as a loss function for
the sub-net. The DTL algorithm is described in Algorithm 1
and is given in detail below.

First, fix the value of yS to tS for main-net pre-training,

yM = Main(x1 ⊕ tS;wM). (6)

The pre-learning of the main-net is indicated by Equation (5).
After the pre-training of the main-net is completed, its
parameters are fixed, and the sub-net is trained with the loss
function of the main-net, as shown by

wS := wS − α

(
∂LM(yM, tM)

∂wS

)
− λwS. (7)

When we put L′
S(yS) ≡ LM(Main(x ⊕ yS;wM), tM),

Equation 7 can be expressed as

wS := wS − α

(
∂L′

S(yS)
∂wS

)
− λwS. (8)

Because the weights of the main-net are fixed, the shape of
the L′

S function is constant during learning. In other words,
L′

S serves as a loss function from the standpoint of the sub-
net.

B. FINE-TUNING
Fine-tuning [5] modifies the weights of an existing model
to train a new task. Output layers are usually extended

34480 VOLUME 12, 2024



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

with randomly initialized weights for the new task. A small
learning rate is then used to tune all parameters from their
original values to minimize the loss of the new task. Part of
the network is sometimes frozen to prevent overfitting.

Fine-tuning, like transfer learning, also classifies the
learned model into upstream fine-tuning and downstream
fine-tuning depending on the location to which it is applied.

1) UPSTREAM FINE-TUNING: PRE-TRAINING SUB-NET
The same as for UTL, the sub-net is pre-trained according to
Equation (4). After completing the pre-training, update the
model’s parameters using the loss function for the main-net:

w := w − α

(
∂LM(yM, tM)

∂w

)
− λw, (9)

where the parameters of the model are w = {wS,wM}.

2) DOWNSTREAM FINE-TUNING: PRE-TRAINING SUB-NET
The same as for DTL, the main-net is pre-trained according
to Equation (5). After completing the pre-training, update the
parameters of the model with Equation (9).

C. 2LF: LEARNING WITH TWO LOSS FUNCTIONS
We next describe a method for incorporating both the loss
function for the main-net and the loss function for the
sub-net into the overall model loss function. There are various
methods of incorporation, but the simplest is given by

Lall = LM(yM, tM) + βLS(yS, tS), (10)

where β is a hyperparameter whose value determines whether
the classification accuracy of the main-predictor or the sub-
predictor is preferred. However, the appropriate value of β

depends on other training conditions, such as the distribution
and the volume of the training data set.

D. DTL+ (PROPOSED METHOD)
Fine-tuning updates the parameters of the entire network,
and therefore tends to have higher classification performance
if it can be trained appropriately compared to transfer
learning, which updates only a part of the parameters
of the network. However, for example, immediately after
the main-net has finished pre-training and moved into the
fine-tuning phase in DFT, tS which is used for a part of
input of main-net will be replaced to the output of the sub-
net. When initial values of the sub-net are random values,
the value of the network loss function might jump compared
to that of the terminal phase during pre-training. This jump
sometimes causes catastrophic forgetting [32] in the main-
net, making the main-net impossible to propagate to the
sub-net the capabilities acquired by the main-net during pre-
training. Hence, the jump in the loss function might lead to
catastrophic forgetting of the main-net in fine-tuning. For
deceasing the influence of the jump, we propose DTL+which
pre-trains the sub-net after pre-training the main-net. DTL+
use DTL for pre-training before fine-tuning, and the details
of DTL+ are described in Algorithm 2. We can minimize the

Algorithm 2 DTL+ Algorithm
Input: Data augmentation function DA, Loss function LM,

main-net predictor Main, sub-net predictor Sub, training
dataset S :=

⋃n
i=1{(x1i, x2i, tSi, tMi)}, mini-batch size

b, weight decay coefficient λ, scheduled learning rate α,
initial weight w0, epochs e.

Output: Trained weight w = {wS,wM}

{DTL training}
1: w = DTL.

{Fine-tuning}
2: for i = 1 . . . e do
3: while not converged do
4: Sample a mini-batch B of size b from S.
5: yS := Sub(DA(x2);wS)
6: yM := Main(DA(x1) ⊕ yS;wM)
7: Lall := LM(yM, tM)
8: w := w − α

(
∂Lall
∂w

)
− λw

9: return w

jumps by moving the output of sub-net closer to tS before
fine-tuning. The properties of each learningmethod described
above will be discussed in detail in later experiments, and
DTL+ is hybrid method of DFT and DTL.

IV. EXPERIMENTAL RESULTS
Given that CPR is a motivation for our research, here we
applied the centrifuge mechanism to CPR and observed its
effectiveness in experiments.

There are three main objectives of the experiment:

• To confirm the performance and characteristics of
each of the normal learning method without any
innovations and the six learning methods considered for
the centrifuge mechanism described in Section III (Ex.
1 to 3.)

• To confirm the performance and characteristics of the
centrifuge mechanism when the number of sub-nets is
increased from one to two (Ex. 4.)

• To compare the performance of existing methods
(containing BinProv, a state-of-the-art method in CPR)
with that of our method (Ex. 5 and 6.)

The source code and dataset used in the experiment are
published on GitHub (see DATA Availability Section.)

A. EXPERIMENTAL MODEL
In this section, we describe the model used in our exper-
iments. An overview of the experimental model is shown
in Figure 2. We selected self-centrifuge as the centrifuge
mechanism and o-glassesX [27] as the model used for the
main-net and sub-net. The reasons for selecting each are
described below.

1) O-GLASSESX
o-glassesX, described in Section II, has so far shown the
best performance in the area of CPR. However, o-glassesX

VOLUME 12, 2024 34481



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

FIGURE 3. Outline of our experimental model.

assumes a single CPU architecture as the classification target
since it performs preprocessing according to that architecture.
Specifically, preprocessing converts the input bit-stream into
a fixed-length machine language instruction sequence, and a
tool called a disassembler for each CPU architecture is essen-
tial for this conversion. In our experiments, we replaced this
CPU architecture-specific preprocessing with the centrifuge
mechanism and used raw bit-streams as input.

2) SELF-CENTRIFUGE
Some recent malware attacks do not save an executable
file but instead deploy the executable code in a temporary
memory area, making it difficult to trace the attacker [13],
[14]. In such cases, only a small portion of the executable file
is available, and it is necessary to investigate the traces of the
attacker from the file fragments.We decided to select the self-
centrifuge, which inputs the same program code to both the
target and source to allow compiler identification even from
file fragments.

On the other hand, if the entire executable file is available,
the source-target centrifuge, where the file header area
is input to the target (x2) and the program code to the
source (x2), is considered appropriate. The header area
of the executable file contains various metadata, including
information about the compiler and CPU architecture. The
compiler information is not necessary for executing the
executable. An attacker can easily tamper with the compiler
information, while the CPU architecture information is
essential for executing the executable and is difficult to
tamper with.

Figure 3 shows an example of the behavior of the
centrifuge mechanism on the learning program code of var-
ious CPU architectures. The centrifuge mechanism consists
of a sub-net that learns global features and a broadcast
concatenator. The broadcast concatenator concatenates an
input of the sub-net and the yS(the sub-net’s output.) This
concatenation changes operations that use local features of
the main net to those that consider the CPU architecture.

B. DATASET
To our knowledge, no dataset for CPR supports multiple CPU
architectures. In the area of function similarity comparisons,
several large datasets covering multiple CPU architectures
have been published [11], [19]. These datasets consist of
executable files created by various compilers. However, the

executable files contain many functions that do not originate
from the compiler and source code files used to make
them, such as static libraries. Therefore, it is necessary to
remove unnecessary functions from the training dataset for
CPR. Extracting only the author-derived functions from the
executable files is a research topic, and at this time we are
not able to perform this task with complete accuracy.

Therefore, we created the dataset ourselves based on
the dataset used in the o-glassesX [27] experiments for
enabling performance comparisons with existing methods
that support only x86/x86-64. The o-glassesX dataset is
a compiler identification dataset and consists mainly of
binaries for x86/x86-64 architectures. First, we prepared the
same C/C++ source code files from the o-glassesX dataset.
We then compiled these source code files with various
compiler settings for multiple CPU architectures. Next,
we extracted various bits of CPU architecture native code
from the generated object files using elf_coff2bin.py,
which was published with o-glassesX. The size of our dataset
was about 1.6 GB (see Appendix for details.)

C. EXPERIMENTAL SETTINGS
We implemented our experimental model in Python and used
the PyTorch 1.11.0+cu102 framework on one machine with a
single NVIDIA V100 GPU. Each experiment typically took
several hours to complete.

We confirmed the performance of our experimental model
using the dataset described in the previous section. To have
the same number of samples for each label, we set (S) as an
upper limit on the number of random samples from each label
used in the evaluation experiment.

In order to train a deep model, we use Data Augmentation,
a data-space solution to the problem of limited data. The
training data generator selects (a) the raw training data or
(b) generating the augmented data with a 50-50 probability.
When the generator selects (b), then it chooses 15% of the
byte positions at random for Data Augmentation. If the i-th
byte is chosen, we replace the i-th byte with (1) a random byte
80% of the time (2) the unchanged i-th byte 20% of the time.
Then, the augmented data will be used to training the model.

Our experiments had hyperparameters to be tuned, so we
first considered the values in the follows when searching for
appropriate values of them, and underlines indicate adopted
values.

• Label smoothing: none or {0.05, 0.1, 0.2, 0.3}
• Initial LR: {0.005, 0.01, . . . , 0.025, . . . , 0.05}
• Momentum: 0.9
• Weight decay: {1e-5, 5e-5, 1e-4, 5e-4}

Cosine learning rate decay [17] was adopted with an initial
learning rate of 0.025. Label smoothing [24] was also adopted
with a factor of 0.1.

The other experimental conditions were identical to those
employed in o-glassesX, allowing for comparison with
existing methods; accuracies were obtained using 4-fold

34482 VOLUME 12, 2024



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

TABLE 1. Comparison of learning methods for the centrifuge mechanism.

cross-validation, and the other parameter configurations were
as follows.

• input length (L) = 235 bytes
• S (Num. of random samples from each label) = 20000
• mini-batch size = 64
• epochs = 200

These parameters were set in order to make compar-
isons under conditions equivalent to those of o-glassesX,
an existing study. Since x-86/x-86-64 are variable-length
instructions, and the input size of 64 instructions, which is the
input size of o-glassesX, is just under 236 bytes on average,
the input size of our model was set 235 bytes. In other words,
similar to o-glassesX, our method identifies the compiler
from program fragments.

D. EX. 1 TO EX. 3: COMPARISON BETWEEN THE SIX
LEARNING METHODS
In this section, we check the classification performance of
each learning method using three different main-labels and
sub-labels for our dataset. Each labeling rule is as shown in
‘‘Label’’ in Table 1, specifically the following three labeling
rules.

• Ex. 1:We set main labels for 51 classes of compiler iden-
tification, including optimization level identification,
and sub-labels for nine classes of CPU architecture iden-
tification. We then check the classification performance

of our experimental model when the sub-prediction is
easier than the main prediction.

• Ex. 2: We swapped the main-labels and sub-labels from
Ex. 1. We then check the classification performance
of our experimental model with nine main-labels for
the CPU architecture and 51 sub-labels for compiler
identification with optimization level identification
included.

• Ex. 3: We check the classification performance of
our experimental model when the main-label and sub-
label are independent. We chose 26 labels for compiler
identification that did not include optimization level
estimation as main-labels.

Table 1 shows a comparison of the learning methods for
the centrifuge mechanism and baseline, which simply trains
both the main-net and sub-net with LM.

The x′ in Table 1 shows the main-net first linear layer
output visualized by tSNE [39], color-coded by CPU archi-
tectures or optimization levels. x′ is indicated by Equation 3,
and we expect x′ to be the input x transitioned by each sub-
label, as shown in Figure 2.
Simply comparing the accuracy of the main-label classi-

fication, we can see no significant performance difference
among any of the learning methods. On the other hand,
when we focus on the accuracy of sub-label classification,
we find that fine-tuning does not perform well in sub-label
classification due to catastrophic forgetting [22].

VOLUME 12, 2024 34483



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

Focusing on DTL in Ex. 1 and Ex. 3, we can see that
the sub-prediction achieves a remarkable degree of accuracy,
even though only the loss function for the main-label is used.

In Ex. 2, the sub-predictions are not well classified except
for UTL and 2LF. One possible cause is that one main-label
has a relationship that encompasses multiple sub-labels.
If the main label classification is known to belong to one of
those multiple sub-labels, then it can be classified without
identifying the difference between them. Therefore, it is
likely that error propagation from the main-net to the sub-
net did not work to improve the accuracy of sub-label
classification. From the main classification standpoint, the
accuracy of the sub-label classification does not need to be
perfect, it only needs to be correct at the CPU architecture
level for the main-label. DTL’s x′ of Ex. 2 in the table clearly
shows that x′ is limited to the essence for the main prediction,
that is, CPU architecture identification. Therefore, the sub-net
accuracy of DTL may measure the importance of sub-label
classification for main-label classification.

In summary, focusing on DTL in particular, we found
the following characteristics compared with other learning
methods.

• DTL can incorporate highly accurate sub-predictions
into the model without having to adjust hyperparameters
or design loss functions for sub-predictions, such as
2LF’s β.

• The accuracy of DTL sub-predictions depends on the
essence of the main forecast, and it might be used to
measure their contribution to the main prediction.

Finally, focusing on DTL+, we see that its main-net
classification performance is exactly halfway between that
of DTL and DFT. In addition, the sub-net classification
performance shows that DTL+ suppresses catastrophic for-
getting considerably while other fine-tuning methods cause
catastrophic forgetting. Therefore, DTL+ is considered to
inherit the property of DTL that it learns the main-net
according to the domain (CPU architecture) in which the
subnet is determined. Thus, we experimentally confirmed that
DTL+ can realize a hybrid method of DTL and DFT.

E. EX. 4: CLASSIFICATION PERFORMANCE IN THE CASE
OF A MODEL CONTAINING TWO SUB-NETS
The results of Ex. 1 to Ex. 3 were those for which the
model contained a single sub-net. This section will examine
the case where the number of sub-nets is increased to two.
As with the other experiments, o-glassesX was used for
the main-net and the two sub-nets. The main-labels are for
compiler identification with optimization level identification,
and there are 51 of them. The first sub-labels are three labels
for optimization level identification. The second sub-labels
are nine labels for CPU architecture identification. The output
of the two sub-nets and the input x are combined and put into
the main-net.

Based on the results of Ex. 1 to Ex. 3, we selected DTL and
DTL+ as the learning method since there is no need to design
a loss function for sub-predictions.

TABLE 2. The results of Ex. 4.

Table 2 shows the results of Ex. 4. The experimental results
show that even when the number of sub-nets is increased to
two, sub-predictions can be made with high accuracy in DTL
and DTL+. Thus, it may be easier to develop a model with
more complex coordination of sub-nets.

F. PERFORMANCE COMPARISON WITH EXISTING
METHODS
1) EX. 5: SINGLE CPU ARCHITECTURE (X86/X86-64)
In this section, we compare our proposed and existing
methods’ classification accuracy. We have to compare our
proposed method with existing CPR methods that support
multiple CPU architectures. In most studies, the classification
targets are programs with an x86/x86-64 architecture.
Therefore, we conducted a comparison experiment using
only the x86/x86-64 architecture programs among our dataset
(only those marked with a checkmark in Table 5.) We set
three architectures (x86/x86-64/Others) as sub-labels in our
method and selected DFT as the learning method. Table 3
shows a comparison between our method and other existing
methods.

Table 3 shows that our model is lightweight and our
method achieved the best classification performance in both
existing methods with and without DE. In Table 3, ‘‘CNN’’
has the same model as o-glasses’ but does not perform
pre-processing for instruction segmentation. For existing
methods that cannot be tested on our dataset due to different
feature vectors, the classification accuracies are taken from
their papers.

The only difference between CNN and o-glasses is whether
or not DE is performed. However, there are significant
differences in performance between the two methods. This
difference in performance indicates that DE plays a very
important role in CPR. On the other hand, our methodwithout
DE outperforms o-glassesX with DE. Therefore, we believe
that the centrifuge mechanism can replace DE. By not relying
on DE, the model’s range of applicability may be expanded,
because it can be trained on a mixed data set such as ours.

2) EX. 6: MULTI-CPU ARCHITECTURE
We compared our method with existing CPR methods for
multi-CPU architectures. To the best of our knowledge, the
only relevant existing work is BinProv, so we compared
our method with BinProv. There are two types of BinProv:
BinProv w/o, which performs compiler identification from

34484 VOLUME 12, 2024



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

TABLE 3. Performance comparison with related work (on x86/x86-64).

TABLE 4. Performance comparison with BinProv (on multi-CPU
Architecture).

a single file fragment, and BinProv, which aggregates the
multiple identification results and performs estimation on
a file or function basis. Since the aggregation process is a
simplemajority vote, the classification accuracy from a single
file fragment directly affects the classification accuracy
per file or function. Therefore, we chose BinProv w/o for
comparison with our method. Table 4 shows a comparison
between our method and BinProv w/o.

BinProv has a project on GitHub at the time of writing
our paper, but the source code has not been uploaded, so we
quoted the experimental results described in their paper.
Table 4 shows that our method has better classification
performance than BinProv.

V. DISCUSSION
A. THE OPTIMAL LEARNING METHOD
The optimal learning method depends on the specific goal.
Ex. 1’s classification accuracy is displayed in Figure 4. If the
primary objective is classification accuracy for the main cat-
egory, Ex. 1 showed that DFT had the highest performance,
although there may not be a significant difference in the
classification performance of each method. However, if the
focus is on subcategory classification performance, UTL,
DTL, 2LF, and DTL+ demonstrated excellent performance.
Of the four learning methods mentioned, only DTL+ can be
trained using solely the loss function for the main category.

FIGURE 4. An example of the behavior of the centrifuge mechanism on
the learning program code of various CPU architectures.

This makes DTL+ superior as it does not necessitate the
design of loss functions for subcategories and can be widely
applied.

B. BENEFITS OF OUR METHOD
1) HIGH RECOGNITION RATE FOR
STRIPPED MACHINE CODE
Our approach can be applied even when symbol information
has been stripped or is otherwise unavailable, because our
method classifies code sequences instead of entire binaries.
In other words, our method relies solely on characteristics of
the binary code rather than metadata or other program header
details. Therefore, it can be used even when code produced

VOLUME 12, 2024 34485



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

TABLE 5. Overview of our dataset.

by multiple compilers coexists within a program binary, such
as statically linked library code.

2) LIGHTWEIGHT MODEL
Although the model used in the experiment is signifi-
cantly smaller than state-of-the-art models, it demonstrated
excellent classification performance in all tasks, which
may be attributed to the size of the training dataset. It is
widely acknowledged that increasing the training dataset
and computational cost can enhance model performance in
line with the model size. However, it is important to note
that if the training dataset is not sufficiently large despite
increasing the model size, overfitting may occur, which could

lead to a decrease in the model’s generalization performance.
Therefore, if the training dataset is large enough, it is
possible that BinProv will outperform the proposed method
in terms of classification performance. However, it may be
worth considering the cost of collecting training datasets and
calculation expenses when evaluating the proposed method’s
applicability. It is believed that the proposed method may
have a broader range of applicability.

C. LIMITATION
Our method assumes that the machine code is not obfuscated.
Therefore, the classification performance of our method
when the machine code is compressed or obfuscated

34486 VOLUME 12, 2024



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

FIGURE 5. Classification accuracy of each learning method in Ex.1 (see
Table 1 for details).

is unknown. Experiments have confirmed that BinProv
performs well for simple obfuscations such as instruction
substitution [6]. However, they claim that multiple obfusca-
tions are very difficult to classify, and our method is expected
to be very difficult as well.

VI. CONCLUSION
We proposed a centrifuge mechanism, in which the upstream
sub-net transitions the input to a space corresponding to
sub-labels without requiring manual DE. This enables the
downstream main-net to concentrate more on challenging
main-label classifications. DTL, one of the learning methods
for the centrifuge mechanism, pre-trains the main-net using
the ground truth of the sub-labels instead of the output of
the sub-net. DTL was found to have the ability to assign
the sub-net the task of sub-label prediction without utilizing
a loss function for sub-label classification. Additionally,
it was observed that sub-predictions are typically highly
accurate when the sub-label classification is essential to
the main prediction. The centrifuge mechanism was applied
to CPR and its performance was verified in experiments.
The experiments have shown that the experimental model
without DE was able to classify bit-streams with an accuracy
of 99.01. This accuracy is higher than the existing CPR
methods with DE for x86/x86-64 CPU architecture. The
model was tested for compiler identification for four CPU
architectures and two compilers, and despite its smaller size,
our method achieved the highest classification performance
of 99.54, outperforming Binprov which is the state-of-
the-art model. Furthermore, it was found to be able to
classify 51 classes with an accuracy of 97.36. It has been
observed that our compiler identificationmodel is lightweight

and demonstrates superior classification performance for
compiler identification when compared to existing methods.

Executable files often contain non-author code, such as
static link libraries, which can decrease CPR accuracy.
To improve CPR accuracy, future work will investigate
technology capable of extracting only author-originated code
from executable files.

APPENDIX
Table 5 shows an outline of the dataset. The dataset consists
of the native code of each architecture except ‘‘Others.’’
‘‘Others’’ is non-native code data created from various
document files (.rtf, .doc, .docx, and .pdf files). ‘‘Entropy’’
in the table is Shannon’s entropy [37]. The entropy H (X ) is
defined as

H (X ) = −

255∑
i=0

p(xi)log2p(xi). (11)

Since we calculated Shannon’s entropy in bytes, H(X) takes
values from 0 to 8, and the larger the value, the more
disordered the state. ‘‘Label’’ in Table 5 indicates the labels
used in the five experiments described below. ‘‘M’’ is the
main label, and ‘‘S’’ is the sub-label.

DATA AVAILABILITY
The research materials are available at the following URL:
https://github.com/yotsubo/o-glasses2023.

REFERENCES
[1] T. Benoit, J.-Y. Marion, and S. Bardin, ‘‘Binary level toolchain provenance

identification with graph neural networks,’’ in Proc. IEEE Int. Conf. Softw.
Anal., Evol. Reeng. (SANER), Mar. 2021, pp. 131–141.

[2] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1724–1734.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Empirical evaluation of
gated recurrent neural networks on sequence modeling,’’ in Proc. NIPS
Workshop Deep Learn., Dec. 2014.

[4] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., New York, NY, USA, Jun. 2014,
pp. 580–587.

[6] X. He, S. Wang, Y. Xing, P. Feng, H. Wang, Q. Li, S. Chen, and K. Sun,
‘‘BinProv: Binary code provenance identification without disassembly,’’
in Proc. 25th Int. Symp. Res. Attacks, Intrusions Defenses, Oct. 2022,
pp. 350–363.

[7] H.-S. Heo, B.-M. So, I.-H. Yang, S.-H. Yoon, and H.-J. Yu, ‘‘Automated
recovery of damaged audio files using deep neural networks,’’ Digit.
Invest., vol. 30, pp. 117–126, Sep. 2019.

[8] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Institut
Informatik Technische Universität München, Tech. Rep. FKI-207-85,
1995.

[9] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[10] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, ‘‘Scaling laws for neural
language models,’’ 2020, arXiv:2001.08361.

[11] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, ‘‘Revisiting binary
code similarity analysis using interpretable feature engineering and lessons
learned,’’ IEEE Trans. Softw. Eng., vol. 49, no. 4, pp. 1661–1682,
Apr. 2023.

VOLUME 12, 2024 34487



Y. Otsubo et al.: CPR for Multi-CPU Architectures Using a Centrifuge Mechanism

[12] A. Krogh and J. Hertz, ‘‘A simple weight decay can improve generaliza-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 4, 1991, pp. 950–957.

[13] S. Kumar, U. Dohare, K. Kumar, D. P. Dora, K. N. Qureshi, and
R. Kharel, ‘‘Cybersecurity measures for geocasting in vehicular cyber
physical system environments,’’ IEEE Internet Things J., vol. 6, no. 4,
pp. 5916–5926, Aug. 2019.

[14] Sudhakar and S. Kumar, ‘‘An emerging threat fileless malware: A survey
and research challenges,’’Cybersecurity, vol. 3, no. 1, pp. 1–12, Dec. 2020.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, ‘‘Backpropagation applied to handwritten
zip code recognition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551,
Dec. 1989.

[16] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[17] I. Loshchilov and F. Hutter, ‘‘SGDR: Stochastic gradient descent with
warm restarts,’’ 2016, arXiv:1608.03983.

[18] M.-T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to
attention-based neural machine translation,’’ 2015, arXiv:1508.04025.

[19] A.Marcelli,M.Graziano, X. Ugarte-Pedrero, Y. Fratantonio,M.Mansouri,
and D. Balzarotti, ‘‘How machine learning is solving the binary function
similarity problem,’’ in Proc. 31st USENIX Secur. Symp. Boston, MA,
USA: USENIX Association, Aug. 2022, pp. 2099–2116.

[20] L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni,
‘‘Investigating graph embedding neural networks with unsupervised
features extraction for binary analysis,’’ in Proc. Workshop Binary Anal.
Res., 2019.

[21] A. McCallum, ‘‘Efficiently inducing features of conditional random
fields,’’ inProc. 19th Conf. Uncertainty Artif. Intell.Vurlington,MA,USA:
Morgan Kaufmann, 2002, pp. 403–410.

[22] M. McCloskey and N. J. Cohen, ‘‘Catastrophic interference in connection-
ist networks: The sequential learning problem,’’ Psychol. Learn. Motivat.,
vol. 24, pp. 109–165, Jan. 1989.

[23] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. Int. Conf. Learn.
Represent., 2013.

[24] R. Müller, S. Kornblith, and G. E. Hinton, ‘‘When does label smooth-
ing help?’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 4696–4705.

[25] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware
images: Visualization and automatic classification,’’ in Proc. 8th Int.
Symp. Visualizat. Cyber Secur. New York, NY, USA: Association for
Computing Machinery, Jul. 2011, pp. 1–7.

[26] Y. Otsubo, A. Otsuka, M. Mimura, and T. Sakaki, ‘‘O-Glasses: Visu-
alizing x86 code from binary using a 1D-CNN,’’ IEEE Access, vol. 8,
pp. 31753–31763, 2020.

[27] Y. Otsubo, A. Otsuka, M. Mimura, T. Sakaki, and H. Ukegawa,
‘‘O-GlassesX: Compiler provenance recovery with attention mechanism
from a short code fragment,’’ in Proc. Workshop Binary Anal. Res. Reston,
VA, USA: Internet Society, 2020, pp. 1–12.

[28] B. M. Padmanabhuni and H. B. K. Tan, ‘‘Buffer overflow vulnerability
prediction from x86 executables using static analysis and machine
learning,’’ in Proc. IEEE 39th Annu. Comput. Softw. Appl. Conf., vol. 2,
New York, NY, USA, Jul. 2015, pp. 450–459.

[29] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Jan. 2009.

[30] D. Pizzolotto and K. Inoue, ‘‘Identifying compiler and optimization
level in binary code from multiple architectures,’’ IEEE Access, vol. 9,
pp. 163461–163475, 2021.

[31] A. Rahimian, P. Shirani, S. Alrbaee, L.Wang, andM.Debbabi, ‘‘BinComp:
A stratified approach to compiler provenance attribution,’’ Digit. Invest.,
vol. 14, pp. 146–155, Aug. 2015.

[32] V. V. Ramasesh, E. Dyer, and M. Raghu, ‘‘Anatomy of catas-
trophic forgetting: Hidden representations and task semantics,’’ 2020,
arXiv:2007.07400.

[33] N. Rosenblum, B. P. Miller, and X. Zhu, ‘‘Recovering the toolchain
provenance of binary code,’’ in Proc. Int. Symp. Softw. Test. Anal.
New York, NY, USA: Association for Computing Machinery, Jul. 2011,
pp. 100–110.

[34] N. Rosenblum, X. Zhu, B.Miller, andK. Hunt, ‘‘Machine learning-assisted
binary code analysis,’’ in Proc. NIPS Workshop Mach. Learn. Adversarial
Environments Comput. Secur., 2007, pp. 1–3.

[35] N. E. Rosenblum, B. P. Miller, and X. Zhu, ‘‘Extracting compiler
provenance from program binaries,’’ in Proc. 9th ACM SIGPLAN-
SIGSOFT Workshop Program Anal. Softw. Tools Eng. New York, NY,
USA: Association for Computing Machinery, May 2010, pp. 21–28.

[36] N. E. Rosenblum, X. Zhu, and B. Miller, ‘‘Who wrote this code?
Identifying the authors of program binaries,’’ in ESORICS 2011. Berlin,
Germany: Springer, 2011, pp. 172–189.

[37] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[38] Z. Tian, Y. Huang, B. Xie, Y. Chen, L. Chen, and D. Wu, ‘‘Fine-grained
compiler identification with sequence-oriented neural modeling,’’ IEEE
Access, vol. 9, pp. 49160–49175, 2021.

[39] L. van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

[40] S. Yang, Z. Shi, G. Zhang, M. Li, Y. Ma, and L. Sun, ‘‘Understand code
style: Efficient CNN-based compiler optimization recognition system,’’ in
Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[41] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, ‘‘Graph neural networks: A review of methods and applications,’’
AI Open, vol. 1, pp. 57–81, Jan. 2020.

YUHEI OTSUBO was born in Fukuoka, Japan,
in 1981. He received the B.S. degree from The
University of Tokyo, Japan, in 2005, the M.S.
degree from the National Graduate Institute for
Policy Studies, Japan, in 2012, and the Ph.D.
degree in informatics from the Institute of Infor-
mation Security, Kanagawa, Japan, in 2016.

Since 2005, he has been a technical offi-
cial with the National Police Agency, Japan.
From 2012 to 2014, he was with the National

Information Security Center. His research interest includes information
security. He was a Speaker of Black Hat USA, in 2016.

AKIRA OTSUKA (Member, IEEE) received the
Ph.D. degree from The University of Tokyo,
in 2002. Since 2005, he has been with the
National Institute of Advanced Industrial Sci-
ence and Technology (AIST), where he was
the Leader of Research Security Fundamentals,
from 2006 to 2010. From 2007 to 2014, he was
a Visiting Professor with the Research and
Development Initiative, Chuo University. Since
2017, he has been a Professor with the Grad-

uate School of Information Security, Institute of Information Security.
From 2020 to 2021, he was a Visiting Researcher with the Financial Research
Institute, Bank of Japan. He is a Senior Member of IEICE and IPSJ, and a
member of JSAI, IACR, and IFCA.

MAMORU MIMURA received the B.E. and
M.E. degrees in engineering from the National
Defense Academy, Japan, in 2001 and 2008,
respectively, the Ph.D. degree in informatics from
the Institute of Information Security, in 2011, and
theM.B.A. degree from Hosei University, in 2014.
From 2001 to 2017, he was a member of Japan
Maritime Self-Defense Force. From 2011 to 2013,
he was with the National Information Security
Center. Since 2015, he has been with the National

Center of Incident Readiness and Strategy for Cybersecurity. He is currently
an Associate Professor with the Department of Computer Science, National
Defense Academy, Japan.

34488 VOLUME 12, 2024


