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ABSTRACT Some nonlinear systems can be represented through linear parameter varying models. In this
work, we address the estimation of continuous-time linear parameter varying models in output error form,
using a refined instrumental variable method. A distinguished feature of a linear parameter varying model
is that it has parameters that depend on an external signal called the scheduling variable. In this paper,
we assume that the scheduling variable is noisy, a condition which is often met in practice, but not frequently
considered in the literature. On the other hand, there are applications in which the noise-free version of the
scheduling variable is smooth. Under such scenario we can simply filter the scheduling variable before
estimating the linear parameter model. Nonetheless, there are cases where special smoothing techniques are
required. In this study, we consider one of these special cases, and we use the well-known local regression
method as smoothing technique. A numerical example based on aMonte Carlo simulation shows the benefits
of the proposed approach.

INDEX TERMS Continuous-time system identification, instrumental variable method, linear parameter
varying model, local regression, smoothing method.

I. INTRODUCTION
Nature often exhibits a nonlinear behavior, and one way to
represent some nonlinear systems is through linear parameter
varying (LPV) models. A strong motivation for studying
LPV models is that an accurate and at the same time
low-complexity LPV model is of paramount importance in
designing an efficient LPV controller [1]. Many control
system design methods that use the LPV framework have
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been developed. An interesting survey on LPV control is
given in [2]. In this work, we focus on the estimation of
continuous-time LPVmodels in an open-loop setting through
a data-driven approach.

Approaches that have been developed to estimate linear
time-invariant (LTI) models have been extended to LPV
representations. For instance, that is the casewith themethods
available to estimate the classical discrete-time (DT) LTI
models in input-output (IO) form. One of these approaches
that has been extended to the LPV case, is the prediction error
minimization method. An overview of the prediction error
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minimization approach applied to the LPV IO framework is
presented in [1]. Recently, a MATLAB toolbox for identify-
ing LPV IO models, using the prediction error minimization
approach, has been developed [3]. One of the classical DT
LTI models is the output error (OE) representation, where
it is assumed that the output measurement noise is white.
The estimation of DT LPV-OE representations using the
prediction error minimization approach has been considered
in [4] and [5].

The dynamics of an LPV process depend on an inde-
pendent external signal called scheduling variable, that can
be measured, and is usually denoted by p(t). LPV models
have coefficients that depend on p(t). If we assume that
the scheduling variable is not available, the coefficients
depend instead on time t , that is, we have to deal with
a linear time-varying (LTV) system identification problem.
The identification of LTV systems is typically done using
recursive estimation method, where the forgetting factor or
Kalman filter methods are considered to track the time-
varying parameters [6]. Different studies have considered
the estimation of LTV-OE models, that can be in DT [7] or
continuous time (CT) [8].
In this work we focus in particular on CT LPV-OEmodels.

In the case of LTI models, CT OE representations can be
estimated using the simplified refined instrumental variable
approach for CT models (SRIVC) [9], [10]. In [11], the
authors developed the LPV-SRIVC method, which is the
extension of SRIVC to CT LPV models. More recently,
for the CT LTI case, the consistency and efficiency of
the SRIVC approach has been analyzed in [12] and [13],
respectively. An important contribution in these two studies
is that they present the consistency and efficiency analysis of
SRIVC taking into account the intersample behavior of the
signals. In this article, we extend the LPV-SRIVC approach
to a particular LPV system identification problem that is
explained next.

The estimation of LPV models can be done assuming
that the scheduling variable is noise-free. However, this
assumption is not usuallymet in practice, since the scheduling
variable is often related to a measured signal. The estimation
of LPV models considering a noisy scheduling variable
yields an identification problem in an errors-in-variables
setting [14]. In the literature, this problem has already been
addressed, both in open-loop [15] and closed-loop [16]
settings. However, an important limitation of these methods
is that the coefficients of the LPV model are constrained to
polynomials in terms of the scheduling variable. Moreover,
all these methods developed so far apply only to DT models.
Such DT models can then be transformed into equivalent
CT representations; this corresponds to the so-called indirect
estimation of CT models. Nonetheless, such transformations
are more complicated than in the LTI case [11]. This
motivates the direct estimation of CT LPV models through
approaches such as LPV-SRIVC.

In this paper, we propose a simple direct estimationmethod
for CT LPV models having a noisy scheduling variable,

assuming that the noise-free scheduling variable is smooth
(or slowly time-varying). Such a condition is sometimes met
in practice [17], [18]. For instance, in [18], the scheduling
variable is the absolute speed of a ship, that can be represented
using a smooth signal. In the current article, the first step of
the proposed method consists in smoothing the scheduling
variable.

A simple smoothing or denoising approach consists in
filtering the noisy signal in both forward and reverse
directions, in order to obtain a signal with zero-phase
distortion [19]. Other possibilities include the use of splines
or wavelets. In this paper we apply the local regression (LR)
method, that has been extensively studied (see e.g. [20],
[21], [22], [23]). In the LR method, smoothing of a signal
is obtained by local polynomial approximations. The local
regression approach has been used in different applications,
such as the estimation of kernel density functions [20],
frequency response functions [24], [25] and time-varying
system [26].
In the LR method, an important hyperparameter is

the so-called bandwidth, which defines the window size,
i.e., the number of samples that are used for the local
model approximation. The bandwidth, which defines the
smoothness of the estimation, can be fixed or adaptive.
The latter means that the window size varies depending on
the location in the data sequence. The performance of the
LR method can sometimes be improved by using an adaptive
bandwidth. Reasons to use an adaptive bandwidth are: to
adapt to the data distribution, to adapt to different levels of
noise (heteroscedasticity), and to adapt to changes in the
smoothness or curvature of the signals [27].
The contributions of this article are mentioned next:
• We propose a simple direct approach to estimate
CT LPV-OE models where the scheduling variable is
smooth but corrupted by noise. In the proposed method,
the first step is to denoise the scheduling variable using
the local regression (LR) approach. Then, the standard
LPV-SRIVC method is used to estimate the CT LPV
model.

• We assess the LR method in a scenario where it is
appropriate to use an adaptive bandwidth, namely, a case
where there is an important change in the smoothness
of the signal to be denoised. Afterwards we assess the
impact of that smoothness process in the estimation of
CT LPV-OE models.

The remaining of the paper is organized as follows: the
identification problem is formulated in Section II. Next,
in Section III, the LPV-SRIVC method for estimating CT
LPV-OE models is reviewed. Section IV is focused on the
LR method. Firstly, in Section IV-A, we present briefly the
proposed estimation method that combines the LPV-SRIVC
and LR approaches. In Section IV-B, we show in detail how to
smooth the scheduling variable using LR. The LR smoothing
technique, using a fixed and adaptive bandwidth, is presented
in Sections IV-C-IV-E. The proposed estimation approach
and its different versions is summarized in Section IV-F,
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and it is tested in a numerical example in Section V. Finally,
conclusions are drawn in Section VI.

II. PROBLEM FORMULATION
In this section, we formulate the identification problem of
interest, namely, the structure of the continuous-time linear
parameter varying model and the smooth scheduling variable
corrupted by noise.

A. DATA GENERATING SYSTEM
As it is usual in the system identification literature, we assume
that the data is generated from a true systemSo. This is helpful
in order to devise identification methods and understand
their properties [6, p. 7 and 250]. Then, let us consider the
following data-generating system, which is in a CT LPV-OE
form,

So

{
Ao(d , po(t))x(t) = Bo(d , po(t))u(t)
y(tk ) = x(tk ) + eo(tk )

(1)

where d denotes the differentiation operator w.r.t. time, u(t)
is the input of the plant, po(t) is the noise-free scheduling
variable, x(t) is the noise-free output, eo(tk ) is the output noise
and y(tk ) is the noisy output. The sequence eo(tk ) is assumed
to be a DT zero-mean white noise process with Gaussian
distribution. Note that x(t) represents a CT signal and x(tk )
the DT counterpart (i.e. a sampled signal). The polynomials
Ao and Bo are defined as follows

Ao(d , po(t)) = d na +

na∑
i=1

aoi (po(t))d
na−i (2)

Bo(d , po(t)) =

nb∑
j=0

boj (po(t))d
nb−j (3)

where na, nb are the polynomial degrees, and aoi , b
o
j are

real-meromorphic functions with static dependence on po.
These real-meromorphic functions can be for instance
polynomials functions, trigonometric expressions, or rational
exponential functions [28, p. 50].

B. MODEL STRUCTURE FOR IDENTIFICATION
While the LPV system depends on the noise-free scheduling
variable po(t) (see (1)), the LPV model depends on p(t),
which is equal to po(t) plus some noise sequence. Then, the
model is represented as follows

M
{
A(d , p(t), θ)x(t) = B(d , p(t), θ)u(t)
y(tk ) = x(tk ) + e(tk )

(4)

where e(tk ) is assumed to be a zero-mean, normally dis-
tributed, DT white noise sequence. The polynomials A and B

are given by

A(d , p(t), θ) = d na +

na∑
i=1

ai(p(t))d na−i (5)

B(d , p(t), θ) =

nb∑
j=0

bj(p(t))d nb−j (6)

where ai(p(t)) and bj(p(t)) are parameterized as follows

ai(p(t)) = ai,0 +

nα∑
l=1

ai,l fl(p(t)) (7)

bj(p(t)) = bj,0 +

nβ∑
l=1

bj,lgl(p(t)) (8)

where {f }nα

l=1 and {g}
nβ

l=1 are meromorphic functions with
static dependence on p(t). The model parameters are stacked
together in the parameter vector θ , i.e.

θ =
[
aT1 . . . aTna bT1 . . . bTnb

]
(9)

where

ai =
[
ai,0 ai,1 . . . ai,nα

]T (10)

bj =
[
bj,0 bj,1 . . . bj,nβ

]T
. (11)

It is assumed that the scheduling variable is corrupted with
noise γo(tk ), i.e.,

p(tk ) = po(tk ) + γo(tk ) (12)

Then, the following assumptions are made:
A1. The scheduling variable p(tk ) is composed of a

noise-free scheduling variable po(tk ) and some additive
DT white Gaussian noise γo(tk ), with zero-mean, and
unknown variance σ 2

γo
.

A2. γo(tk ) is independent of output measurement noise
eo(tk ).

A3. The noise-free scheduling variable po(tk ) is a smooth
function. In our developments, a function is smooth in
the sense that the signal is twice differentiable, i.e., the
second derivative exists and is finite.

A4. The system belongs to the model set, i.e. So ∈ M.
This means that there exist functions fl and gl in (7)
and (8), and a parameter vector θ in (9) such that the
model structure M in (4) matches exactly the system
So in (1). Note that this assumption is not particularly
realistic in practice, but it is quite useful to assess the
estimated models [6, p. 250].

Let us define the set of available measurements by
DN = {u(tk ), y(tk ), p(tk )}Nk=1. Then, the identification
problem we consider in this paper is to estimate the plant
parameter vector θ based on the data set DN , under the
Assumptions A1-A4.
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III. THE LPV-SRIVC METHOD FOR LPV-OE
IDENTIFICATION
In this section, we briefly present the LPV-SRIVC method
for the case in which the scheduling variable is noise free,
i.e. p(tk ) = po(tk ), and we consider assumption A4 only. For
more details about LPV-SRIVC see [11].

In order to apply LPV-SRIVC, we use (5)-(8) to rewrite
model (4) as follows

M



d nax(t) +

na∑
i=1

ai,0d na−ix(t)︸ ︷︷ ︸
F(d ,θ )x(t)

+

na∑
i=1

nα∑
l=1

ai,l fl(p(t))d na−ix(t)︸ ︷︷ ︸
xi,l (t)

=

nb∑
j=0

nβ∑
l=0

bj,l gl(p(t))d nb−ju(t)︸ ︷︷ ︸
uj,l (t)

y(tk ) = x(tk ) + e(tk )

(13)

where g0 = 1. Note that in (13) we define,

F(d , θ) = d na +

na∑
i=1

ai,0d na−i. (14)

Solving for the variable x in the first equation in (13), and
replacing it in the second equation in (13), it is possible to
formulate the following model

y(tk ) = −

na∑
i=1

nα∑
l=1

ai,l
F(d , θ )

xi,l(tk )

+

nb∑
j=0

nβ∑
l=0

bj,l
F(d , θ )

uj,l(tk ) + e(tk ) (15)

which corresponds to a MISO-LTI representation. Multiply-
ing (15) by F(d , θ ), and solving for the variable d nay(tk ), the
model can be written in linear regression from

d nay(tk ) = ϕT (tk )θ + ẽ(tk ) (16)

where xi,l and uj,l are defined in (13), θ is defined in (9),

ϕ(tk ) =
[
−d na−1y(tk ) . . . −y(tk )

−x1,1(tk ) . . . −xna,nα (tk )

u0,0(tk ) . . . unb,nβ (tk )
]T (17)

and ẽ(tk ) = F(d , θ )e(tk ). It is important to note that it is
not possible to directly estimate the parameters from (16),
because both the time-derivatives, and xi,l are not available.
The LPV-SRIVC method is an iterative method that has been
devised to circumvent these issues. The LPV-SRIVC estimate
of the plant model parameter vector at iteration τ +1 is given
by

θ̂
(τ+1)

=

[
1
N

N∑
k=1

ẑf (tk )ϕ̂f
T (tk )

]−1[ 1
N

N∑
k=1

ẑf (tk )y
(na)
f (tk )

]
(18)

where

y(na)f (tk ) = d naQd (d , θ̂
(τ )
)y(tk ) (19)

Qd is a filter that is defined using an estimate of θ at
iteration τ , i.e.

Qd (d , θ̂
(τ )
) =

1

F(d , θ̂
(τ )
)

(20)

The estimated filtered regressor ϕ̂f(tk ) is defined as follows

ϕ̂f(tk ) =

[
−y(na−1)

f (tk ) . . . −yf(tk )

−x̂f1,1(tk ) . . . −x̂fna,nα
(tk )

uf0,0(tk ) . . . ufnb,nβ
(tk )

]T
(21)

where

y(na−i)f (tk ) = d na−iQd (d , θ̂
(τ )
)y(tk ) (22)

with i = 1, . . . , na,

x̂fi,l(tk ) = Qd (d , θ̂
(τ )
)x̂i,l(tk ) (23)

with i = 1, . . . , na, l = 1, . . . , nα

ufj,l(tk ) = Qd (d , θ̂
(τ )
)uj,l(tk ) (24)

with j = 0, . . . , nb, l = 0, . . . , nβ . The estimate x̂i,l(tk )
in (23) is computed using x̂(tk ) obtained from the following
auxiliary model

A(d , p(t), θ̂
(τ )
)x̂(t) = B(d , p(t), θ̂

(τ )
)u(t). (25)

The estimated filtered instrument vector ẑf (tk ) is defined as
follows

ẑf (tk ) =

[
−x̂(na−1)

f (tk ) . . . −x̂f(tk )

−x̂f1,1(tk ) . . . −x̂fna,nα
(tk )

uf0,0(tk ) . . . ufnb,nβ
(tk )

]T
(26)

where x̂f(tk ) is the filtered version of x̂(tk ), obtained
from (25).

The algorithm to compute the LPV-SRIVC estimate
defined in (18) is given in [11], where this approach has also
been adapted to estimate LPV-Box-Jenkins models.

Regarding hyperparameter selection for LPV-SRIVC,
we have to define the initial estimate θ̂

(0)
. that is automatically

obtained using LTI-SRIVC, which does not involve any
initialization choices. Note that the hyperparameters of
LPV-SRIVC are related to the model structure M, namely
na, nb, fl , gl , nα and nβ . However, in this study we assume
that So ∈ M. Therefore, these hyperparameters are a priori
chosen and remain fixed.
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IV. THE LOCAL REGRESSION METHOD
A. LPV-SRIVC USING A NOISY SCHEDULING VARIABLE
In this section, we discuss how to apply the LPV-SRIVC
method when the scheduling variable is noisy. That is,
we address the identification problem under assumptions
A1 to A4. If the scheduling variable is noisy, it is possible
to use a smoothing approach to obtain a reliable estimate
of the noise-free scheduling variable p̂(tk ), and then use
LPV-SRIVC as usual.

As smoothing approach we use the local regression (LR)
method, which is a nonparametric algorithm that consists
in fitting local polynomials to segments of data using
weighted least-squares. In this study, we apply LR to smooth
the scheduling variable p(tk ), assuming that the noise-free
scheduling variable po(tk ) is smooth (Assumption A3),
meaning that its second derivative exists and is finite. As a
consequence, the smoothness (or curvature) of po(tk ) can be
quantified through its second derivative (see Section IV-D).
The smoothness assumption allows us to rely on a local poly-
nomial regression to approximate the underlying noise-free
scheduling variable. In fact, Weierstrass’s theorem [29] states
that a continuous function in a finite closed interval can be
approximated to any desired accuracy using polynomials,
an observation that has been previously made in the
literature [30]. Next we present the LR approach in detail.
Note that in Section IV-F, we summarize the proposed
algorithm and its different versions.

B. SMOOTHING THE SCHEDULING VARIABLE USING LR
We want to obtain an estimated signal p̂(tk ) from the
signal measurement p(tk ) using the LR smoothing approach.
To that end, let us consider a segment of p(tk ), which is
a neighborhood around a certain data point or sample s.
We assume that the segment or window has a length
Nl = 2h + 1, where h is the so-called bandwidth, which
we define in terms of number of samples. Then, for the
window of size Nl centered at sample s, the local polynomial
approximation of the scheduling variable can be written as
follows

m(tk , ts) =

lβ∑
i=0

βi(ts)[k − s]i. (27)

As an example, in Figure 1, we show an estimated local
polynomial approximation m̂(tk , ts) centered at sample s,
considering a polynomial degree 2, and bandwidth h = 3 (i.e.,
window size Nl = 7). Note that for one local approximation
we keep only the estimate at s, i.e. m̂(ts, ts). Thus, the
estimates {p̂(tk )}Nk=1 are given by[

p̂(t1) p̂(t2) . . . p̂(tN )
]T (28)

=
[
m̂(t1, t1) m̂(t2, t2) . . . m̂(tN , tN )

]T (29)

The parameters βi(ts) can be gathered in the parameter
vector β(ts) ∈ Rlβ+1. The weighted least-squares estimate

FIGURE 1. Example of an estimated local polynomial approximation
m̂(tk , ts) centered at s, considering a polynomial degree 2, and bandwidth
h = 3 (window size Nl = 7).

for β(ts) is defined by

β̂(ts) = arg min
β∈R

lβ+1
Vβ (ts). (30)

Vβ (ts) is the cost function,

Vβ (ts) =
1
Nl

s+h∑
k=s−h

w(r)ε2(tk , β(ts)) (31)

where w(r) is a weighting function (also called kernel) with
r = (k − s)/h, and

ε(tk , β(ts)) = p(tk ) − m(tk , ts). (32)

Then, the estimate can be expressed by

β̂(ts) = (XTWX )−1XTWP (33)

where W = diag([w((s − h)/h), . . . ,w((s + h)/h)]), P =

[p(ts−h) . . . p(ts+h)]T , and X is a Vandermonde type matrix,

X =

1 (s− h) . . . (s− h)lβ
...

...
...

1 (s+ h) . . . (s+ h)lβ

 (34)

which can also be written as follows,

X =

BT (ts−h)
...

BT (ts+h)

 . (35)

Hyperparameters of the LR method are the weight
function w(r), the degree of the polynomial lβ , and the
bandwidth h. Let us discuss next how to choose them.

Regarding the user choice w(r), different weighting
functions can be applied. A simple option is the rectangular
weight function (w(r) = 1), which yields a ‘noisy’ estimate,
i.e., an estimate with a large variance. This is because all
observations within a distance h receive a weight 1 and the
rest weight 0, meaning that observations abruptly switch
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in and out of the smoothing window [31]. Two important
requirements for a weighting function are the following
[27], [31]: (i) it should have a peak at r = 0 (the window
center) and decay smoothly to 0 as r increases; (ii) it should
go to zero at a finite distance r allowing faster implemen-
tations. Although there are different weighting functions that
give similar results, and satisfy these requirements, it has been
shown that the Epanechnikov function is optimal in a mean
square error sense [27]. Thus, we consider in this study the
Epanechnikov function [32], which is defined as

w(r) =

{
0.75(1 − r2) for |r| < 1
0 elsewhere.

(36)

Regarding the second user choice lβ , on the one hand,
there is a risk to run into overfitting using a high-order
polynomial. But on the other hand, in comparison to a low-
order polynomial, a high-order polynomial will usually yield
an estimate with less bias, at the expense of more variance.
Thus, the choice of the polynomial degree lβ is a bias-
variance trade-off [22]. Usual values for lβ are 1, 2 or 3. In
[21] and [32] it is suggested to consider lβ an odd number
[21, p. 78] because of the following: when moving from a fit
using an even order polynomial to the consecutive odd order
polynomial, there is no loss in terms of asymptotic variance.
Nonetheless, the odd order polynomial provides less bias.
As a consequence, in this study we consider lβ = 3.
The third hyperparameter, the bandwidth h, defines the

smoothness of the estimation. A small h will result in a
large variance in the estimates, whereas a large h will lead
to a large bias. Thus, as it is the case for the choice of
the polynomial degree, the choice of bandwidth has to take
into account a bias-variance trade-off [22]. Note that the
weighting function (36) is symmetric. Therefore, the window
of the local approximation has to contain Nl = 2h + 1
samples, where Nl is an odd number.
In LR, the polynomial degree lβ and the bandwidth h

are important hyperparameters. Thus, given a certain weight
function, different alternatives have been considered to find
optimal values for lβ and h, namely: (i) find optimal band-
width assuming that the polynomial degree is fixed [21], [22],
[23], [30], [33], [34]; (ii) find optimal degree assuming that
the bandwidth is fixed [30], [34]; and (iii) simultaneously find
an optimal bandwidth and degree [34]. In [34], these three
alternatives are tested, concluding that alternative (iii) does
not provide significant improvements over alternatives (i)
or (ii). In our study, we focused on the impact of the
bandwidth, i.e., we consider alternative (i) which has also
been more frequently considered in the literature.

Two different approaches can be used to find optimal
bandwidths. One is the fixed bandwidth selection approach,
where an optimal and unique bandwidth is obtained for the
whole signal. The other is the adaptive bandwidth selection
approach, where local optimal bandwidths can be obtained.
These two bandwidth selection approaches are discussed
next.

C. FIXED BANDWIDTH SELECTION
Different methods have been developed for the fixed
bandwidth selection problem (see e.g. [21], [22], [23], [33]).
Two well-known types of approaches are:

• Classical approaches which are extensions of model
selection methods used in parametric statistics, such
as cross-validation, Akaike information criterion, or
Mallow’s Cp.

• Plug-in approaches. These methods are based on the
simple idea of ‘plugging in’ estimates of the unknown
quantities that appear in formulas for the asymptotically
optimal bandwidth [20, p. 71]. In order to compute
such estimates, a preliminary smoothing procedure is
done using a so-called pilot bandwidth. Some plug-in
approaches rely on Taylor expansions to approximate
the mean squared error. However, such approximations
are valid for small bandwidth [35]. In addition, plug-in
algorithms are complex [36].

Next we present two fixed bandwidth selection approaches
that are used in this study. They have been chosen because
of their simplicity in comparison to plug-in methods. The
first approach has been used as a pilot bandwidth in plug-in
methods. The second one is a classical approach.

1) RESIDUAL SQUARES CRITERION
The residual squares criterion (RSC), which is presented
in detail in [21] and [32], provides a local estimate of the
mean squared error, where the error is the difference p(tk ) −

m(tk , ts). RSC can be used as a local goodness of fit, and it is
defined as follows:

RSC(ts, h) = σ̂ 2
{1 + (lβ + 1)V } (37)

where σ̂ 2 is the normalized weighted residual sum of squares,

σ̂ 2
=

∑s+h
k=s−h ε2(tk , β(ts))w(r)

tr{W −WX (XTWX )−1XTW }
(38)

and V is the first diagonal element of the matrix
(XTWX )−1(XTW 2X )(XTWX )−1.
For a given signal, an optimal bandwidth can be obtained

by solving the following minimization problem

ĥ = arg min
h∈H

N∑
s=1

RSC(ts, h) (39)

where

H ∈
[
hmin hmax

]
. (40)

The RSC bandwidth selector is then ĥRSC = adj ĥ, with
adj an adjusting constant that depends on lβ and the kernel
w(r). As discussed in Section IV-B, in this study we consider
lβ = 3, and the Epanechnikov function. Therefore, the
adjusting constant is adj = 0.8718. The LR method
applied using a fixed bandwidth and RSC is denoted by
LR-RSC-F.
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Regarding the optimization problem (39), note that for any
fixed h, the parameter vector β(ts) in (33) can be readily
obtained. Thus, a simple and fast approach presented in [21]
and [32] is to numerically search for ĥ by evaluating the
cost function starting from h = hmin, and then successively
increase h by a factor C > 1 (i.e., hj = C jhmin, j =

1, 2, . . .), until a (local) minimum is found or until h > hmax.
Alternatively, a linear search is also possible, iterating the
bandwidth increasing 1 sample every time, i.e., hj = hj−1+1.
In this study, we have chosen the second option that gives a
more precise result at the expense of more computation time.

The choice of hmin in (40) depends on the polynomial
degree lβ . In (33), to ensure that XTWX is non-singular,
we need at least lβ + 1 samples [34], i.e. hmin ≥ lβ/2. Note,
however, that for the Epanechnikov kernel, w(r = 1) =

w(r = −1) = 0. Thus, hmin ≥ lβ/2 + 1. Regarding hmax
in (40), we can consider the maximum possible value, i.e.
hmax = ⌊(N −1)/2⌋, where N is the total number of samples,
and ⌊·⌋ is the floor function.

2) CROSS-VALIDATION
Another local estimate of the mean squared error, which is
well-known, is the (local) cross-validation index [22, p. 198],

CV(ts, h) =
1∑s+h

k=s−h w(r)

s+h∑
k=s−h

w(r)
(p(tk ) − m(tk , ts))2

(1 − infl(s, k))2

(41)

where infl(s, k) is the influence function defined by

infl(s, k) = BT (tk−s)(XTWX )−1B(tk−s)w(r) (42)

with B given in (35).
Analogous to the RSC optimal bandwidth, a CV optimal

bandwidth can be obtained from the following optimization
problem:

ĥCV = arg min
h∈H

N∑
s=1

CV(ts, h). (43)

As for the RSC optimization problem (39), for the CV
optimization problem (43) we also use lβ = 3, and the
Epanechnikov kernel. The LR method applied using a fixed
bandwidth and CV is denoted by LR-CV-F. The optimization
problem (43) is solved using a numerical search, in the same
way (39) is solved.

Note that the advantage of both indexes RSC and CV is that
they do not involve any hyperparameter. For instance, this is
not the case for Mallow’s Cp [22].

D. ADAPTIVE BANDWIDTH SELECTION
Usually, a suitable smoothing is obtained using a fixed
bandwidth. However, if for instance the curvature of the
signal is significantly varying, then an adaptive bandwidth
should work better. Note that a measure of the smoothness
(or curvature) of a signal can be obtained through its second
derivative [37, p. 151], [38, p. 212] (see more in the numerical

example in Section V). The indexes presented above (RSC
and CV) can be used to find an optimal bandwidth for each
sample. However, that strategy yields a significant variability
in the bandwidth, which deteriorates the smoothness of
p̂(tk ). To circumvent that problem, we consider the following
two-step approach proposed in [21] and [32]:

1) The whole signal is split up in intervals and an optimal
bandwidth is found for each of them. Let us denote by
Ninterval the number of samples of the intervals. Then,
it is suggested to split up the signal in N/(10 logN ),
with log the natural logarithm. Thus, we use

Ninterval = ⌊10 logN⌋ (44)

2) The obtained varying bandwidth is considered as a
signal h(tk ) to be smoothed. As a filter, it is proposed
to simply use a local average over Ninterval samples.

The LR method applied using an adaptive bandwidth and the
two indexes presented above are denoted by LR-RSC-A and
LR-CV-A.

This variable bandwidth approach involves only the
hyperparameter Ninterval. Note that, the smaller Ninterval, the
greater the variability (adaptability) of h(tk ) that we can
expect. Nonetheless, ifNinterval is too small, the smoothness of
p̂(tk ) is deteriorated (see Section V). On the other hand, in the
second step of this approach, a different filter could be used.
However that might involve additional hyperparameters.

E. DISCUSSION ABOUT THE ADAPTIVE BANDWIDTH
APPROACH
The LR method with fixed bandwidth and rectangular weight
function is equivalent to the well-known Savitzky-Golay
filter, which corresponds to a FIR filter [38], [39]. Note that
when this filter is applied, the filtered data is slid to get a
zero-phase response.

In [39], the author provides a plot showing the relationship
between the polynomial degree, the bandwidth and the 3 dB
cutoff frequency of the corresponding Savitzky-Golay filter.
From that analysis, it is clear that the LR method with
adaptive bandwidth and/or adaptive polynomial degree is
actually an adaptive filter.

As stated in the introduction of the paper, reasons to use an
adaptive bandwidth are the following scenarios:
i) to deal with data that is irregularly sampled over time,
ii) to deal with noise in the scheduling variable that may

change over time (heteroscedasticity), and
iii) to be able to estimate scheduling variables with

smoothness (or curvature, measured by its second order
derivative) that may significantly change over time (such
as the Doppler function in Section V).

In the numerical example presented in Section V, we have
selected scenario (iii) to illustrate the benefits of the adaptive
bandwidth approach.

Note, on the one hand, that LR with adaptive bandwidth
is suitable for irregularly sampled data (scenario (i)).
On the other hand, CT model estimation methods, such as
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LPV-SRIVC, can easily handle problems with irregularly
sample data [40]. Thus, we can state, that the proposed
approach for estimating CT LPV-OE models with noisy
scheduling variable, is suitable for the irregularly sampled
data case. In this study, for simplicity of exposition,
we consider only uniformly sampled data.

F. THE PROPOSED APPROACH AND ITS DIFFERENT
VERSIONS
In this section we summarize the proposed method and
its different versions for estimating CT LPV-OE models in
the particular case when the scheduling variable is noisy.
The proposed approach consists of the following two-step
procedure:

1) Apply the LR method in order to smooth p(tk ),
obtaining an estimate of the noise-free scheduling
variable p̂(tk ).

2) Apply the LPV-SRIVC method as usual using the
measurements u(tk ) and y(tk ), and the estimate of the
noise-free scheduling variable p̂(tk ).

For the smoothing procedure in step 1, the LR method is
considered using both a fixed (F), or adaptive (A) bandwidth.
In order to define a fixed or adaptive bandwidth we
apply two approaches: residual squares criterion (RSC) and
cross-validation (CV). This yields the following 4 possible
smoothing approaches that are tested in the numerical
example in Section V:

1) LR-RSC-F
2) LR-CV-F
3) LR-RSC-A
4) LR-CV-A

V. NUMERICAL EXAMPLE
In this section, a numerical example is presented to show the
performance and benefits of the proposed method.

A. DATA GENERATING SYSTEM
The data generating system is described by (1) where

ao1(po(t)) = 2 − 1.5 po(t) + 2p2o(t) (45)

ao2(po(t)) = 5 + 3 po(t) (46)

bo1(po(t)) = 3 + 2 cos(po(t)) (47)

bo2(po(t)) = 5 − 3 sin(2po(t)). (48)

The sampling time is Ts = 0.005 s and the simulation
time Tf = 15 s. The input is a white noise with
uniform distribution U(−1.5, 1.5). Regarding the noise-free
scheduling variable po(t), it is the Doppler function similar to
the one in [21, p. 130],

po(t) = 0.5 + (24/10)
√
t ′(1 − t ′) sin(2π1.05/(t ′ + 0.05))

where t ′ = t/Tf . The scheduling variable is corrupted by
a white noise with Gaussian distribution N (0, 0.062). The
signal eo(tk ) is a white noise with Gaussian distribution

N (0, 0.012). This corresponds to the following signal-to-
noise-ratios:

SNRp = 10 log

∑N
k=1[po(tk ) − p̄o]2∑N

k=1 γ 2
o (tk )

≈ 21 dB

SNRy = 10 log

∑N
k=1[yo(tk ) − ȳo]2∑N

k=1 e
2
o(tk )

≈ 23 dB

where p̄o and ȳo are the mean values of the signals po(tk )
and yo(tk ), respectively. Note that this numerical example is
similar to a demo available in the CONTSID toolbox [41].
To assess smoothing techniques, usually the mean squared

error is used. In this study, we consider a similar indicator
which is the fit index [42], [43], that is usually used in
system identification to comparemeasured system output and
simulated model output. Then, the fit index for the scheduling
variable is given by,

Fp =

[
1 −

√√√√∑N
k=1[po(tk ) − p̂(tk )]2∑N
k=1[po(tk ) − p̄o]2

]
· 100%. (49)

Note that the LR method provides estimates of the
derivatives of po(tk ), namely, the estimate of the νth derivative
is given by ν!β̂ν(tk ). As previously mentioned, the second
derivative is a measure of the smoothness (or curvature) of
a signal. Then, we consider the following index as a measure
of the smoothness of p̂(tk ):

µs =
1
N

N∑
k=1

|2β̂2(tk )|. (50)

The smoother the signal, the smaller the value of µs.
We use µs to evaluate the hyperparameter Ninterval in the LR
approach.

In LPV-SRIVC, the fit between measured and simulated
output is quantified using the fit index Fy, defined analo-
gously to (49). In order to assess the estimated parameters,
we can compute the norm of the bias [4]. However, we prefer
to compute the relative norm of the bias (RBN), because
we believe it is more informative, given that it is a relative
measure. RBN is defined as follows,

RBN =

∥∥∥θo − Ē(θ̂)
∥∥∥
2

∥θo∥2
(51)

where Ē(·) is the mean over the Monte Carlo simulation. In
addition we compute the norm of the variance [4],

VN =

∥∥∥Ē(θ̂ − Ē(θ̂ ))2
∥∥∥
2
. (52)

B. SINGLE EXPERIMENT ANALYSIS
In this section, using a single experiment, we analyze the
performance of the LR-RSC-A approach, because it involves
the choice of an hyperparameter (Ninterval), and as we will
see in Section V-C, it yields the best results. Considering
the system described in Section V-A, a single experiment is
generated; the corresponding data is shown in Fig. 2.
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FIGURE 2. Data for the single experiment analysis.

FIGURE 3. Bandwidth h vs time t for two values of Ninterval.

FIGURE 4. Smoothness measure of p̂(tk ) (µs) vs Ninterval.

We explore the use of LR-RSC-A with h ∈ H = [3 1500],
and different values of the hyperparameter Ninterval, with
Ninterval ∈ [10 150]. Note that using the suggestion (44),
we obtain Ninterval = 80.

In Fig. 3, for two values of Ninterval, the bandwidth h(tk ) vs
time is shown. We can clearly see that for a smaller Ninterval,
there ismore variability in h(tk ). Since the scheduling variable
po is smooth, also the bandwidth h(tk ) should be smooth.
In Fig. 4, the smoothness measure µs vs Ninterval is shown;
here we confirm that the smaller the value of Ninterval, the less
smooth the signal p̂(tk ).

FIGURE 5. Fits Fp and Fy for different values of Ninterval.

FIGURE 6. Relative norm of the bias (RBN) vs Ninterval.

TABLE 1. Relative norm of the bias (RBN) and variance of the norm (VN).

In Fig. 5 we can see how the fit Fp varies depending
on Ninterval. Considering the smoothed scheduling variables,
the LPV-OE system is identified using LPV-SRIVC. The
corresponding values forFy are shown in Fig. 5. On the other
hand, in Fig. 6 the relation between the relative norm of the
bias (RBN) and Ninterval is presented. From these results, and
recalling that the smaller Ninterval, the greater the variability
(adaptability) of h(tk ), we can see that an appropriate value for
Ninterval is around 90, which is close to the suggested rule (44),
i.e. Ninterval = 80.

C. MONTE CARLO SIMULATION
In this section, the results of a Monte Carlo simulation with
100 runs are presented in order to evaluate the performance
of the proposed methods. The four smoothing approaches
presented previously are used for estimating LPV models
through LPV-SRIVC. These approaches are also compared
with the case when LPV-SRIVC is applied ignoring the
noise in the scheduling variable. That case is denoted by ‘no
smoothing’. For the adaptive bandwidth cases, we use the
suggested rule (44), i.e. we set Ninterval = 80.

VOLUME 12, 2024 34243



A. Padilla et al.: Identification of Continuous-Time LPV Systems With Noisy Scheduling Variable

FIGURE 7. Boxplots of Fp for the different smoothing methods.

FIGURE 8. (a) Boxplots of Fy for the different LPV identification
methods. (b) Zoom on the boxes of the boxplots presented in (a) without
the case ‘no smoothing’.

In the following results, LPV-SRIVC sometimes fails (it
does not converge or yields negative fits); those cases are
not considered. When there is no smoothing, LPV-SRIVC
fails four times; for LR-RSC-F, LPV-SRIVC fails once; and
for LR-CV-F, LPV-SRIVC fails also once. The boxplots
of Fp are shown in Fig. 7, where we see that the best
performance is obtained for LR-RSC-A. After computing

FIGURE 9. Results of Monte Carlo simulation with larger noise variance in
the scheduling variable (σ2

γo = 0.022). Boxplots of Fp for the different
smoothing methods.

FIGURE 10. Results of Monte Carlo simulation with larger noise variance
in the scheduling variable (σ2

γo = 0.022). (a) Boxplots of Fy for the
different LPV identification methods. (b) Zoom on the boxes of the
boxplots presented in (a) without the case ‘no smoothing’.

the smoothed scheduling variables, the LPV-OE models are
estimated using LPV-SRIVC. The boxplots of Fy are shown
in Fig. 8(a); a zoom on the boxes of the boxplots without
the case ‘no smoothing’ is presented in Fig. 8(b). We can
see that when there is no smoothing, the fits are very
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TABLE 2. Results of Monte Carlo simulation with larger noise variance in
the scheduling variable (σ2

γo = 0.022). Relative norm of the bias (RBN)
and variance of the norm (VN).

low, and the best outcomes are obtained with LR-RSC-A.
Regarding the estimated LPV model parameters, as shown
in Table 1, the lowest RBN and VN values are also obtained
with LR-RSC-A.

In order to assess the proposed approach with a larger noise
variance σ 2

γo
in the scheduling variable, we repeat the Monte

Carlo simulation with 100 runs. Keeping the same noise
eo(tk ), we corrupt po(tk ) with a Gaussian noise N (0, 0.022),
which yields SNRp ≈ 11 db. In this case, when there is
no smoothing, LPV-SRIVC fails five times; for LR-RSC-F,
LPV-SRIVC fails six times; for LR-CV-F, LPV-SRIVC fails
four times; for LR-RSC-A, LPV-SRIVC fails once; and for
LR-CV-A, LPV-SRIVC fails also once. The boxplots of Fp
are shown in Fig. 9, where we see that the best performance
is obtained for LR-RSC-A. The boxplots of Fy are shown
in Fig. 10(a); a zoom on the boxes of the boxplots without
the case ‘no smoothing’ is presented in Fig. 10(b), where
we can see that the median of LR-CV-A is slightly better
than the median of LR-RSC-A. Regarding the estimated LPV
model parameters, as shown in Table 2, the lowest RBN
and VN values are obtained with LR-RSC-A. Finally, the
results show that a larger noise variance σ 2

γo
deteriorates the

performance indexes of the proposed method, but they are
still a significant improvement in comparison to the case ‘no
smoothing’. Moreover, in this case, the adaptive bandwidth
approaches also perform better than the fixed bandwidth
approaches.

VI. CONCLUSION
The identification of continuous-time LPV models in OE
form has been addressed, assuming that a smooth scheduling
variable is corrupted by additive white noise. The proposed
approach involves the use of the local regression method
and the refined instrumental variable approach. An important
hyperparameter of the formermethod is the bandwidth, which
can be fixed or adaptive. The latter option is appropriate
when: (i) the data is irregularly sampled; (ii) the noise in the
scheduling variable changes over time (heteroscedasticity);
and (iii) there is a significant variability in the smoothness of
the scheduling variable. The latter scenario is considered in
this paper, showing through a numerical example the benefits
of the LR method for smoothing, and the consequences in the
estimation of CT LPV-OEmodels. The other scenarios can be
addressed in a future study, considering both simulated and
real data.
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