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ABSTRACT At EUROCRYPT 2017, Grassi et al. proposed the multiple-of-8 property for 5-round AES,
where the number n of right pairs is a multiple of 8. At ToSC 2019, Boura et al. generalized the multiple-of
property for a general SPN block cipher and applied it to block cipher SKINNY. In this paper, we present that
n is not only a multiple but also a fixed value for SKINNY. Unlike the previous proof of generalization of
multiple-of property using equivalence class, we investigate the propagation of the set to compute the exact
number n. We experimentally verified that presented property holds.We extend this property one roundmore
using the lack of the whitening key on the SKINNY and use this property to construct 6-round distinguisher
on SKINNY-64 and SKINNY-128. The probability of success of both distinguisher is almost 1 and the total
complexities are 216 and 232 respectively. We verified that this property only holds for SKINNY, not for AES
and MIDORI, and provide the conditions under which it exists for AES-like ciphers.

INDEX TERMS Multiple-of property, structural-differential property, SKINNY, AES-like cipher.

I. INTRODUCTION
SKINNY is a lightweight tweakable block cipher presented
at CRYPTO 2016 [1]. It has flexible block, tweak size
and has a structure which internal state is represented as a
4 × 4 square array of cells. It provides good performance
on both hardware and software implementations. It can also
benefit from very efficient threshold implementations for
side-channel protection.

The multiple-of property states that the number n of right
pairs is multiple of a natural number other than 1 and was first
presented for 5-round AES [3]. Boura et al. [2] generalized
the multiple-of property for a general SPN(Substitution
Permutation Network) block cipher and applied it to various
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SPN block ciphers. Their work also showed that the
multiple-of property holds for 5-round SKINNY.
In this paper, we present that the number n of right pairs in

the multiple-of property for SKINNY is not only a multiple
but also a fixed value. In particular, n is significantly different
from the expected value for random permutation. In contrast
to the previous proof of the generalization of the multiple-of
property, we investigate the propagation of the set to compute
the exact value of n. Furthermore, we experimentally verify
that proposed property holds.

We extend this property by one round, utilizing the
absence of the whitening key in SKINNY. Subsequently,
we construct 6-round distinguishers based on this property.
The distinguisher on 6-round SKINNY-128 distinguishes
from random permutation with a total complexity of 232 and a
nearly 1 probability of success. Similarly, the distinguisher on
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TABLE 1. Comparisons of distinguishers on 6-Round SKINNY-64 and SKINNY-128.

6-roundSKINNY-64 distinguishes from random permutation
with a total complexity of 216 and a nearly 1 probability of
success. Our results are summarized in Table 1.

We present that this property holds for SKINNY but not
for AES [4] and MIDORI [5]. By investigating the set
propagation, we compute the exact value of n for both
AES and MIDORI, similar to our approach for SKINNY.
Furthermore, we generalize this property for AES-like SPN
block ciphers that use matrix multiplication. In conclusion,
we show that this property is related to the branch number of
the MixColumns matrix.
The remainder of the paper is organized as follows:

Section II provides a description of SKINNY and intro-
duces basic definitions related to the multiple-of property.
In Section III, subspaces and the subspace trail for SKINNY
are defined. Section IV then presents that the number of
right pairs in the multiple-of property is not only a multiple
but also a fixed value for SKINNY. Section V extends
the property one round more and constructs distinguishers
for 6 rounds of SKINNY. Section VI shows that the
property holds only for SKINNY, not for AES and MIDORI,
and generalizes this property for AES-like Substitution
Permutation Network (SPN) block ciphers that use matrix
multiplication. Lastly, Section VII provides the conclusion.

II. PRELIMINARIES
A. SYMBOLS AND NOTATIONS
We denote the size of S-box by d . Let K = Fd2 . We define Kl

as the set of all l-vectors over K for l > 0. Similarly, Km×k

represents the set of all m× k-matrices over K for m, k > 0.
If l = m × k , we consider Kl and Km×k as equivalent. Each
element of the array are referred to as a cell.

A subspace of Kl is a subset V ⊆ Kl that satisfyies
non-emptiness, closure under addition and closure under
scalar multiplication. The canonical basis of Km×k , denoted
by ei,j for i ∈ {0, . . . ,m − 1} and j ∈ {0, . . . , k − 1},
has 1 in the i-th row, j-th column, and 0 in all other cells.
The linear space formed by all linear combinations with
coefficients in K of the vectors v0, . . . , vn ∈ Kl is denoted
by < v0, . . . , vn >. A coset of V ⊆ Kl is a set of the form
V⊕a = {v⊕a | v ∈ V}, where a ∈ Kl , representing an affine
subspace of Kl .

B. BRIEF DESCRIPTION OF SKINNY
SKINNYwas proposed at CRYPTO2016 byBeierle et al. [1].
SKINNY is denoted by SKINNY-64 for 64-bit block size
and by SKINNY-128 for 128-bit block size, respectively.
The state vector of SKINNY is conveniently represented
as a 4 × 4 array, where each cell contains a nibble
(for SKINNY-64) or a byte (for SKINNY-128)

The round function of SKINNY is consisted of five
operations in the following order:SubCells,AddConstants,
AddRoundTweakey, ShiftRows and MixColumns
(see Figure 1).

• SubCells(SC). An invertible d-bit S-box is applied
to each cell of the internal state,where d = 4 for
SKINNY-64 and d = 8 for SKINNY-128.

• AddConstants(AC). Round constants are bitwise
exclusive-ored to first, second and third cells of the first
column of the internal state.

• AddRoundTweakey(ART). The first and second rows
of all tweakey arrays are extracted and bitwise
exclusive-ored to the corresponding rows of the internal
state.

• ShiftRows(SR). The second, third, and fourth rows are
rotated to the right by 1, 2 and 3 positions, respectively.

• MixColumns(MC). Each column of the internal state is
multiplied by the following binary matrixM :

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

The number of rounds depends on the block size nb and the
tweakey size nt . For a block size of 64 bits, it uses 32 rounds
for nt = nb, 36 rounds for nt = 2nb, and 40 rounds for
nt = 3nb. For a block size of 128 bits, it uses 40 rounds for
nt = nb, 48 rounds for nt = 2nb, and 56 rounds for nt = 3nb.
Since the property proposed in this paper are independent

of the key schedule, we omit the description of the key
schedule.

C. SUBSPACE TRAIL
The concept of subspace trail cryptanalysis was introduced by
Grassi et al. at ToSC 2016 [6] as a generalization of invariant
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FIGURE 1. The SKINNY round function applies five different transformations: SubCells(SC), AddConstants(AC), AddRoundTweakey(ART), ShiftRows(SR), and
MixColumns(MC).

subspace [7], [8]. It was subsequently applied to AES [4] and
PRINCE [9] in [6] and [10], respectively.
Definition 1 (Subspace trail [6]): Let F : Kl

→ Kl be
any map. Two linear subspaces U, V ⊆ Kl form a subspace
trail if

∀a ∈ Kl, ∃b ∈ Kl
: F(U ⊕ a) ⊆ V ⊕ b,

which is denoted by U
F
−−⇒ V. We call exact subspace trail if

∀a ∈ Kl, ∃b ∈ Kl
: F(U ⊕ a) = V ⊕ b.

For example, we have trivial subspace trails {0}
F
−−⇒ {0} and

U
F
−−⇒ Kl . In this paper, we only consider exact subspace

trails.

D. MULTIPLE-OF PROPERTY FOR SKINNY

The concept of the multiple-of property was introduced by
Grassi et al. at EUROCRYPT 2017 [3] as an efficient method
for constructing key-independent distinguisher. It was later
generalized for a general SPN block cipher [2]. In this study,
our focus is on the multiple-of property for a general SPN
block cipher.

Let U and W be subspaces of Kl and R be the round
function of the block cipher. Rnr denotes the nr rounds
encryption function for the block cipher. For any 5-round
SPN block cipher, the multiple-of property is defined as
follows.
Definition 2 (Multiple-of property): Let a ∈ Kl . We define

n = #{{p0, p1} | ∀p0, p1 ∈ U ⊕ a, R5(p0) ⊕ R5(p1) ∈ W}.

The 5-round SPN cipher is said to have the multiple-of
property if n is a multiple of a natural number other than 1.
We denote a right pair as an unordered pair satisfying this
property.

For example, the multiple-of-8 property exists for the
5-round AES [3]. An example of the multiple-of property for
SKINNY is given follow [2].
Example 1 ([2]): Let R be the round function of SKINNY.

There exist two 2-round subspace trails,Ui
R
−−⇒ Vi

R
−−⇒ Wi for

i ∈ {0, 1} where

U0 =< e1,1, e1,2, e1,3, e3,1, e3,3 >,

V0 = R(U0),

W0 = R(V0)

and

U1 =<e0,3, e1,0, e1,2, e1,3, e2,1,

e2,3, e3,0, e3,1, e3,2, e3,3 >,

V1 = R(U1),

W1 = R(V1).

Then

#{{p0, p1} | ∀p0, p1 ∈ U0 ⊕ a, R5(p0) ⊕ R5(p1) ∈ W1}

≡ 0 mod 4.

Example 1 is satisfied for both SKINNY-64 and
SKINNY-128 respectively. This can be used to construct
5-round distinguisher on SKINNY. The distinguisher for
5-round SKINNY-64 distinguishes from a random permu-
tation with 220 chosen plaintexts and a probability of success
of (1 − 2−2) = 0.75, whereas the distinguisher for 5-round
SKINNY-128 distinguishes from a random permutation
with 240 chosen plaintexts and a probability of success of
(1 − 2−2) = 0.75.

III. SUBSPACE TRAIL OF SKINNY
In this Section, we define subspaces ofK4×4 forSKINNY and
introduce a subspace trail to compute the exact number n of
right pairs.
Definition 3: For i ∈ {0, . . . , 3}, with indices computed

modulo 4, the column spaces Ci, the diagonal spaces Di, the
inverse-diagonal spaces IDi and are mixed spaces Mi are
defined as

Ci =< e0,i, e1,i, e2,i, e3,i >,

Di = SR(Ci) =< e0,i, e1,i+1, e2,i+2, e3,i+3 >,

IDi = SR−1(Ci) =< e0,i, e1,i−1, e2,i−2, e3,i−3 >,

Mi = MC(Di).

For example, if x0, x1, x2, x3 ∈ K,
x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 ∈ C0,


x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3

 ∈ D0,


x0 0 0 0
0 0 0 x1
0 0 x2 0
0 x3 0 0

 ∈ ID0,


x0 0 x2 x3
0 0 0 0
x0 x1 x2 0
x0 0 x2 0

 ∈ M0.
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FIGURE 2. 2-round Subspace Trail of SKINNY.

If I ⊆ {0, 1, 2, 3},

CI =

⊕
i∈I

Ci, DI =

⊕
i∈I

Di, IDI =

⊕
i∈I

IDi, MI =

⊕
i∈I

Mi.

We propose an exact subspace trail for SKINNY using the
subspaces defined in Definition 3.
Lemma 1: Let I ⊆ {0, 1, 2, 3} andR be the round function

of SKINNY. Then

IDI
R
−−⇒ CI

R
−−⇒ MI

is exact subspace trail for SKINNY.
For example, a case where I = {0} is illustrated in Figure 2.

Lemma 1 is satisfied for bothSKINNY-64 andSKINNY-128
simultaneously.We propose a new example of the multiple-of
property for SKINNY, distinct from Example 1, utilizing
Definition 3.
Example 2: Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I | = 1,

1 ≤ |J | ≤ 3 and a ∈ K4×4. Let R be the round function of
SKINNY. Then we can have

#{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,

R5(p0) ⊕ R5(p1) ∈ MJ } ≡ 0 mod 8.

Example 2 is also satisfied for both SKINNY-64 and
SKINNY-128, simultaneously. This can be used to con-
struct 5-round distinguishers. The distinguisher for 5-round
SKINNY-64 distinguishes from a random permutation with
216 chosen plaintexts and a probability of success of
(1 − 2−3) = 0.875, whereas the distinguisher for 5-round
SKINNY-128 distinguishes from a random permutation
with 232 chosen plaintexts and probability of success of
(1 − 2−3) = 0.875. So Example 2 achieves a higher
probability of success with fewer chosen plaintexts compared
to Example 1 in distinguishing between SKINNY and a
random permutation.

IV. THE EXACT COMPUTATION OF THE MULTIPLE-OF
PROPERTY FOR 5-ROUND SKINNY
A. THE EXACT COMPUTATION OF THE MULTIPLE-OF
PROPERTY FOR 5-ROUND SKINNY-128
In this section, we present the exact computation of the
number of right pairs, provided in Theorem 1 and Theorem 2.
Theorem 1: Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I | = 1,

|J | = 3 and a ∈ K4×4. Let R be the round function of
SKINNY-128. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,

× R5(p0) ⊕ R5(p1) ∈ MJ }.

Then n = (216 − 1) · 231 or n = (28 − 1) · 231.
By Lemma 1, every element of a coset of IDI corresponds

to every element of a coset of MI after 2 rounds. This
statement holds in a similar manner in the reverse direction:
every element of MJ corresponds to every element of IDJ
before 2 rounds. Therefore, proving Lemma 2 is sufficient to
prove Theorem 1.
Lemma 2: Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I | = 1,

|J | = 3 and a ∈ K4×4. Let R be the round function of
SKINNY-128. We define

n = #{{p0, p1} | ∀p0, p1 ∈ MI ⊕ a,

× R(p0) ⊕ R(p1) ∈ IDJ }.

Then n = (216 − 1) · 231 or n = (28 − 1) · 231.
Proof: We consider only the case where I = {0}. The

proofs for other cases of I follow a similar approach.
Since MI ⊕ a = MC(DI ⊕ b) for b = MC−1(a),

considering all elements of MI ⊕ a is equivalent to
considering all elements of DI ⊕b. We define X , Y , Z andW
as the set that has all 28 possible 8-bit elements. We define ci

as constant element for i > 0. Then, DI ⊕b, composed of 232
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FIGURE 3. The space after the 1-round SKINNY encryption of MI ⊕ a.

elements, can be represented by
X c4 c7 c10

c1 Y c8 c11

c2 c5 Z c12

c3 c6 c9 W

 .

After the MC operation, MI ⊕ a = MC(DI ⊕ b) can be
represented by

X ⊕ c13 c17 Z ⊕ c21 W ⊕ c25

X ⊕ c14 c18 c22 c26

c15 Y ⊕ c19 Z ⊕ c23 c27

X ⊕ c16 c20 Z ⊕ c24 c28

 .

Let S8 be a S-box of SKINNY-128. For i > 0, we define X i,
Y i, Z i and W i as the set which depends on X , Y , Z and W ,
respectively. For example, X1

= S8(X ⊕ c13). After the SC
operation, SC(MI ⊕ a) can be represented by

X1 c30 Z1 W 1

X2 c31 c33 c34

c29 Y 1 Z2 c35

X3 c32 Z3 c36

 .

Because AC adds round constants to only first, second and
third cells of first column and ART adds round tweakey
to only first and second rows, after the AC and the ART
operation, ART ◦ AC ◦ SC(MI ⊕ a) can be represented by

X1
⊕ c37 c40 Z1

⊕ c42 W 1
⊕ c43

X2
⊕ c38 c41 c43 c45

c39 Y 1 Z2 c35

X3 c32 Z3 c36

 .

After the SR operation, SR ◦ ART ◦ AC ◦ SC(MI ⊕ a) can
be represented by

X1
⊕ c37 c40 Z1

⊕ c42 W 1
⊕ c43

c45 X2
⊕ c38 c41 c43

Z2 c35 c39 Y 1

c32 Z3 c36 X3

 .

After the MC operation, R(MI ⊕ a) = MC ◦ SR ◦ ART ◦

AC ◦ SC(MI ⊕ a) can be represented as shown in Figure 3.
It represents one round of SKINNY encryption for MI ⊕ a.
The remainder of the proof involves counting the number n

of right pairs for each case of J . We focus on the cases where
J = {1, 2, 3} and J = {0, 1, 2}. The proofs for other cases of
J follow a similar approach.

Let J c = {0, 1, 2, 3} − J . For R(p0) ⊕ R(p1) ∈ IDJ , the
inverse diagonals corresponding to J c in R(p0)⊕ R(p1) must
be zero. Achieving this requires the J c inverse diagonals of
R(p0) and R(p1) to be the same.
Case 1: J = {1, 2, 3}.

The J c inverse diagonals of R(MI ⊕ a) can be represented
as

(X1
⊕ Z2

⊕ c46,W 1
⊕ c59, c56, c53).

Let x10 , x
1
1 ∈ X1, z20, z

2
1 ∈ Z2 and w1

0,w
1
1 ∈ W 1. For p0, p1 ∈

MI ⊕ a, the J c inverse diagonals of R(p0) and R(p1) can be
represented as

(x10 ⊕ z20 ⊕ c46,w1
0 ⊕ c59, c56, c53)

and

(x11 ⊕ z21 ⊕ c46,w1
1 ⊕ c59, c56, c53).

For the J c inverse diagonals of R(p0) and R(p1) to be the
same, it must be

x10 ⊕ z20 = x11 ⊕ z21,

w1
0 = w1

1.

Let x0, x1 ∈ X , z0, z1 ∈ Z and w0,w1 ∈ W . For i ∈ {0, 1},
since x1i = S8(xi⊕c13), z2i = S8(zi⊕c23) and w1

i = S8(wi⊕
c25), we have

S8(x0 ⊕ c13) ⊕ S8(z0 ⊕ c23)

= S8(x1 ⊕ c13) ⊕ S8(z1 ⊕ c23),

S8(w0 ⊕ c25) = S8(w0 ⊕ c25).

Since S8 is invertible, we have

S8(x0 ⊕ c13) ⊕ S8(z0 ⊕ c23)

= S8(x1 ⊕ c13) ⊕ S8(z1 ⊕ c23),

w0 = w1. (1)

For any element (x0, y0, z0,w0) in the set (X ,Y ,Z ,W ),
there are exactly 216 − 1 other elements (x1, y1, z1,w1)
satisfying (1). With 232 possible values for (x0, y0, z0,w0),
and considering reordering, the number of right pairs is
always (216 − 1) · 231.
Case 2: J = {0, 1, 2}.
Case 2 can be proven similarly to Case 1. The J c inverse

diagonals of R(MI ⊕ a) are represented by

(X3
⊕ Y 1

⊕W 1
⊕ c58,Z1

⊕ c55,X2
⊕ c52,X1

⊕ Z2
⊕ c49).
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For positive integers i and j, let x ji ∈ X j, yji ∈ Y j, zji ∈ Z j and
wji ∈ W j. For p0, p1 ∈ MI ⊕ a, J c inverse diagonals of R(p0)
and R(p1) can be represented by

(x30 ⊕ y10 ⊕ w1
0 ⊕ c58, z10 ⊕ c55, x20 ⊕ c52, x10 ⊕ z20 ⊕ c49)

and

(x31 ⊕ y11 ⊕ w1
1 ⊕ c58, z11 ⊕ c55, x21 ⊕ c52, x11 ⊕ z21 ⊕ c49).

For the J c inverse diagonals of R(p0) and R(p1) to be the
same, it must be

x30 ⊕ y10 ⊕ w1
0 = x31 ⊕ y11 ⊕ w1

1,

z10 = z11,

x20 = x21 ,

x10 ⊕ z20 = x11 ⊕ z21.

For i ∈ {0, 1}, let xi ∈ X , yi ∈ Y , zi ∈ Z and wi ∈ W . Since

x1i = S8(xi ⊕ c13),

x2i = S8(xi ⊕ c14),

x3i = S8(xi ⊕ c16),

y1i = S8(yi ⊕ c19),

z1i = S8(zi ⊕ c21),

z2i = S8(zi ⊕ c23),

w1
i = S8(wi ⊕ c25),

we have

S8(x0 ⊕ c16) ⊕ S8(y0 ⊕ c19) ⊕ S8(w0 ⊕ c25)

= S8(x1 ⊕ c16) ⊕ S8(y1 ⊕ c19)

⊕ S8(w1 ⊕ c25),

S8(z0 ⊕ c21) = S8(z1 ⊕ c21),

S8(x0 ⊕ c14) = S8(x1 ⊕ c14), S8(x0 ⊕ c13)

⊕ S8(z0 ⊕ c23)

= S8(x1 ⊕ c13) ⊕ S8(z1 ⊕ c23).

Since S8 is invertible, we have

x0 = x1,

z0 = z1,

S8(y0 ⊕ c19) ⊕ S8(w0 ⊕ c25)

= S8(y1 ⊕ c19) ⊕ S8(w1 ⊕ c25). (2)

For any element (x0, y0, z0,w0) in the set (X ,Y ,Z ,W ), there
are exactly 28−1 other elements (x1, y1, z1,w1) satisfying (2).
With 232 possible values for (x0, y0, z0,w0), and considering
reordering, the number of right pairs is always (28 − 1) · 231.

In all cases, the resulting value of n is either (216 − 1) · 231

or (28 − 1) · 231. The values of n depend on I and J and are
summarized in Table 2. □

With the proof of Lemma 2, Theorem 1 is finally proven.
It’s worth noting that Theorem 1 specifically addresses the
case |J | = 3, while Theorem 2 handles the case |J | = 2.
Theorem 2: Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I | = 1,

|J | = 2 and a ∈ K4×4. Let R be the round function of

TABLE 2. The number n of right pairs for given I , J with |I| = 1, |J| = 3 for
SKINNY-128.

TABLE 3. The number n of right pairs for given I , J with |I| = 1, |J| = 2 for
SKINNY-128.

SKINNY-128. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,

R5(p0) ⊕ R5(p1) ∈ MJ }.

Then n = (28 − 1) · 231 or n = 0.
The proof of Theorem 2 follows a similar approach to that

of Theorem 1. The summarized results for all cases of I and J
can be found in Table 3.

B. THE EXACT COMPUTATION OF THE MULTIPLE-OF
PROPERTY FOR 5-ROUND SKINNY-64
The case for SKINNY-64 can be derived similarly to
SKINNY-128, and the proof follows a similar process to
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TABLE 4. The number n of right pairs for given I , J with |I| = 1, |J| = 3 for
SKINNY-64.

the proof of Theorem 1. The computations for SKINNY-64
are presented in Theorem 3 and Theorem 4, providing exact
values for n.

The proofs for Theorem 3 and Theorem 4 follow a similar
approach to that of Theorem 1, and hence, their details are
omitted. The results for all cases of I and J are summarized
in Table 4 and Table 5. Specifically, Theorem 3 addresses the
case |J | = 3 in SKINNY-64, while Theorem 4 addresses the
case |J | = 2 in SKINNY-64.
Theorem 3: Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I | = 1,

|J | = 3 and a ∈ K4×4. Let R denote the round function of
SKINNY-64. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,

× R5(p0) ⊕ R5(p1) ∈ MJ }.

Then n = (28 − 1) · 215 or n = (24 − 1) · 215.
Theorem 4: Let I ⊆ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}, |I | = 1,

|J | = 2 and a ∈ K4×4. Let R denote the round function of
SKINNY-64. We define

n = #{{p0, p1} | ∀p0, p1 ∈ IDI ⊕ a,

× R5(p0) ⊕ R5(p1) ∈ MJ }.

Then n = (24 − 1) · 215 or n = 0.

V. DISTINGUISHERS FOR 6-ROUND SKINNY
A. ONE ROUND EXTENSION OF THE PROPERTY
As SKINNY lacks a whitening key, we can extend the
presented property by one round. This extension is achieved
by altering the order of operations in the SKINNY round
function and using an equivalent key.

The round function of SKINNY, denoted as R, is repre-
sented as MC ◦ SR ◦ ART ◦ AC ◦ SC. For a round tweakey
rtk and a round constant rc, the equivalent round tweakey is
MC ◦ SR(rtk) and the equivalent constant is MC ◦ SR(rc).
The round function R of SKINNY can also be expressed as
EqART ◦ EqAC ◦ MC ◦ SR ◦ SC, where EqART is the

TABLE 5. The number n of right pairs for given I , J with |I| = 1, |J| = 2 for
SKINNY-64.

equivalent round tweakey addition operation andEqAC is the
equivalent constant addition operation.

The 6-round SKINNY can be derived as follows

R6
= (EqART ◦ EqAC ◦ MC ◦ SR ◦ SC)6

= (EqART ◦ EqAC ◦ MC ◦ SR ◦ SC)5

◦ EqART ◦ EqAC ◦ MC ◦ SR ◦ SC.

Applying (EqART◦EqAC◦MC◦SR◦SC)5◦EqART◦EqAC
satisfies the fixed-value property for the given input subspace
IDI and output subspace MJ , where I , J ⊂ {0, 1, 2, 3}. Since
there is no secret information, the inverse ofMC◦SR◦SC can
be computed for a given subspace IDI , resulting in R6 with
the fixed-value property.

In conclusion, the fixed-value property for 5-round
SKINNY extends smoothly to 6 rounds, and it is applicable
to both SKINNY-64 and SKINNY-128, regardless of the
block size.

B. DISTINGUISHERS FOR 6-ROUND SKINNY-128
By combining Theorem 1 and Theorem 2 with one round
extension each, we can construct distinguishers for 6-round
SKINNY-128. We can choose 232 plaintexts that are active
on one inverse diagonal and constant on the other inverse
diagonal after one round. Since the matrix M of MC is
binary matrix, plaintexts are easy to choose. Then, for 232

ciphertexts after 6-round SKINNY encryption corresponding
to 232 chosen plaintexts, the number of pairs whose difference
is an element of MJ is (216 − 1) · 231 or (28 − 1) · 231 when
|J | = 3, and (28 − 1) · 231 or 0 when |J | = 2.
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FIGURE 4. The space after 1-round MIDORI.

Since MJ = MC(DJ ), an easy way to check that the
difference of a pair of ciphertexts is an element of MJ is to
check that the difference of the values of applying the MC−1

operation to each ciphertext is an element of DJ .
In the case of a random permutation, the expected value

of n is 231 when |J | = 3 and 2−1 when |J | = 2.
To construct a distinguisher with high probability of success,
we select a J such that n is (216 − 1) · 231 when |J | = 3
and n is (28 − 1) · 231 when |J | = 2. Then we can
construct a distinguisher that distinguishes SKINNY-128
from the random permutation with a probability of success
of close to 1. This distinguisher achieves a better probability
of success compared to Example 1 and Example 2, which rely
on the multiple-of property.

• Time Complexity: First, since 232 one round
SKINNY-128 round functions are used to form the
plaintext structure, this process requires a time complex-
ity of 1

6 · 232 ≈ 229.4 6-round SKINNY-128 encryption.
Second, encrypting 232 plaintexts requires 232 6-round
SKINNY-128 encryption. Third, we need to find the
number of right pairs, which was presented in [3].
This process requires 233.6 table look-up complexity,
which is equivalent to 227 6-round SKINNY-128
encryption(using the approximation 16 table look-
ups ≈ one round SKINNY-128 encryption). So the
overall time complexity is 232 6-round SKINNY-128
encryption.

• Data Complexity: To do this, we need 232 chosen
plaintexts.

• Memory Complexity: First, to create the plaintext
structure, we need memory to store 232 128-bit texts.
Second, since we need to store 232 ciphertexts to count
the number of right pairs, we need as much memory
as 232 128-bit texts. Since the two events do not occur
simultaneously, the overall memory complexity is 232

128-bit texts.

So the overall complexity in time, data, and memory is 232.

C. DISTINGUISHERS FOR 6-ROUND SKINNY-64
For SKINNY-64, the construction of the distinguisher
follows a similar approach to SKINNY-128. By combining
Theorem 3 and Theorem 4 with one round extension each,
we can construct distinguishers for SKINNY-64. We can
choose 216 plaintexts that are active on one inverse diagonal
and constant on the other inverse diagonal after one round.
Since the matrix M of MC is binary matrix, plaintexts are
easy to choose. Then, for 216 ciphertexts after 6 rounds of

SKINNY encryption corresponding to 216 chosen plaintexts,
the number of pairs whose difference is an element ofMJ is
(28 − 1) · 215 or (24 − 1) · 215 when |J | = 3, and (24 − 1) · 215

or 0 when |J | = 2. As in the case of SKINNY-128, we can
easily check that the difference of a pair of ciphertexts is an
element ofMJ .
In the case of a random permutation, the expected value

of n is 215 when |J | = 3 and 2−1 when |J | = 2. To construct
a distinguisher with high probability of success, we select a J
such that n is (28−1) ·215 when |J | = 3 and n is (24−1) ·215

when |J | = 2. Then we can construct a distinguisher that
distinguishesSKINNY-64 from the random permutationwith
a probability of success of almost 1.

As in the case of SKINNY-128, this distinguisher can
distinguish SKINNY-64 from the random permutation with a
better probability of success than Example 1 and Example 2
which use the multiple-of property.

• Complexity: The complexity of the distinguisher for
SKINNY-64 can be calculated similarly to the case of
the distinguisher for SKINNY-128. This results in a
time complexity of 216 6-round SKINNY-64 encryp-
tions, a data complexity of 216 chosen plaintexts, and
a memory complexity of 216 64-bit texts. So, as with the
distinguisher for SKINNY-128, the overall complexity
in time, data, and memory is 216.

VI. DISCUSSION
AES and MIDORI have a similar structure (AES-like) to
SKINNY and satisfies the multiple-of property for 5 rounds.
Thus we tried to take a similar approach to the proof of
Lemma 2 in the case of AES and MIDORI. An important
part of the proof of Lemma 2 is how the set is represented
as a 4× 4 array after one round encryption of a mixed space.
If equations for the difference of a pair to be an element of the
subspace have a fixed number of solutions, then the proposed
property is satisfied.

So, for the case of AES and MIDORI, we check how the set
is represented as a 4 × 4 array after one round encryption in
mixed space. We then check that whether or not the number
of solutions of equations for the difference of a pair to be an
element of the subspace is fixed. In the process, we check
under what conditions the number of solutions is determined
for general SPN block cipher.

A. CASE OF AES
Let RAES be the round function of AES and MAES

I be the
mixed space for AES. Then RAES(MAES

I ⊕ a) is the set
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represented as a 4 × 4 array after one round encryption
of AES in mixed space. All cells of RAES(MAES

I ⊕ a) are
represented by aX i0 ⊕ bY i1 ⊕ cZ i2 ⊕ dW i3 ⊕ ci4 for j ∈

{0, 1, 2, 3, 4}, ij > 0 and a, b, c, d ∈ {1, 2, 3}. Then the
number of solutions of equations for the difference of a
pair to be an element of the subspace cannot be determined.
In the case of AES, right pairs exist probabilistically, so it
is impossible for n to be a constant. And we confirmed this
experimentally.

B. CASE OF MIDORI
Let RMI be the round function of MIDORI and MMI

I be the
mixed space for MIDORI. Then RMI(MMI

I ⊕ a) is the set
represented as a 4 × 4 array after one round encryption of
MIDORI in mixed space. RMI(MMI

I ⊕ a) can be represented
by Figure 4. In the case of MIDORI, it is important to
determining the cells that need to be solved simultaneously
through the new subspace introduced by ShuffleCell. Then,
as in the case of AES, the number of solutions of equations
for the difference of a pair to be an element of the subspace
cannot be determined in the case of MIDORI. Right pairs
exist probabilistically, so it is impossible for n to be a
constant. And we confirmed this experimentally.

C. CASE OF AES-LIKE CIPHER
We verified that the property only holds for SKINNY, but
not for AES and MIDORI. The important thing is that the
array representation does not determine how many solutions
of the equations are derived for the difference of a pair to
be an element of the subspace. As each cell is combined
into more sets, the more likely it is that the number of
solutions is undetermined. It is related to the branch number
of MixColumns. The branch number of SKINNY MC is 2,
AES MixColumns is 5 because it uses an MDS matrix, and
MIDORI MixColumns is 4. For AES-like ciphers that use
matrix multiplication linear layer, if the branch number is
greater than or equal to 3, the property that n is a fixed
value does not occur because every cell is represented as a
combination of several sets.

VII. CONCLUSION
In this paper, for the multiple-of property for SKINNY
presented in [2], we provide the exact computation of n
and show that n is always the same value for certain
subspace indices. We also show that n is a much larger
value than when it is a random permutation. We prove
this by investigating the propagation of the set. It is not
only proved theoretically, but also confirmed experimentally.
We use the lack of the whitening key on the SKINNY to
extend the property one round more. Using this property,
we construct 6-round distinguishers forSKINNY and it is able
to distinguish with more better probability of success than
the previous distinguisher which uses multiple-of property.
We also show that the property does not hold for AES and
MIDORI, but only for SKINNY, and it is related to the branch
number.
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