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ABSTRACT Brain-computer interface (BCI) based motor imagery (MI) can assist stroke patients in upper
limb rehabilitation and help restore motor function to a certain extent. However, the classical MI paradigm
distinguishes different limbs and cannot effectively meet the needs of upper limb rehabilitation training for
patients. Therefore, this paper designed a new paradigm for three motor imagery actions targeting different
joints of the unilateral upper limb, and electroencephalogram (EEG) data from 20 healthy participants
were collected for research analysis. A deep neural network model combining an attention mechanism for
multiple frequency bands and a deep convolutional network were proposed to adaptively assign weight
to the EEG data in different frequency bands. Then feature extraction was performed for each frequency
band to learn further and to classify features. This model can obtain an average accuracy of 69.2% for the
subject-independent case with the triple classification in the designed fine motor imagery (FMI) dataset,
which is better than other controlled methods. Furthermore, ablation experiments were conducted for each
module, demonstrating the effectiveness of each module. These results manifest the feasibility of our
proposed method and the potential of FMI paradigm for BCI, providing a new training tool for upper limb
rehabilitation after stroke.

INDEX TERMS Brain–computer interface, upper limb rehabilitation, EEG, fine motor imagery, deep
learning.

I. INTRODUCTION
Brain-computer interface (BCI) is a system that provides a
pathway between the brain and an external device by decod-
ing brain electrical signals. Electroencephalogram (EEG) -
basedMotor Imagery (MI) Brain-Computer Interfaces (BCIs)
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have been extensively studied [1]. In contrast to other control
paradigms such as P300 and SSVEP, motor imagery-based
BCIs enable control of external devices through spontaneous
brain activity without the need for additional stimuli [2],
thereby expressing the user’s intrinsic motor intention.

Stroke is one of the leading causes of mortality and disabil-
ity worldwide [3], with survivors often experiencing motor
impairments and various forms of disability in their daily
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lives [4]. Hemiparesis, resulting from stroke, is a significant
disability, with more than 85% of patients suffering residual
upper limb impairments, greatly impacting their quality of
life [5]. Research suggests that Motor Imagery-Based Brain-
Computer Interface (MI-BCI) interventions offer a promising
avenue for stroke patients’ rehabilitation [6].
Classical motor imagery paradigms are typically employed

to distinguish among four body parts: tongue, left hand, right
hand, and foot [7], [8]. However, this mismatch between
the imagined actions and the targeted rehabilitation areas
fails to meet the specific needs of patients. In recent
years, researchers have explored the decoding of fine motor
imagery (FMI) of different segments of the unilateral upper
limb. Ofner et al. [9] devised a paradigm involving six
different actions (elbow flexion, elbow extension, forearm
pronation, forearm supination, hand closing, and hand open-
ing), with each motor imagery lasting for 3 seconds and
being performed 60 times by 15 healthy subjects. Suwan-
narat et al. [10] designed three sets of hand movements
(hand opening and closing, forearm rotation, wrist flexion and
extension) with each motor imagery lasting 4 seconds, and
engaged 11 healthy participants in 12 weeks. Ma et al. [11]
introduced four distinct actions (hand, wrist, elbow, and
shoulder), with each motor imagery session lasting 4 seconds
and being conducted 100 times by 20 healthy subjects for
the study.

For MI-BCI systems, one of the significant challenges
lies in the choice of decoders. Since Ramoser et al. [12]
introduced Common Spatial Patterns (CSP), various derived
methods, combined with Support Vector Machines (SVM)
and Linear Discriminant Analysis (LDA), have been widely
utilized inMI decoding due to their high discriminative power
and low computational complexity [13]. In recent years, with
the rapid advancement of deep learning, an increasing num-
ber of researchers have incorporated deep learning algorithms
into MI decoding. Deep neural networks can learn to lever-
age the entire dataset, enabling the development of robust
and automated classification systems, supporting end-to-end
classification decoding models [14]. Khademi et al. [15]
combined Convolutional Neural Networks (CNN) with Long
Short-Term Memory (LSTM) and achieved the highest
accuracy of 92% on the BCI Competition IV-2a dataset.
Amin et al. [16] introduced MCNN, which fuses differ-
ent features and architectures, and achieved an accuracy of
95.4% on the High Gamma dataset. Roy [17] proposed an
efficient multiscale CNN (MS-CNN) with a classification
accuracy of 93.74% on the BCI Competition IV-2a dataset.
Zhang et al. [18] designed a five-class motor imagery task
involving imagining actions for the left hand, right hand,
both hands, both feet, and rest. They concurrently collected
EEG and fNIRS data. Additionally, they constructed a mul-
timodal MI decoding neural network. This network utilized
convolutional networks for feature extraction from both EEG
and fNIRS data. Subsequently, an attention mechanism was
employed to integrate these two sets of features before the

final classification process took place. However, most of
these methods were validated on traditional MI datasets
and have not been experimentally tested for FMI. However,
in the field of FMI, Edelman et al. [19] employed EEG
source imaging techniques. They utilized the Colin27 MRI
average brain for data domain transformation and achieved
remarkable results in classifying four kinds of wristMImove-
ments. Additionally, in 2019, the team successfully applied
the ESI method to online BCI systems for four MI tasks:
left hand, right hand, both hands, and rest [20]. This had a
significant impact on the development and implementation
of non-invasive BCI systems.

To meet stroke patients’ upper limb rehabilitation needs,
this paper designed movements for different joints of the
unilateral upper limb. The FMI paradigm was used instead
of the traditional MI paradigm so that the imagined actions
correspond to the rehabilitation sites to better fit the actual
needs of the hemiplegic patients. On the basis of previous
research [21], new FMI actions were added and the classi-
fication categories were expanded. Meanwhile, the attention
mechanism for multiple frequency bands was combined with
deep convolutional networks to decode and to classify the
FMI-EEG signals. The experiment results show that the aver-
age accuracy is 69.2% in the three-class FMI scenes, which
is better than the selected comparison methods.

II. MATERIALS
A. SUBJECTS
We recruited 20 healthy participants (17 males and 3 females)
for this experiment, aged between 22 to 26 years and all
right-handed. They did not have any MI-based BCI experi-
ence before. They were all mentally healthy, with no head
trauma, and had normal or corrected vision. Prior to the
experiment, a comprehensive overview of the experimental
procedures was provided for the participants. After the exper-
iment, participants were interviewed about their experiences
to ensure the full completion of the motor imagery experi-
ment. All human experiments were conducted in accordance
with the principles of the Helsinki Declaration, and the study
received approval from the ethics committee of Changzhou
University.

B. EXPERIMENTAL PARADIGM
Prior to the commencement of the experiment, participants
were instructed to sit comfortably in a chair with their hands
placed naturally on the armrests. They were encouraged to
keep their entire body relaxed, maintain focused attention
throughout the trial, avoid unnecessary limb movements, and
minimize the frequency of blinking during the experiment.

The overall experimental procedure is illustrated in Fig. 1.
Prior to the motor imagery experiment, a brief training ses-
sion was provided to help the participants become familiar
with the process. Once it was confirmed with the participants
that they were ready to begin the experiment, the formal
motor imagery task commenced. One session consisted of
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FIGURE 1. Experimental paradigm flow. One session contains six blocks, with a certain amount of rest time between each block. Each block includes
30 trials, and each trial lasts 7 seconds.

FIGURE 2. Stimulating pictures of fine-motor imagination. Picture
(a) elbow flexion, picture (b) fist-clenching, picture (c) shoulder rotation.

6 blocks, with rest intervals in between, and each block
comprised 30 trials. At the beginning of each trial, a central
fixation cross appeared on the screen for 1 second, signaling
the impendingmotor imagery task. Subsequently, the fixation
cross disappeared, and a specific motor imagery cue was pre-
sented, as shown in Fig. 2, representing actions such as elbow
flexion, fist clenching, and shoulder rotation. Each image
was displayed for 4 seconds, followed by a 2-second rest
before the next trial began. After each session, participants
are queried to ensure sustained attention throughout the entire
session and adequate engagement in motor imagery.

Participants were instructed to repetitively engage in motor
imagery of the action depicted in the stimulus image dur-
ing the 4-second duration when the image was presented.
Consequently, it can be believed that during these 4 seconds,
participants’ motor imagery was continuous and roughly sim-
ilar in time. The order of the image stimuli was randomized,
but each image appeared an equal number of times. Each
participant undergoes a total of 3 sessions, with each session
comprising 6 blocks, and each block consisting of 30 trials.
Consequently, each participant engages in 540 trials in the
motor imagery experiment. We employed Qt to develop the
entire paradigm workflow, utilizing ‘‘PreciseTimer’’ to accu-
rately control the onset and offset times of each stimulus.
At the moment of image presentation, we conducted event
marking to facilitate subsequent analysis and processing of
the EEG signals.

C. DATA ACQUISITION
The data acquisition equipment used in the experiment was
the Neuracle NeuSen W series wireless electroencephalog-
raphy (EEG) signal acquisition system, which featured a
total of 59 effective channels. EEG electrodes were placed
in accordance with the international 10-20 system. The sam-
pling rate was set at 1000 Hz. Throughout the data collection
process, efforts were made to maintain electrode impedances
below 10k�. The EEG experiment was conducted in a quiet
and noise-free environment to minimize external interference

D. EEG PRE-PROCESSING
The raw EEG data underwent a basic preprocessing pipeline.
Firstly, a 50 Hz notch filter was applied to remove power-
line interference. Subsequently, the data was bandpass fil-
tered from 1 to 45 Hz using an eighth-order Butterworth
digital filter represented in second-order sections (SOS) for-
mat to ensure filter stability. Next, a whole-brain average
re-referencing was employed to mitigate the impact of spe-
cific reference electrodes. Finally, independent component
analysis (ICA) was used and supplemented with manual
review to remove EOG, EMG, and ECG and other artifactual
components. The data was segmented into -1 to 4 seconds
epochs, with baseline correction applied using data from
-1 to 0 seconds. According to our self-designed paradigm
program, there exists a marker in the EEG dataset precisely at
the moment when the image appears. We define this moment
as time point 0, and all segmentation operations performed
on the data are based on this zero-time reference point.

III. METHODS
The attention-based end-to-end unilateral upper limb fine
motor imagery classification network structure is proposed
in Fig. 3. The raw EEG data were pre-processed and
subdivided into different frequency bands to reconstitute
the data set. The multi-band EEG data were input into
the frequency-band attention module to allow the net-
work to learn the feature information among different
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FIGURE 3. Structure of the overall classification network system. The raw EEG data is preprocessed and divided into frequency bands and then input to
the frequency band attention module. Then the EEG of each frequency band is split, and each enters and exits the CNN convolutional neural network for
further feature extraction. Finally, the features are spliced and classified through the SoftMax layer.

frequency bands. Then, the signals of each frequency band
were split and input into the CNN branch for feature
extraction of details. Finally, the features were concate-
nated together and classified by SoftMax to output the final
results. All participant data were independently employed,
with no amalgamation of data for inter-group training and
testing. These steps are further explained in the following
subsections.

A. BAND ATTENTION MODULE
1) FREQUENCY BAND SELECTION
The amplitude and frequency values of EEG signals can be
used to distinguish a various range of physiological activities.
At present, EEG frequencies are mainly determined accord-
ing to the following frequency bands [7], [14], Delta (1-3 Hz),
Theta (4-7 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), Gamma
(above 30 Hz). According to many recent studies [8], [22],
the brain activities associated with motor imagery usually
exist in the Alpha, Beta, and Gamma frequency bands. A few
studies [16], [23] extended the frequency band to a broader
range. Therefore, in order to study the influence of different
frequency bands of EEG signals on the classification results
of fine-motor imagery, five frequency bands were selected in
this paper, 1-4 Hz, 4-8 Hz, 8-13 Hz, 13-31 Hz, and 31-40 Hz.
The signal was subjected to frequency band segmentation
using an 8th-order IIR Butterworth filter. With a sampling
rate of 1000 Hz, a bandpass filter was employed, and the
passbands were chosen based on the aforementioned five
frequency ranges. The filter was represented in SOS form to
ensure the stability of the filter.

2) ATTENTION MODULE SELECTION
After pre-processing and frequency band extraction, the EEG
signal of one trial can be expressed as E ∈ RN×C×T , where
N is the number of selected frequency bands,C is the number
of EEG cap channels, and T is the number of sampling points.
Here, the values of N , C are 5 and 59. The value of T

is determined according to the following data enhancement
method.

Attention mechanisms have been extensively employed in
various EEG signal analyses [24], [25]. They enable models
to focus on different parts of the input, intelligently assigning
weights to different inputs based on the specific task, demon-
strating excellent performance across a variety of tasks [26].
Its essence lies in computing attention coefficients for corre-
sponding Q (Query), K (Key), and V (Value) [27], as shown
in (1), thereby assigning weights to different information.
In this context, the frequency band attention network structure
uses the SE network [28], which focuses on the channel rela-
tionship and can extract the data correlation features between
frequency bands well. Therefore, the frequency bands are
used as channels and input into the SE network.

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (1)

The SE network first compresses the global spatial informa-
tion into channels, which is done by global average pooling.
The expression is shown in (2), zn represents the general
information of the nth channel and un represents the 2D EEG
signal of the nth channel, which can be expressed as un ∈

RC×T , (n = 1, . . . ,N ).

zn = Fsq(un) =
1

C × T

C∑
i=1

T∑
j=1

un(i, j) (2)

Then the compressed channel information, through adap-
tive activation, is obtained as a weight matrix s, which can
be used in. δ is the activation function, W1 and W2 are fully
connected matrices, and W1 ∈ R

N
r ×N , W2 ∈ RN×

N
r , and

r are a hyperparameter to control the feature dimensionality
reduction.

s = Fex(z,W ) = σ (g(z,W )) = σ (W2δ(W1z)) (3)

The network structure for calculating each frequency
band’s weight is shown in Table 1.
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TABLE 1. Parameters of the attention network for the calculation of
frequency band weight.

Finally, the original EEG data are multiplied by the weight
s to obtain the feature matrix X̃A = [x̃A,1, x̃A,2, . . . , x̃A,N ] ∈

RN×C×T , which can be expressed by (4). Where x̃A,n repre-
sents the weighted feature matrix of the nth channel and sn
represents the weight of the nth channel.

x̃A,n = Fscale(un, sn) = snun (4)

B. FEATURE EXTRACTION MODULE
To perform further feature extraction for each data band, X̃A
is dimensionally reshaped and can be expressed as X̃R ∈

RN×1×C×T . x̃R,n ∈ R1×C×T , (n = 1, . . . ,N ) denotes the
feature data of the nth frequency band.

The EEGNet [29] model is selected as the primary method
for feature extraction of each frequency band data. EEGNet
is a compact convolutional neural network model that uses
a depth-wise separable convolutional structure, which can
effectively and quickly extract feature information from
EEG signals. Its network structure parameters are shown
in Table 2.

After feature extraction, the feature matrix of the nth fre-
quency band can be expressed as x̃F,n ∈ RNclass , as shown
in (5), where Ffeature represents the feature extraction pro-
cess. Finally, the features of all frequency bands X̃F =

[x̃F,1, x̃F,2 . . . , x̃F,N ] are concatenated together and input into
the classifier as the final features for classification.

x̃F,n = Ffeature(x̃R,n) (5)

C. CLASSIFICATION MODULE
After the data have gone through all the feature extrac-
tion modules, the obtained features are obtained as X̃F ∈

RN×Nclass . After all the features are flattened, the final clas-
sification result is output after a fully connected layer and a
normalized exponential function layer. The network structure
is shown in Table 3.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL EQUIPMENT AND RELATED
PARAMETERS
This deep learning network was implemented using the
Pytorch framework and was trained with a TESLA V100

graphics card. The network was trained using Adam [30]
optimizer, cross-entropy loss function. The learning rate was
chosen from [0.01, 0.001, 0.0001], and the hyperparameters
in the attention network were selected from [2], [3], and [5].
Dataset splitting used five-fold cross-validation.

In order to expand the dataset as much as possible, data
augmentationwas performed using down sampling, with aug-
mentation factors selected from the range [2], [4], [8]. A data
augmentation example is presented in Fig. 4. Assuming the
original data consists of 12 sampling points, a 2 times data
augmentation was applied using down sampling, resulting
in data segments with 6 sampling points each. Although the
number of sampling points per individual segment is reduced,
the overall data quantity is doubled. After data augmentation,
data segments that originally belonged to the same source
may become overly similar. If they were to appear separately
in both the training and validation sets, it could lead to
overfitting. Therefore, this data augmentation operation was
performed after the dataset were partitioned.

B. METHOD OF COMPARISON
1) CLASSIC MACHINE LEARNING
CSP [12] and the CSP-based FBCSP [31] for feature extrac-
tion and classification use SVM. Due to the fact that
CSP-based methods are designed for binary classification
tasks, in the context of the three-class problem addressed in
this paper, a one-versus-rest (OVR) approach is employed.
The training and application of the SVM classifier are both
implemented using the Python Scikit-Learn library to ensure
the correctness of the method’s implementation.

2) DEEP LEARNING
This paper selected the deep learning network models related
to MI in recent years for comparative experiments. Perform
networkwas reproduced according to themethod described in
the paper. To adapt to the data set, the input layer structure of
each network was fine-tuned to ensure that the EEG data pre-
processing methods and sampling rates used by each method
are consistent and that the deep learning network itself is
consistent with the description in its paper.

• MCNN [16]: Amulti-layer CNN network structure that
integrates CNN networks with different features and
structures to improve the classification accuracy of MI-
EEG data. The selected frequency bands for data input
are 7-13Hz, 13-31Hz, 7-31Hz, and 0-40Hz.

• MSCNN [17]: An efficient, multi-scale CNN for
feature extraction and classification of multiple
non-overlapping standard frequency band. The selected
frequency bands for data input are 1-4Hz, 4-8Hz,
8-13Hz, and 13-30Hz.

• TD-Atten [11]: A model that combines multi-band
CSP, attentional mechanism, and long and short-term
memory network for the same limb. The data input
frequency bands range from 4Hz to 38Hz, with fre-
quency band selection performed using a sliding
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TABLE 2. Parameter structure of feature extraction network.

TABLE 3. Classification module network structure.

FIGURE 4. A data augmentation example.

window approach. The window size is 4Hz, and the
step size is 2Hz, resulting in a total of 16 frequency
bands.

• MTFB-CNN [32]: An end-to-end MI-EEG decoding
model that integrates attention mechanism and residual
network without data pre-processing. The data input
frequency band is set to 7-31Hz.

• EEGNet [29]: A compact convolutional neural network
model that uses a depth-wise separable convolutional
structure, which can effectively and quickly extract
feature information from EEG signals. The selected
data input frequency band is 8-30Hz.

C. RESULTS
Table 4 shows the classification results of the selectedmethod
on the FMI-EEGdata of 20 participants. In the table, bold font

indicates the best accuracy achieved by each method for a
given participant. As shown in Table 4, the method proposed
in this study achieved the highest accuracy of 88.89% for par-
ticipant 11. Since a five-fold cross-validation was employed
during the model training process, the average accuracy
represents the mean of the highest accuracy achieved in
each fold.

Fig. 5 depicts the corresponding box plots. From Fig. 5 and
Table 4, it is evident that, in terms of average accuracy on this
dataset, the method proposed in this study has shown sub-
stantial improvement compared to other methods, achieving
the highest improvement of 27.37% and an average accuracy
of 69.20%. Furthermore, t-tests were conducted between the
proposed method and the baseline CSP+SVM method, with
‘‘∗’’ indicating p < 0.05 and ‘‘∗∗’’ indicating p < 0.01. The
results reveal a significant difference in favor of the proposed
method compared to the baseline method, highlighting the
effectiveness of this approach. We also conducted t-tests
between all the methods and the proposed method, and the
results are presented in Table 5 The p-values are all less
than 0.05, indicating a significant difference between them.

The specific information and comparison of the selected
methods are detailed in Table 6. The table lists the year of pro-
posal, average accuracy on this dataset, statistics of trainable
model parameters, and evaluation criteria, including kappa
and F1 score. As evident from Table 6, the model proposed in
this study has fewer trainable parameters compared to other
models, enabling faster training and reducing computational
resource consumption. Moreover, on this dataset, both kappa
and F1 values for the proposed model are significantly higher
than those of other methods.

We selected representative participants’ FMI-EEG clas-
sification results and visualized their confusion matrices,
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TABLE 4. Classification accuracies of various methods (in percentage, denoted as ∗ forp < 0.05 and ∗∗ for p < 0.01 in the column of average classification
accuracy). The method proposed in this study achieved an average accuracy of 69.20%, representing a remarkable improvement of 27.37% when
compared to the selected alternative methods.

TABLE 5. The t-test results between the proposed method and each Other method.

FIGURE 5. Comparison of box plots of the correctness of each method.
The ‘x’ mark indicates the average accuracy of the method, while
significance differences are denoted in the legend (represented as ∗ for p
< 0.05 and ∗∗ for p < 0.01). The classification accuracy rate of deep
learning is generally higher than traditional machine learning methods.
Compared with other selected methods, the method proposed in this
paper significantly improves classification accuracy.

as shown in Fig. 6. Participants 6, 7, 11, and 14 exhibited
relatively uniform classification results across various motor

imagery tasks, showing no apparent bias. In contrast, partic-
ipants 3 and 8 demonstrated distinctive differences in their
performance across different motor imagery tasks. Subject 3
achieved better results in the imagination of fist clenching and
shoulder rotation, but it became indistinguishable in elbow
flexion, while subject 8 was indistinguishable in shoulder
rotation. Fig. 7 depicts the confusion matrix of the classi-
fication results for all participants. From the perspective of
all participant data, the classifier proposed in this study does
not exhibit significant bias. It only slightly underperforms
compared to the other two categories in the task of elbow
flexion classification.

D. DATA AUGMENTATION RESULTS
To investigate the impact of data augmentation on the experi-
mental results, comparative experiments were conducted, and
the outcomes are presented in Table 7. In this section of
the experiments, a 4 times data augmentation was employed,
equivalent to down sampling each data segment from the
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TABLE 6. Comparison of parameters and results of each method.

FIGURE 6. Confusion matrix for partial subject classification. Subjects 6, 7, 11, and 14 had relatively average classification rates on each action. However,
subject 3 became indistinguishable in the item of elbow flexion. Subject 8 became indistinguishable in the item of shoulder rotation.

FIGURE 7. An overall confusion matrix with data from all of the subjects.

original 1000Hz sampling rate to 250Hz, resulting in a four-
fold increase in the overall dataset size. As indicated in
Table 7, after data augmentation, there was a noticeable
improvement in the accuracy of most participants’ data,
reflecting the impact of data augmentation.

E. ABLATION EXPERIMENTS
In order to study the influence of each module in the deep
learning model on the final classification result, an ablation
experiment was designed. The model proposed in this paper
is based on the multi-band EEG signal and the attention
mechanism between frequency bands. Therefore, the ablation
experiment mainly focuses on the multi-band EEG signal
and the attention mechanism module. The first experiment
represents the most primitive form of the model, which is
based on a single frequency bandwithout incorporating atten-
tion mechanisms. In this experimental process, we opted
for the most prevalent MI frequency band (8∼30Hz) [14].
Other preprocessing operations remained consistent with
those previously mentioned. The second experiment intro-
duces multi-frequency EEG signals but does not involve
any attention mechanisms. The frequency bands of the
data used in this experiment match the frequency bands
selected for the final model (i.e., 1-4Hz, 4-8Hz, 8-13Hz,
13-31Hz, 31-40Hz). The third experiment encompasses
both multi-frequency signals and inter-frequency attention
mechanisms.
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TABLE 7. Comparison of classification results between original data and augmented data (in percentage).

TABLE 8. Results of ablation experiments (denoted as ∗ for p < 0.05 and
∗∗ for p < 0.01).

In the three stages of the ablation experiment, the parame-
ters and methods used in model training remained consistent,
and the results are shown in Table 8.When utilizing themodel
based on a single frequency band, an average accuracy of
54.85% was achieved, which was lower than the results of
the other two experiments. Subsequently, when transitioning
to the model with multiple frequency bands, the accuracy
increased by 10.3%. This demonstrates that the incorpora-
tion of multi-frequency signals significantly enhances the
discriminability of fine motor imagery EEG signals. Fur-
thermore, when the inter-frequency attention mechanism was
integrated on top of the multi-frequency signals, the accuracy
saw an additional improvement of 4.05%.

Utilizing the network as a baseline classification method
without multiple frequency bands and attention mechanisms,
a t-test was conducted. As indicated in Table 8, there exists
a significant difference in accuracy when comparing the
models with multiple frequency bands and attention mech-
anisms to the baseline method (p < 0.01). Therefore, we can
conclude that the attentionmodules designed for different fre-
quency bands are effective in assisting the network to better
learn the features of FMI-EEG signals, thereby improving
classification accuracy.

F. ERS/ERD ANALYSIS
Previous research has demonstrated that the C3 electrode
exhibits the most pronounced Event-Related Desynchroniza-
tion (ERD) response in comparison to other electrodes [33].
Therefore, we selected a participant, utilized the C3 elec-
trode, and performed multi-segment averaging of EEG data.

We considered the data before time point zero (i.e., data from
-1 to 0 seconds) as baseline data. Subsequently, we plot-
ted comparative graphs illustrating the energy variations of
different FMI actions across various frequency bands [34],
as depicted in Fig. 8. It is observable from the figure that a
distinct ERD phenomenon is evident at 0.5 seconds following
the appearance of the FMI stimulus, as highlighted within
the green box. Additionally, the ERD phenomenon for the
fist-clench FMI action by the subject (represented by the
red curve) is notably weaker when compared to the other
two FMI actions. Based on Fig. 8 and the work of other
researchers [35], [36], the 8∼13Hz frequency band, exhibit-
ing the most pronounced ERD phenomenon, was selected.
The average energy distribution changes of this participant
were mapped onto a topographical representation, as shown
in Fig. 9. In the three motor imagery tasks of elbow flexion,
fist clenching, and shoulder rotation, the contralateral motor
area was significantly activated, and the ipsilateral motor area
was also activated. However, it was not as apparent as the
contralateral side.

After averaging the MI data of all participants, compar-
ative graphs illustrating the energy variations of different
FMI actions across various frequency bands were created,
using data before 0 seconds as the baseline, as shown
in Fig. 10. A noticeable ERD phenomenon appeared at
0.5 seconds after the onset of FMI (highlighted in green
boxes in the figure). In the beta frequency band, there was
a slight rebound following a substantial ERD. Therefore,
we segmented the beta band to investigate this occurrence.
It was observed that after the signal rebound, there were one
or more minor subsequent declines (highlighted in purple
boxes in the figure), and higher-frequency signals exhibited
more distinct patterns. Similarly, based on Fig. 10 and the
work of other researchers [35], [36], the 8∼13Hz frequency
band, showing the most prominent ERD phenomenon, was
selected to generate average power change distributions
for all participant data, as depicted in Fig. 11. All three
types of FMI signals demonstrated significant activation
in the contralateral motor area, notably stronger than the
ipsilateral side.
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FIGURE 8. C3 electrode, comparison chart of energy changes of different actions in different frequency bands for a selected participant. The
vertical axis represents the change in power relative to the baseline (%) and the horizontal axis depicts the time (s) for motor imagery. The green
box indicates the occurrence of ERD phenomenon.

FIGURE 9. Topographical map of energy changes distribution for different motor imagination
movements for a selected participant. The activation of the motor area on the contralateral side of
the three MIs is relatively apparent, with slight activation also observed in the ipsilateral motor
area, albeit less distinct compared to the contralateral side.

FIGURE 10. C3 electrode, comparison chart of energy changes of different actions in different
frequency bands for all participants. The vertical axis represents the change in power relative
to the baseline (%), while the horizontal axis indicates the time (s) during motor imagery. The
green box indicates the occurrence of ERD phenomenon.

For the ERD phenomena across different frequency bands
and categories, pairwise t-tests were conducted and the results
are presented in Table 9. The findings indicate significant

differences (p < 0.05) in ERD phenomena between different
categories within distinct frequency bands. This suggests that,
overall, the EEG signals related to these three types of motor
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FIGURE 11. Topographical distribution of average band power changes for all participants.

TABLE 9. The t-test results for ERD phenomena between different categories.

FIGURE 12. Visualization of attention network output weights for
different frequency bands and categories of EEG signals.

imagery are distinguishable, and there are features recogniz-
able by the classifier across various frequency bands.

G. VISUALIZATION OF FREQUENCY BAND WEIGHTS
Different frequency bands play distinct roles in the classifica-
tion of motor imagery. To investigate the impact of different
frequency bands on classifier performance, the weights of the
frequency band attention network were exported and visual-
ized, as depicted in Fig. 12. The horizontal axis represents
different categories of motor imagery, while the vertical axis
represents different frequency bands, and the color intensity
indicates the weight magnitude. From Fig. 12, it is evident
that the 8-13Hz frequency band of EEG signals exhibits the

highest contribution, followed by the 4-8Hz and 13-31Hz
frequency bands. This observation aligns with the prominent
ERD phenomena in several frequency bands as illustrated in
Fig. 10. Consequently, the attention network assigns different
weights to EEG signals from different frequency bands and
categories, aiding the classifier in extracting features from
distinct frequency ranges. This reaffirms that different fre-
quency bands make varied contributions to motor imagery
classification.

V. DISCUSSION
In this study, different movements of the same upper limb
were used as an MI paradigm called the FMI paradigm.
A multi-band attention mechanism and feature extraction
neural network decoded and classified FMI-EEG data. It is
shown that this network outperforms other comparative
methods regarding classification results and the number of
network parameters. In the triple classification task, the best
classification result of this method is 88.89%, and the aver-
age of all subjects is 69.2%. Compared with the classic
machine learning method, for the CSP+SVM method, the
classification accuracy rate has increased by 17.74%, and for
the FBCSP+SVM method, the accuracy rate has increased
by 17.09%. As can be seen from Table 6, compared with
the four selected deep learningmethods [11], [16], [17], [32],
the accuracy of the proposed method has been significantly
improved, with the highest improvement of 23.37%. At the
same time, this model has significantly fewer trainable
parameters than other models, which can make the model
converge faster during training, consume less computing time
when performing classification tasks, and save more GPU
resources.

Regarding the design of the paradigm flow, prior to the
formal data collection experiment, a small group of indi-
viduals was recruited for an investigation into the paradigm
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flow and timing. The majority indicated that the time of
particularly focused attention during the three categories of
motor imagery experiments is approximately 20 minutes,
with the need for intermittent rest periods. Consequently, this
study sets the duration of one session at around 20 minutes,
segmented into several blocks with designated rest intervals.
In order to obtain an adequate amount of data for subsequent
analysis, and with the participants’ consent, the experiment
will consist of a total of 3 sessions. Each session will include
sufficient rest time to allow participants to recuperate, ensur-
ing the quality of the collected data.

In this study, the utilization of down-sampling as a data
augmentation technique is aimed at expanding the limited
dataset without sacrificing any data. Additionally, due to
hardware constraints, it was not feasible to load all data
into memory and GPU memory simultaneously for data pro-
cessing and model training. Consequently, frequent disk I/O
operations during training consumed significant time. Down
sampling the data led to a reduction in the model’s param-
eter count, allowing us to read more data from the disk in
each operation, reducing I/O operations and expediting train-
ing time. Furthermore, a smaller model size implies lower
hardware requirements, facilitating easier development and
deployment of future BCI systems.

The attention mechanism between frequency bands can
help the network to learn independently, assign weight to
data in different frequency bands, and improve classifica-
tion accuracy. The feature extraction module can perform
further feature extraction for the time, space, and frequency
domains [29]. Therefore, prior to feature extraction, we man-
ually divided the data into five frequency bands, hoping that
the attention mechanism could globally weigh these differ-
ent frequency bands. After weighting, the feature extraction
module targeted these frequency bands for specific feature
extraction, thereby extracting more detailed features. The
ablation experiment results in Table 8 show the effectiveness
of each module.

In both Fig. 8 and Fig. 10, the signal rebound phe-
nomenon around 1 second is possibly associated with our
experimental protocol for the participants. Similar occur-
rences of this phenomenon have also appeared in the works
of other relevant researchers [35], [36]. We instructed each
participant to repeatedly imagine the action during every
single FMI process. However, the execution frequency varied
among participants, leading to a superposition of mis-
aligned ERD/ERS signals across participants, resulting in this
observed phenomenon. In subsequent experiments, we will
instruct participants to perform repeated motor imagery at a
fixed frequency (e.g., 2Hz) to avoid the occurrence of such
situations. From Fig. 8, it’s evident that the fist-clenching
ERD phenomenon for this participant is notably weaker than
the other two actions. However, Fig. 10 doesn’t indicate a
specific FMI action with significantly weaker ERD compared
to the others. Additionally, we observed in Fig. 9 that the ERD
occurrence area for this participant is positioned further back
than the typically recognized motor area. However, in the

brain average power distribution of all participants shown in
Fig. 11, this observation did not manifest, in line with the
expected outcomes [11], [35]. Hence, we believe these occur-
rences are due to individual differences, which are subdued in
the average of all participant data.

Brain-computer interface relies on the function of the nor-
mal brain to a certain extent. Patients with cortical injuries
(such as ALS and stroke) may affect the use of BCI systems,
and the ERD pattern of paralyzed patients duringmotor imag-
ination is similar to that of non-disabled people [37]. At the
same time, some studies have shown that ERD in the motor
rhythm of brain electrical signals plays an important role in
the motor recovery of stroke patients [38], and stroke patients
can reach their maximum exercise level through training [39].
Therefore, in the future, this FMI decoding model can be
applied to patients to help them restore upper limb motor
functions.

In the context of using the unimanual motor imagery
paradigm, research has indicated that patients with gradually
increasing ERD in the lesioned hemisphere, as compared
to the healthy hemisphere, exhibit greater improvements in
motor function. Furthermore, there exists a stronger corre-
lation between the improvement in motor function and the
ERD activity in the lesioned hemisphere [38]. Consequently,
it is advisable to prioritize the training of motor imagery
capabilities in the lesioned hemisphere, in order to facilitate
maximal recovery of motor function in patients.

Currently, there are still some limitations in the research
on the decoding of imagined fine motor movements of the
unilateral upper limb. Due to various factors such as psy-
chological or physiological, there is substantial variability in
the electroencephalographic signals of each individual [40],
and individual differences become even more pronounced in
task-related states [41]. Consequently, it is possible that some
participants may exhibit poorer performance on specific clas-
sification tasks. Although some methods can compensate for
this inter-subject variation to some extent, it still needs a more
robust understanding of the changes in the distribution of
EEG signal characteristics across subjects and sessions [42].
This study primarily focused on the investigation of decoding
models tailored for individual participants, and the robustness
needs improvement.

In the selection of experimental data for this study,
20 healthy individuals were utilized as subjects, and no
FMI-EEG data from stroke patients were collected. In sub-
sequent research, it is imperative to collect EEG data
from actual stroke patients to validate the genuine appli-
cability of the system. It is important to note that stroke
patients differ from healthy individuals. Most patients strug-
gle with prolonged attention span and must consider potential
safety hazards when exposed to external stimuli. Therefore,
when collecting FMI-EEG data from stroke patients, cer-
tain modifications to the paradigm workflow are necessary.
Additionally, constant attention to the patient’s state during
the experimental process is crucial to prevent unexpected
occurrences.
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Moreover, concerning model training, considering the uti-
lization of transfer learning to enhance the robustness of the
networkmodel is contemplated. This approach aims to dimin-
ish the training time for new participants while mitigating
the impact of poor performance on specific classification
tasks arising from individual differences among participants.
Furthermore, the utilization of transfer learning is aimed
at enabling the classification model to leverage the knowl-
edge acquired from data obtained from healthy individuals
to address the FMI-EEG classification challenges in real
patients. In the aspect of data acquisition, this study opted
for EEG as the primary source of raw signals. Subsequent
research endeavors will contemplate incorporating additional
signals from kinematics or neuroimaging techniques to sup-
plement the analysis.

VI. CONCLUSION
Classic motor imagery, which makes distinctions between
different limbs, can no longer meet hemiplegic patients’
upper limb rehabilitation needs. Therefore, this study
designed three paradigms of FMI movement (elbow, shoul-
der, and hand) for unilateral upper limbs. Moreover,
20 healthy subjects were recruited and theNeuracle’s wireless
amplifier was used to collect EEG signals and to study the
EEG decoding of FMI.

The attention mechanism for the frequency band and the
deep learning neural network were used for feature extrac-
tion, and the performance in the triple classification task
reached an average of 69.2%. The ablation experiments
demonstrate the necessity of each module. These results
demonstrate the feasibility of the multi-band attention mech-
anism for FMI-EEG data decoding and the potential of this
FMI paradigm for exoskeleton control, providing a new train-
ing method for upper limb rehabilitation.
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