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ABSTRACT Osteosarcoma is the most normal kind of cancer that arises in bones, which appears on the
surface to resemble earlier types of bone cells that assist in forging new bone tissues, but the tissue in
osteosarcoma is weaker and softer than normal bone tissue. The usage of automated techniques for the
detection of osteosarcoma has the potential to mitigate the obligations and burdens confronted by pathologists
owing to its abundant quantity of cases. Artificial intelligence (AI) has an emerging progress in diagnostic
pathology. In recent years, numerous studies using deep learning (DL) techniques to histopathological
images (HI) have been published. While several studies claim higher accuracy, they might lack generalization
and fall into the pitfall of overfitting owing to the wide range of HI. The study objective is to enhance the
diagnosis and detection of osteosarcoma by employing computer-assisted detection (CAD) and diagnoses
(CADx). Technique like convolutional neural networks (CNN) make better prognoses for patient conditions
and considerably reduce the surgeon’s workload. CNN needs to be trained on the massive quantity of data to
accomplish a remarkable performance. Therefore, the study presents a novel Group Teaching Optimization
Algorithm with Deep Learning-Driven Osteosarcoma Detection on Histopathological Images (GTOADL-
ODHI) technique. The purpose of the GTOADL-ODHI technique is to examine the HIs for the detection
and classification of osteosarcoma. To accomplish this, the GTOADL-ODHI algorithm applies the Gaussian
filtering (GF) method for image pre-processed to become rid of the noise. Besides, the capsule network
(CapsNet) model is utilized for the extractor of the feature vector. Furthermore, the hyperparameter selection
of the CapsNet approach takes place using the GTOA. Finally, the self-attention bidirectional long short-
term memory (SA-BiLSTM) model can be employed for osteosarcoma recognition and classification. The
widespread experimental analysis of the GTOADL-ODHI method is tested on the benchmark datasets. The
simulation validation reported the optimum solution of the GTOADL-ODHI algorithm related to existing
systems concerning distinct aspects.

INDEX TERMS Bone cancer detection, CAD, histopathological image, deep learning, hyperparameter

selection.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Osteosarcoma is a mahgnant tumour that arises from bone

approving it for publication was Vishal Srivastava. and rapidly develops to form bone cancer [1]. It is the most
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common type of orthopaedic disease. In general, osteosar-
coma easily occurs at the upper end of the humerus, and tibia
and, the low end of the femur, especially near the knee joint.
Osteosarcoma tends to occur in teenagers and young people,
and its symptoms include soreness, minor local bone pain,
and fever at the tumour spot [2], [3]. Meanwhile, numer-
ous cancers do not consume the usual image features, it is
complex to define the mass nature by trusting only image
analyses, and it is very difficult to define whether a patient is
suffering from bone cancer or not. Osteosarcoma has numer-
ous subtypes with dissimilar features of pathological [4].
Therefore, all specialists in osteosarcoma analysis consider
the pathological analysis.

Digital pathology pictures are attained by scanning pathol-
ogy images. The data dimensions of the image are huge, and
one histopathological unit holds many numbers of cells [5].
The difficult pathological osteosarcoma features need very
professional as well as experienced pathologists. The quan-
tity of experienced pathologists is very limited and every
professional processes numerous slices daily [6]. It is very
significant to improve a proper decision diagnosis method
for histopathological images (HIs) to help pathologists ana-
lyze osteosarcoma and improve the issues that occur in
hospitals [7]. With the improvement and spread of artificial
intelligence (AI) techniques [8], neural networks play a sig-
nificant part in medical field analysis with their great feature
extractor capability like MRI segmentation of osteosarcoma,
auxiliary staging of lung cancer, and others [9]. Machine
learning (ML) techniques are the present advanced tech-
niques for image classification [10]. As well as Deep learning
(DL) architectures like Vision Transformers (ViTs) and Con-
volutional Neural Networks (CNNs) have attained exciting
outcomes when compared to human performance in numer-
ous tasks. CNNs are normally employed for automatic data
removal from image data [11]. Numerous CNN frameworks
are projected that manage such issues in unique methods and
are employed affording to the necessity [12].

This study presents an innovative Group Teaching Opti-
mizer Algorithm with DL-driven osteosarcoma Detection on
Histopathological Images (GTOADL-ODHI) technique. The
purpose of the GTOADL-ODHI technique is to examine the
HIs for the recognition and classification of osteosarcoma.
Initially, the GTOADL-ODHI technique applies the Gaussian
filtering (GF) method for noise removal process. Besides, the
capsule network (CapsNet) model is utilized for the extractor
of the feature vector. Furthermore, the hyperparameter selec-
tion of the CapsNet approach takes place using the GTOA.
Finally, the self-attention bidirectional long short-term mem-
ory (SA-BiLSTM) model can be employed for osteosarcoma
recognition and classification. The simulation study of the
GTOADL-ODHI technique is the tested on the benchmark
datasets. The key contributions are summarized as follows.

e Improves a holistic technique for osteosarcoma recog-
nition by merging feature extraction utilizing CapsNet,
enhanced hyperparameter range with GTOA, and
identification utilizing the SA-BiLSTM method. This
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complete pipeline develops the general accuracy and
reliability of osteosarcoma recognition on histopatho-
logical imageries.

e Apply CapsNet as the feature vector extraction.
CapsNet is recognized for its capability to take hier-
archical relations and spatial hierarchies in difficult
structures, creating it appropriate for removing features
from histopathological images.

e Use GTOA as an advanced optimizer model. GTOA
is exactly intended to improve the hyperparameter
selection procedure for the CapsNet technique that is
employed in osteosarcoma recognition. The usage of
GTOA for CapsNet hyperparameter tuning procedure
validates the innovation of the work.

e Present the SA-BiLSTM method for osteosarcoma
detection and identification. SA-BiLSTM is a new
structure that combines the profits of self-attention
devices and BiLSTM for enhanced sequential data
study, paying for more precise classification outcomes.

Il. LITERATURE WORKS

In [13], a structure that removes features depending on
CNN is presented. Foremost, data augmentation is utilized in
order to spread the dataset size. Then, the technique chiefly
measured six pre-trained transfer learning (TL) techniques
and adapted the techniques to remove features. Next, the
technique inspected feature selection (FS) such as Recur-
sive Feature Elimination, Principal Component Analysis,
and Genetic Algorithm, and Baruto found PCA picks an
optimum set of features. Lastly, the research sends the nom-
inated features into a finetuned MLP termed Grid Search
MLP (GsMLP) and uses federated learning (FL) mod-
els. Badashah et al. [14] proposed an effectual recognition
technique utilizing the developed Fractional Harris Hawks
Optimizer-based GAN (FHHO-GAN) technique. The clas-
sification of viable tumor, non-tumour, and necrotic cancer
has been implemented by GAN utilizing the HI slides. GAN
has been employed to execute the osteosarcoma diagnoses.
Bansal et al. [15] projected an automatic diagnosis method
namely Integrated Features-FS Model for Classification
(IF-FSM-C) technique.

This technique merged the features extraction employ-
ing traditional handcrafted (HC) feature extractor models
and DL techniques such as EfficientNet-BO and Xception.
Then, FS is implemented. Here, the Arithmetic Optimizer
Algorithm (AOA) also recognized as BAOA-V and BAOA-S
was developed to execute FS, and is assumed to be a classifier
that categorizes the WSIs.

Prabakaran and Mary Praveena [16] developed a
new hyperparameter-tuned DL technique. The Harmonic
Mean-based Otsu Thresholding (HMOTH) and Median
Filtering (MEF) are utilized for pre-processing and seg-
ment process, which is later removed by employing the
Self Attention Mechanism-based MobileNet (SAMMNet)
method. An adaptive Inertia Weight and Vander Corput
sequence comprised Reptile Search Optimizer Algorithm
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FIGURE 1. Overall flow of GTOADL-ODHI method.

(VARSOA) can be utilized to pick the further related features.
Lastly, a Hyperparameter-Tuned Deep ENN (HTDENN) has
been used. Ahmed et al. [17] offer a compact CNN archi-
tecture. This technique presents an oversampling method.
During this procedure, a hierarchical CNN technique has
been designed, but the previous method is non-regularized
owing to its dense structure and the latter one has been
normalized, specially intended for minor HIs. Furthermore,
the normalized technique is combined with CNN’s basic
structure to decrease over-fitting. Shen et al. [ 18] examine an
osteosarcoma-assisted segmentation technique depending on
the guided aggregated bilateral network (OSGABN) model,
which is a great accuracy method with a lightweight semantic
branch that captures rich semantic framework and a detailed
branch that captures lowest-level data.

Asito et al. [19] present to divide the images in win-
dows and separately categorize them by employing a CNN.
Approaches for pre-processed like window exclusion and
labelling have been projected. Dual CNNs have been equated
in the developed method. The primary one is trained from
scratch, but the 2nd one is a pre-trained CNN (VGG16). The
CNNs are equated to 4 ML techniques namely DT, MLP, and
RF with FS. In [20], a hybrid structure is presented. After pre-
processing, five pre-trained CNN approaches were proficient
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with manifold parameter settings to remove perceptive fea-
tures through TL. For FS, a decision tree-based RFE has
been intended. At this point, a DT has been employed as an
estimation to pick the dissimilar features. Lastly, an improved
MLP classifier has been used to categorize into two and
multi-class kinds of osteosarcoma under the 5-fold CV for
estimation.

Priyadharshini et al. [21] presents an innovative hybrid
Extreme Learning Machine (ELM) and Teaching—Learning-
Based Optimizer (TLBO) approach as a versatile method
for identifying melanoma. ELM is a single-hidden layer
feed-forward neural network that can be proficient rapidly
and precisely, whereas TLBO is an optimizer algorithm
employed to modify the network’s parameters for enhanced
performance. Eysa [22] projects an intelligent technique for
analyzing colorectal cancer. The developed model employs
the group teaching optimizer model for feature selection to
pick the vital image features for plant disease. This feature
employs to absorb the multi-layer artificial neural network
(ANN) to categorize images into dual classes namely normal
and malignant. Lal et al. [23] project a NucleiSegNet - a
robust DL network structure for the nuclei segmentation
of H&E-stained liver cancer histopathology images. Our
developed architecture contains 3 blocks such as a robust
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bottleneck block, an attention decoder block and a residual
block. Ahmad et al. [24] presents a new spatial-channel
attention-based altered UNet architecture with ResNet blocks
in encoder layers. The UNet baseline preserves rough and fine
features, thus verifying the solution to the tissue variability.

lll. THE PROPOSED MODEL

In this study, a novel GTOADL-ODHI method is estab-
lished. The purpose of the GTOADL-ODHI technique is
to examine the HIs for the recognition and classification
of osteosarcoma. To accomplish this, the GTOADL-ODHI
technique contains GF-based preprocessing, CapsNet-based
feature extractor, GTOA-based hyperparameter tuning, and
SA-BiLSTM-based classification. Fig. 1 shows the workflow
of the GTOADL-ODHI technique.

A. GF BASED PREPROCESSING

At the primary level, the GTOADL-ODHI technique applies
the GF technique for image preprocessing to remove the
noise. GF is an extensively deployed image preprocessing
approach that comprises convolving an image with Gaussian
function to blur or smooth the image, decreasing noise and
increasing essential features [25]. The filter allocates superior
weights to pixels near the center; slowly reducing as distance
upsurges, reflecting the bell-shaped Gaussian distribution.
These performances in a weight-averaging outcome that effi-
ciently reduces higher-frequency noise while maintaining the
entire design and edges of images. GF determines appli-
cations in several fields comprising noise reduction, image
smoothing, and feature extractor, in performance a vital play
in enhancing image quality and enabling subsequent CV
tasks.

B. FEATURE EXTRACTOR

For the feature extractor process, the CapsNet model can
be used for the extraction of the feature vectors. CapsNet
has been developed the capsule to mitigate the drawbacks
of CNNs [26]. A pooling layer of CNN loses several key
features while resizing and extracting the features. Further-
more, a CNN could not learn the relation among the features
extracted due to the lack of function able to obtain the essen-
tial data. Like the pooling layer in CNN, CapsNet makes use
of the squash function. This function doesn’t lose any data
because it is a non-linear function that accepts input in the
form of a vector and resizes the data in the unit vector as
mathematically given below:

ﬁj|i = Wi (1)

In Eq. (1), the prediction vector produced by i capsules
that are passed to the j™ capsule is represented as i and
evaluated by multiplying the W;; weight matrix with the ui
output of the i prior capsule layer.

Sj = chji{j\i (2)
i
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In CapsNet, a typical CNN neuron is replaced by the
capsule, and the input and output units are transformed into
vectors. The capsule vector length signifies the probability
that the entity exists in an input. Similar to the activation
function of CNN, the “‘squashing” function makes sure that
the vector length is between zero and one as follows:

2
[~ s
Vj:—2
L4 {Is11= {111

In Eq. (3), vj and s; are the output and input vectors of i
capsules.

3

exp(bjj)
Cf = 5 e
> exp(by)
In Eq. (2), the coupling coefficient c¢;; is represented as
the dynamic routing mechanism. The aim is to enable the
input capsule to select its track for communication to the
following capsule layers. c;; refers to the softmax function
over b;;, representing the prior log probability between the i
and j capsules. CapsNet exploits the bjj parameter to define
the relations between the i’ and j”* capsules in the prior
layers. During the initial iteration, b;; is initialized to 0 and
the value of coupling co-efficient c;; is similar to each capsule
within the layer. v; and #i;; values are upgraded by employing
Egs. (3) & (1), correspondingly. The b; a parameter was
upgraded by the # and v; dot products in succeeding iteration:

bij = bij + v 5)

“

Once the dot products of i;; and v; are negative, then the

relationship between i and j* capsules are weakened. Once
the dot products of &1;; and v; produce a positive outcome, then
bjj has a bigger value. A bigger value for b;; will lead to the
greatest value for ¢y, resulting in the greatest values for s; and
vj, strengthening the relationship among i and j capsules.

C. HYPERPARAMETER TUNING USING GTOA

At this stage, the hyperparameter selection of the CapsNet
technique takes place using GTOA. The GTOA is an effective
and novel metaheuristic optimization technique whose main
idea originates from the group teaching model [27]. The
GTOA consists of the teacher stage, student stage, teacher
allocation stage, and ability grouping stage. The Initialization
and four stages of GTOA are discussed below.

1) INITIALIZATION

The population can be initialized by the N individu-
als, representing the N students. The initial individual is
X;:(xit’l, ... ,xf,j, e ,;i)D), where D symbolizes the number
of optimizer parameters; the count of generations with pri-
mary value r= 0 is denoted by ¢. The mathematical formula

can be given as follows.
X' =x texV —xHi=1,...,N (6)

Here, the i student at #™ generation is represented as X/;
the lower and upper boundaries of the population are X~ and
XY the uniform distribution random vector is ej € [0, 11°.
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2) TEACHER ALLOCATION PHASE

“Teacher’ is designated as the student with the best calcula-
tion score after the initialization stage is accomplished. This
determines the fitness of each student.

thirst + Xstecond + Xtthird )

X;irst lff(Xflirst) Sf( 3
X}irst + X;econd + Xlthird

3

T =

otherwise
@)

where the teacher chosen from the population is represented
as T'; the 3 students with the 1st, 2nd, and 3rd scores in the
population are X, ., X{, 4 and X}, ;. correspondingly.

3) ABILITY GROUPING PHASE

The group with low scores and the outstanding group with
high scores are the two groups of students according to
their scores. In the minimization problem, the common
group has a higher objective value than the outstanding

group.

4) TEACHER PHASE

With the knowledge base and higher test scores, the teacher
attempts to enhance the scoring capability of each student
from the classroom, thus increasing the test score. The teacher
teaches common and outstanding students in different ways.
Using Eq. (8), the student in the outstanding group updates
the position, and using Eq. (9), the student in the common
group updates the position.

Kieweheri = X{ +ax (T"=F x (bx M' + ¢ x X)) (8)
1
Xttechher,i = Xit +2xdx (Tt - Xi[) ©

where the i students who have passed the teacher stage
at ¢ generation are represented as Xfe‘gclher’i; Xl.’ repre-
sents the i student at " generation; shows the average
location of the student in the class is denoted by M’ =
zlv >N X!, M"; F signifies the teaching factor arbitrarily
selected from one or two; a, b, ¢, and d are the arbitrary
integers from zero and one and b + ¢ = 1. After the teacher
phase, the student updates the position using the following
equation:

t+1 o (141 t
t+1 _ Xteacher,i lf (teacher,i) Sf (Xl) (10)
teacher,i — t .
X; otherwise

5) STUDENT PHASE

In this phase, student communicates with one another to fur-
ther enhance the overall scoring capability. Note that common
and outstanding groups only interact within their correspond-
ing groups using the subsequent expression:

t+1
student ,i
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Xttechher,i +tex (Xtte-chher,i - Xtte—ggher,j)

_ +8 X (thechher,i _Xit) lﬁf (Xlt:t;clher,i) Sf (Xttezgher,j)
Xtte—gclher,i —exX (Xtte_'a_cl‘her,i - Xtte-gclher,j)
+g x (X;;Clher,i - X/ ) otherwise

Y

In Eq. (11), e and g are the arbitrary real numbers in
zero and one. The i and j™ student who has passed the
teacher stage at 1" generation is represented as Xtte-;clher ; and
Xt’:gclher, iU # 0. After, the students update the position based

on the following equation:

. t+1 1+1
lff(Xteacher,i) Sf(Xstudent,i)

12
otherwise (12)

t+1
XT+1 _ Xteacher,i
i - Xt+l
student i

The GTOA system produces a fitness function (FF) to
make great classifier outcomes. It defines a positive integer
to imply the best solution of candidate results. Now, the
reduction of the classifier error rate is assumed as FF.

fitness (x;) = Classifier Error Rate (x;)
No.of misclassified instances

%100  (13)

Total no.of instances

D. SA-BILSTM-BASED CLASSIFICATION

Eventually, the SA-BiLSTM model can be employed for
osteosarcoma detection and classification. Recurrent Neural
Network (RNN) is most commonly used to predict time
sequence datasets due to the capability to learn relationships
between information from prior and present moments [28].
However, RNNs face challenges in capturing the relationship
as the prediction time horizon increases, resulting in a subse-
quent decline in forecast accuracy and the problem of gradient
disappearance.

Hochreiter and Schmidhuber in 1997, established the
LSTM model to resolve these problems. LSTM successfully
lessens the vanishing gradient problems by integrating the
cellular state for retaining long-term memory along with the
latent state of RNN. The LSTM model includes three gates:
forget, input, and output gates. In addition, the computation
equation governing the LSTM block is used for effective
computation.

i =0 Wi [h-1.X]+ b)) (14)
Fr =0 Wy - [[hi—1, Xi1 + by) (15)
Or = o (W, - [[hi—1, Xi1+ bo) (16)
Ci = tanh(We - [[hi—1, X¢] + be) (17)
C, = FixCi_1 + 1, xC; (18)
hy = Oy - tanh (Cy) (19)

From the equations, o indicates the sigmoid function.
I; indicates the input gate, F; shows the forget gate, Ot
represents the output gate, C, shows the cell layer at ¢
time, W;, Wy, W,,, W,, stands for the corresponding weight
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Attention Layer Output Layer

Input Layer

Bidirectional LSTM

FIGURE 2. Framework of BiLSTM technique.

matrix, b;, by, b,, b, symbolize the corresponding bias terms.
It collects only the knowledge regarding the previous input
dataset while LSTM addresses the problem of long-term
dependency. The existing state might be tied to prior or
present data for the long-time sequence problems. At the
same time, BiLSTM includes two LSTM models function-
ing in opposing directions that extract the features of the
input dataset. The data transmission in the BiLSTM is
similar to the LSTM. The last output can be covered by
the LSTM output in both directions. The data extracted
by the CNN feature is fed into the Bi-LSTM approach,
and the dual-layer prediction models forecast the result.
SA-BiLSTM model deployed self-attention to improve its
ability to correctly capture the connection between pre-and-
post-water-temperature data. Fig. 2 illustrates the infras-
tructure of BiLSTM. Employing a self-attention model,
this method develops accomplished at identifying long-term
dependency from the data series before and after a certain
point. Accordingly, this method obtains the capability to
focus on essential data points that mostly affect the predictive
method, allocating them superior weights but downplaying
the significance of lesser vital data by allocating them lesser
weight. It is formulated as:

0 =X, W< (20)
K =X, wk (21)
v=Xx-w" (22)

In the training stage, the parameters W2, WX, and WV are
learned, and the softmax function can be executed to obtain
the normalization attention-weighted matrix «. The o matrix
has been normalized column-by-column utilizing a certain
normalized function can be computed as:

o = sofrmay (QKT) (23)
Atten = Attention (Q, K, V) = aV 24)

Eventually, it can utilize the attention weights « to make
a weighted sum and H} on every resultant vector of the
Bi-LSTM layer with the next formula:

m
HE = ayV; (25)
j=1
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TABLE 1. Details on database.

Class Labels No. of Images
Non-Tumor 536
Non-Viable Tumor 263
Viable-Tumor 345

Total Images 1144

Tralning Phase (80%) - Confusion Matrix

Testing Phase (20%) - Confusion Matrix

Non-Tumer Non-Tumor

Non-Viable Tumor Non-Viable Tumor

Actual
Actual

Viable-Tumor Viable-Tumar

Non-Tumor
Non-Viable Tumor
Non-Tumor
Non-Viable Tumor
Viable-Tumor

Predicted Predicted

(b)
Testing Phase (30%) - Confusion Matrix

(a)
Training Phase (70%) - Confusion Matrix

Non-Tumer Non-Tumor

Non-Viable Tumor Non-Viable Tumor

Actual
Actual

Viable-Tumor Viable-Tumor

235

1
0.12% 29.38%

5
£
g
3
S
£
5

Non-Tumor
Non-Viable Tumor
Non-Tumer
Non-Viable Tumor
Viable-Tumor

Predicted Predicted

(c) (d)

FIGURE 3. Confusion matrices of (a-b) 80:20 of TRPH/TSPH and
(c-d) 70:30 of TRPH/TSPH.

TABLE 2. Classifier result of GTOADL-ODHI technique under 80:20 of
TRPH/TSPH.

Classes | Accu, | Prec, | Reca, | Fscore | Gumeasure
TRPH (80%)
Non-Tumor 99.34 99.31 99.31 99.31 99.31
Non-Viable Tumor 98.03 97.52 93.81 95.63 95.65
Viable-Tumor 98.03 95.37 98.17 96.75 96.76
Average 98.47 97.40 97.09 97.23 97.24
TSPH (20%)
Non-Tumor 100.00 100.00 | 100.00 | 100.00 | 100.00
Non-Viable Tumor 98.69 98.08 | 96.23 97.14 | 97.15
Viable-Tumor 98.69 97.26 98.61 97.93 97.93
Average 99.13 98.45 98.28 98.36 98.36

m

za,j =1lie{l,2,...,m (26)

Jj=1

In which, «;; is an attention vector at the i location,
signifying the attention received at thej” position.

IV. RESULT ANALYSIS

In this section, the stimulation analysis of the GTOADL-
ODHI technique is tested utilizing the dataset including
1144 samples with three class labels as signified in Table 1.
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FIGURE 4. Average of GTOADL-ODHI technique on 80:20 of TRPH/TSPH.

Training and Validation Accuracy (80:20)

—— Training
—— Validation

Accuracy

0.95

0.94

0.93

Epochs

FIGURE 5. Accuy curve of GTOADL-ODHI technique under 80:20 of
TRPH/TSPH.

This study utilized the Osteosarcoma Tumor Assessment
dataset, available at https://wiki.cancerimagingarchive.net/
plugins/ servlet/mobile?contentld=52756935#content/view/
52756935.

Fig. 3 validates the confusion matrices offered by
the GTOADL-ODHI technique at 80:20 and 70:30 of
TRPH/TSPH. The outcomes specify the effective recognition
and detection of all three class labels properly.

In Table 2 and Fig. 4, the overall classification perfor-
mance of the GTOADL-ODHI algorithm can be portrayed.
The outcomes infer that the GTOADL-ODHI method obtains
effective identification of classes.

With 80% of TRPH, the GTOADL-ODHI technique offers
an average accuy of 98.47%, prec, of 97.40%, reca; of
97.09%, Fcore of 97.23%, and Gpeqsure of 97.24%. Addi-
tionally, with 20% of TSPH, the GTOADL-ODHI model
provides an average accuy, of 99.13%, prec,, of 98.45%, reca;
of 98.28%, Fscore of 98.36%, and Geqsure Of 98.36%.

The accuy curves for training (TR) and validation (VL)
displayed in Fig. 5 for the GTOADL-ODHI method at 80:20
of TRPH/TSPH provide valuable insights into its perfor-
mance under numerous epochs. Particularly, there is a steady
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Training and Validation Loss (80:20)
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FIGURE 6. Loss curve of GTOADL-ODHI method under 80:20 of
TRPH/TSPH.
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FIGURE 7. PR curve of GTOADL-ODHI method under 80:20 of TRPH/TSPH.

development in both TR and TS accu, to growing epochs,
designating the model’s ability to learn and identify patterns
from both TR and TS data. The upward trend in TS accu,
underlines the model’s flexibility to the TR dataset and its
capability to create precise forecasts on unseen data, promi-
nence robust generalized abilities.

Fig. 6 offers a complete summary of the TR and TS
loss values for the GTOADL-ODHI method under 80:20 of
TRPH/TSPH through numerous epochs. The TR loss steadily
decreases as the model increases its weights to reduce clas-
sification faults on both datasets. The loss curves exemplify
the model’s position with the TR data, highlighting its abil-
ity to capture patterns in both datasets. Noteworthy is the
continuous alteration of parameters in the GTOADL-ODHI
approach, intended to diminish differences between forecasts
and actual TR labels.

About the PR curve offered in Fig. 7, the outcomes
approves that the GTOADL-ODHI technique at 80:20 of
TRPH/TSPH gradually reaches improved PR values across
each classes. These outcomes highpoint the model’s actual
capability for discerning between different classes, highlight-
ing its efficacy in precisely recognizing classes.

Besides, in Fig. 8, ROC curves created by the
GTOADL-ODHI technique under 80:20 of TRPH/TSPH,
represent its ability in distinguishing amid the classes shown.
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FIGURE 8. ROC curve of GTOADL-ODHI technique under 80:20 of
TRPH/TSPH.

TABLE 3. Classifier result of GTOADL-ODHI technique on 70:30 of
TRPH/TSPH.

Classes | Accu, | Prec, | Reca, | Fscore | Gmeasure
TRPH (70%)

Non-Tumor 97.50 97.33 97.33 97.33 | 97.33
Non-Viable Tumor 98.62 97.28 96.76 97.02 | 97.02
Viable-Tumor 98.38 97.11 97.51 97.31 97.31
Average 98.17 97.24 97.20 9722 | 97.22
TSPH (30%)

Non-Tumor 97.67 99.36 95.68 97.48 | 97.50
Non-Viable Tumor 99.42 97.50 100.00 | 98.73 | 98.74
Viable-Tumor 98.26 95.37 99.04 97.17 | 97.19
Average 98.45 97.41 98.24 97.80 | 97.81

These curves deliver valuable insight into how the trade-off
amongst TPR and FPR differs across dissimilar classification
epochs and thresholds. The result underlines the model’s
accurate classification performance at several class labels,
underscoring its efficiency in addressing various classifica-
tion tasks.

In Table 3 and Fig. 9, the complete classification conse-
quences of the GTOADL-ODHI approach can be represented.
The results infer that the GTOADL-ODHI model attains
effective identification of classes. With 70% of TRPH, the
GTOADL-ODHI approach provides an average accuy of
98.17%, prec;, of 97.24%, reca; of 97.20%, Fscore 0f 97.22%,
and Geqsure 0f 97.22%. Additionally, with 30% of TSPH, the
GTOADL-ODHI model offers an average accu, of 98.45%,
prec, of 97.41%, reca; of 98.24%, Fscore of 97.80%, and
Gneasure 0of 97.81%.

The accuy curves for TR and VL presented in Fig. 10 for
the GTOADL-ODHI method under 70:30 of TRPH/TSPH
offer valuable visions into its performance at numerous
epochs., there is a reliable development in both TR and TS
accuy to growing epochs, representing the model’s ability to
learn and identify designs from both TR and TS data. The
upward trend in TS accu, highlights the model’s flexibility
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FIGURE 9. Average of GTOADL-ODHI technique under 70:30 of
TRPH/TSPH.
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FIGURE 10. Accuy curve of GTOADL-ODHI technique under 70:30 of
TRPH/TSPH.
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FIGURE 11. Loss curve of GTOADL-ODHI technique under 70:30 of
TRPH/TSPH.

to the TR dataset and its capability to create precise forecasts
on hidden data, emphasizing robust generalized capabilities.

Fig. 11 delivers a complete outline of the TR and TS
loss values for the GTOADL-ODHI method on 70:30 of
TRPH/TSPH across numerous epochs. The TR loss steadily
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FIGURE 12. PR curve of GTOADL-ODHI technique under 70:30 of
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FIGURE 13. ROC curve of GTOADL-ODHI technique under 70:30 of
TRPH/TSPH.

decreases as the technique increases its weights to lessen clas-
sification faults on both datasets. The loss curves exemplify
the model’s arrangement with TR data, highlighting its ability
to capture patterns in both datasets. Noteworthy is the con-
tinuous modification of parameters in the GTOADL-ODHI
model, intended to diminish differences among forecasts and
real TR labels.

Regarding the PR curve offered in Fig. 12, the findings
uphold that the GTOADL-ODHI technique below 70:30 of
TRPH/TSPH reliably gets amended PR values across each
class. These outcomes highlight the model’s real ability to
distinguish amid different classes, emphasizing its worth in
accurately recognizing class labels.

Besides, in Fig. 13, ROC curves formed by the
GTOADL-ODHI technique at 70:30 of TRPH/TSPH, rep-
resenting its ability in distinguishing amongst classes. These
curves deliver valuable insight into how the trade-off between
TPR and FPR differs across dissimilar classification epochs
and thresholds. These outcomes underline the model’s accu-
rate classification performance below many class labels,
highlighting its efficacy in addressing different classification
tasks.

In Table 4 and Fig. 14, the comparison study of the
GTOADL-ODHI tactic with existing techniques was carried
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TABLE 4. Comparative outcome of GTOADL-ODHI method with other
existing algorithms [17].

Methods Accu, Prec, Recaq, Fscore
GTOADL-ODHI 99.13 98.45 98.28 98.36
Non-regularized CNN | 98.00 92.92 94.31 96.91
Regularized CNN 84.00 80.50 86.36 85.88
AlexNet Model 94.30 95.16 94.35 97.71
DBN Model 96.71 96.43 94.41 96.57
XG-Boost Model 97.08 90.47 96.01 97.05
Random Forest 90.03 90.39 91.19 93.84
Naive Bayes 96.36 93.20 90.54 92.48

Emm GTOADL-ODHI == DBN Model

I Non-regularized CNN [ XG-Boost Model

@ Regularized CNN @ Random Forest

100.] @ AlexNet Model 3 Naive Bayes

95

90_

Values (%)

85 |

80 1

75 -

Precision Recall F-Score

Accuracy

FIGURE 14. Comparative outcome of GTOADL-ODHI technique with other
existing methods.

out [17]. The outcomes imply that the regularized CNN
method reaches poor performance whereas the RF model
obtains slightly improved performance. At the same time,
AlexNet, DBN, XGBoost, and NB models accomplish
closer results. Although the non-regularized CNN model
reaches reasonable performance, the GTOADL-ODHI tech-
nique gains maximum performance with maximum accu, of
99.13%, prec, of 98.45%, reca; of 98.28%, and Fcore Of
98.36%.

Therefore, the GTOADL-ODHI method can be applied
for automated osteosarcoma detection and classification
processes.

V. CONCLUSION

In this study, a new GTOADL-ODHI algorithm is estab-
lished. The purpose of the GTOADL-ODHI technique is
to examine the HIs for the detection and classification
of osteosarcoma. To accomplish this, the GTOADL-ODHI
technique contains GF-based preprocessing, CapsNet-based
feature extractor, GTOA-based hyperparameter tuning, and
SA-BiLSTM-based classification process. At the primary
level, the GTOADL-ODHI technique applies the GF tech-
nique for image pre-processing to get rid of the sound.
Besides, the CapsNet model can be utilized for the extrac-
tion of the feature vectors. Additionally, the hyperparameter
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selection of the CapsNet approach takes place using the
GTOA. Finally, the SA-BiLSTM model can be employed for
osteosarcoma recognition and classification. The widespread
experimental analysis of the GTOADL-ODHI algorithm is
tested on the benchmark datasets. The simulation valida-
tion reported a better performance of the GTOADL-ODHI
approach compared to other methods with respect to various
aspects.
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