IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 21 January 2024, accepted 16 February 2024, date of publication 29 February 2024, date of current version 6 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3371890

==l ToPicAL REVIEW

Optimization Schedule Schemes for Charging
Electric Vehicles: Overview, Challenges,
and Solutions

HUSAM MAHDI AL-ALWASH ', EUGEN BORCOCI“', (Life Member, IEEE),
MARIUS-CONSTANTIN VOCHIN"'!, (Senior Member, IEEE),
INDIKA A. M. BALAPUWADUGE “2, (Senior Member, IEEE), AND FRANK Y. LI“2

! Department of Telecommunications, National University of Science and Technology Politehnica Bucharest (UNSTPB), 061071 Bucharest, Romania
2Department of Information and Communication Technology, University of Agder (UiA), 4898 Grimstad, Norway

Corresponding author: Marius-Constantin Vochin (marius.vochin@upb.ro)
This work was supported by European Economic Area (EEA) Norway (NO) Grants 2014-2021 “A Massive MIMO Enabled IoT Platform

with Networking Slicing for Beyond 5G IoV/V2X and Maritime Services (SOLID-B5G)” under Project 42/2021 and Project
RO-NO-2019-0499.

ABSTRACT Electric vehicles represent a global endeavor towards environmentally friendly transportation,
and such a green transition is promoted worldwide, being deployed in many regions nowadays. As the number
of electric vehicles has been increasing rapidly for more than a decade, how to meet the need for charging their
batteries appears as an important research topic, having received remarkable attention in both industry and
research community. Uncoordinated charging of many electric vehicles may lead to congestion at charging
stations and unbalanced load of the power supply grid. To address this problem, optimized charging schemes
which consider available energy resources and user requirements are required. This paper offers an overview
of state-of-the-art charging solutions covering two main categories of approaches, namely, centralized and
decentralized charging. In addition to addressing the potential challenges that arise in charging schedule
optimization, we cover various optimization techniques that have been proposed for optimizing charging
schedules. Furthermore, this paper analyzes the current solutions and identifies their limitations and gaps.
Open research issues are identified and several potential research topics are suggested.

INDEX TERMS Battery charging, charging scheduling, electric vehicles, optimization techniques, optimal
charging schemes.

I. INTRODUCTION ments in battery technology increased the drive range of

In recent years, Electric Vehicles (EVs) attracted intensive
attention from governments, citizens, researchers, policy-
makers, and industries [1]. This surge in attention is
attributed to various factors, including concerns about
climate change, advancements in battery technology, and
growing governmental incentives promoting the green shift
towards sustainable transportation. Moreover, many studies
on various aspects of EV technologies, e.g., on vehicle
design, manufacturing, operation, charging, and impact on
the environment, have been published [2]. Recent advance-
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EVs, by developing high-capacity lithium-ion batteries [3].
Also, the development of fast charging infrastructures have
reduced the charging time (the time it takes for an EV to
recover the energy consumed). These advancements make
EVs more environmentally sustainable and convenient.
Another major factor driving the promotion of EVs is
their potential to reduce greenhouse gas emissions and
dependency on fossil fuels. The transportation sector is a
significant contributor to global emissions, with several types
of vehicles. The integration of EVs with Renewable Energy
Systems (RESs) could reduce carbon dioxide emissions up
to 70%, compared to conventional vehicles [4]. For instance,
the Photovoltaic (PV) technology provides a sustainable and
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renewable energy source by converting sunlight directly into
electricity. PV can be integrated with EV charging systems to
harness solar energy for charging EVs. This integration not
only reduces reliance on traditional grid electricity generated
from fossil fuels but also improves our living environment by
reducing carbon dioxide emissions.

Along with the popularity of EVs, a societal challenge
has emerged, which is how to optimize charging schedules
in order to balance the demand of EV charging with grid
capacity [5]. First of all, it is essential to ensure the stability
of the grid in a high number of EVs condition [6]. From
another perspective, it is important to implement smart
charging schemes that oversee and regulate charging pro-
cesses. These schemes could be developed based on various
criteria, including time of day, energy prices, renewable
energy availability, charging network characteristics, real-
time specifications, and energy providers’ policies. The joint
consideration of these criteria escalates the complexity of
the problem and underscores the multicriteria nature of the
optimization algorithms [7].

Another challenge arises from the limited distance range
of EV autonomy when compared to traditional vehicles.
This limitation serves as motivation to enhance battery
technology to effectively increase the range of EVs [8] and
to develop faster-charging infrastructures. In the meantime,
it is necessary to deploy more widespread and accessible
Charging Stations (CSs) to increase the convenience of EVs
owners to facilitate their long-distance journeys. Another
challenge stems from user behavior, which can significantly
impact the load on the power grid. For instance, when
a certain number of users choose to charge their EVs,
particularly during peak hours, substantial demands on the
grid may be generated [9]. Additionally, distinct charging
patterns observed in home and public settings can influence
the design of efficient charging strategies and schemes.

In the realm of charging EVs, various survey papers on the
optimization of charging strategies have been published. For
instance, the study in [10] examined scheduling algorithms
for charging EVs in smart grids. A power and communication
system has been designed for bidirectional flows of electricity
and information. The authors categorized their work based
on unidirectional and bidirectional charging, centralized and
decentralized scheduling, and the consideration of mobility
aspects. Another study conducted in [11] compared different
approaches based on factors such as Real-Time Pricing
(RTP), Time of Use (TOU), Critical Peak Pricing (CPP),
and Peak Time Rebates (PTR) to offer a comprehensive
analysis of EV charging and scheduling under dynamic
pricing systems. The study also tackled challenges linked
to uncoordinated charging and highlighted the potential
benefits of coordinating charging activities through dynamic
pricing.

The study in [12] focused on coordinating charging and
discharging activities of EVs, considering the state where
the EVs are connected to the grid. The authors addressed
various challenges associated with charging/discharging
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control with respect to system performance, such as power
quality deterioration, overloading, and power loss. Their
work introduced a novel multistage hierarchical approach
for regulated charging and discharging, however, limited to
aggregated energy management. Moreover, a comprehensive
overview of EV technology, charging methods, EV standards,
and optimization techniques was presented in [13]. The study
explored the essential characteristics of EVs and Hybrid
Electric Vehicles (HEVs), followed by an examination of
various EV charging methods such as Battery Swap Stations
(BSS), Wireless Power Transfer (WPT), and Conductive
Charging (CC). The authors suggested several opportunities
for future research in the realm of EV technologies and their
integration with energy systems.

However, existing research primarily explored general EV
charging methods and focused on standard EV charging
scheduling under dynamic prices strategies, and energy
flow management. Complementarily, this article offers a
comprehensive overview related to EV charging schemes,
with a focus on user demands within existing charging
infrastructure. The paper highlights the impact on the
power grid and emphasized the need of optimal charging
schemes. This study discusses multiple aspects associated
with EV charging demands such as charging modes, charging
patterns (i.e., public, home, or mobile), centralized and
decentralized charging systems, and EV types. Furthermore,
this article presents a critical review on existing optimization
techniques for charging scheduling, insightfully analyzes
existing solutions, and identifies their limitations and gaps.
Moreover, we shed light on potential research directions
relevant to this topic, aiming at helping other researchers
and engineers to develop more efficient, sustainable, and
user-friendly EV charging schemes.

The remainder of this article is organized as follows:
Section II introduces EV types and Section III explains
charging modes. After elaborating charging patterns in
Section IV, Section V addresses the coordination of EV
charging. Then, Section VI examines several optimization
techniques for charging scheduling. Section VII summarizes
various Machine Leaning (ML) techniques and discusses
their applicability for charging optimization. Section VIII
is dedicated to scheme comparison, gap observation, and
research direction recommendation. Finally, Section IX
concludes this study.

Il. TYPES OF ELECTRIC VEHICLES

Four main types of EVs are categorized in the literature [14]:
Battery Electric Vehicles (BEVs), Plug-in Hybrid Electric
Vehicles (PHEVs), Hybrid Electric Vehicles (HEVs), and
Fuel Cell Electric Vehicles (FCEVs).

BEVs operate solely on battery power, resulting in zero
tailpipe emissions [15]. The batteries of BEVs can be
recharged by plugging the vehicle into external CSs, either
at home or through public CSs (refer to Section IV). BEVs
present a lower running cost and reduced environmental
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impact compared to the other types of EVs. However, they
have a very limited range and long charging time [4].

PHEVs have both a battery and an internal combustion
engine, providing additional power when the battery is
depleted. PHEVs can operate in the all-electric mode for
a certain distance before switching to the hybrid mode
when the battery’s charge diminishes or specific driving
conditions necessitate it. In the all-electric mode, a vehi-
cle relies only on electric power, whereas in the hybrid
mode, both the battery and internal combustion engine
collaborate to propel the vehicle. This adaptability allows
PHEVs to accommodate short journeys emission-free and
switch to hybrid mode for more extended trips or when
the battery’s capacity is exhausted [16], [17]. However, they
have higher running costs and carbon emissions compared to
BEVs.

HEVs are equipped with an internal combustion engine
and an electric motor. The electric motor is powered by
a battery, recharged through regenerative braking and the
internal combustion engine. Unlike PHEVs, HEVs are not
typically charged externally; instead, they are designed to
be self-sufficient in terms of power. HEVs provide enhanced
fuel efficiency and lower emissions compared with traditional
vehicles. However, they offer lower levels of electric drive
compared to BEVs and PHEVs [18].

Another type of EV is FCEVs that utilize hydrogen to
generate electricity to power the electric motor. The sole
emission from FCEVs is water vapor, making them zero-
emission vehicles. However, FCEVs are not yet widely
available and the infrastructure for producing, transporting,
and storing hydrogen is still in its early stage [19].

The types of EVs available on the market vary according to
the regions and the manufacturers [20]. These available types
of EVs offer a spectrum of benefits, such as reduced carbon
emissions and lower running costs, among others. However,
the decision on which type of EV to purchase hinges on
factors like driving habits, budget, and the accessibility of
charging infrastructure (refer to Table 1).

Ill. CHARGING MODES FOR EVs
There are four main modes of charging based on the Deltrix
Chargers classification [21]:

1) Charging mode 1: This mode is the slowest form of
charging for an EV. It involves using a standard home
plug to connect the EV to the power grid. Charging an
EV battery in mode 1 can take several hours or even
require an overnight. However, one advantage of this
gradual charging process is that it generates less heat and
imposes less stress on the EV battery [22].

2) Charging mode 2: This mode also uses a home plug
for charging EVs. It incorporates a specialized cable
equipped with built-in shock protection against risks
from both Alternative Current (AC) and Direct Current
(DC), enhancing the safety of the charging process.

3) Charging mode 3: It is the most popular charging method
among EV users. It can be implemented both at home
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TABLE 1. Different types of electric vehicles.

Driving Charging
Type | Budget Habits Station Examples Ref.
Short to
mﬁfff’m Home or | TeslaModel S, | [4],
BEV | High Commuyteq ublio O | Nissan Leaf, | [14],
utes, | p ; BMWi3 | [15]
occasional
longer trips
Short daily Toyota Prius
PHEV Modgrate commytes, Home or Chevrolet Volt, [14],
to high | occasional | public CSs . [16],
longer trips Ford Fusion [17]
ger trip Energy
Toyota Camry
Low to | Alldriving | No charging Hybrid, Honda
HEV moderate habits needed Accord L17],
Hybrid, Ford | [18]
Escape Hybrid
.. Hydrogen | Toyota Mirai,
FCEV | High Ang{,ﬁ;ng refueling | Honda Clarity, | [17],
stations Hyundai Nexo | [19]

and at public CSs. Like mode 2, it provides shock
prevention against both AC and DC currents. In mode
3, the EV user does not need to use a specific cable for
charging; instead, the necessary connecting cables are
provided at the stations.

4) Charging mode 4: Often referred to as fast charging
mode, it involves the use of CSs that convert AC power
to DC, allowing direct charging for EVs. Typically, fast
charging mode is notable for its efficiency; an average
EV battery takes about 30 minutes to an hour to be fully
charged. The charging rates supported in this mode vary,
ranging from 5 kW units up to 50 kW and 150 kW.
Future standards may even extend this range to 350 kW
and 400 kW. However, these higher charging rates
can generate significant heat, which may impact the
battery’s lifespan. Therefore, a special cooling system
is often required to manage this heat effectively.

However, the selection of an appropriate charging mode
depends on various factors, such as EV battery capacity, cur-
rent charging status, required driving range, user preferences,
and the availability of charging infrastructure.

IV. CHARGING PATTERNS
There are three primary charging patterns based on the type
of CS: home charging, public charging, and mobile charging.

A. HOME CHARGING

Home charging, also referred to as Electric Vehicle Supply
Equipment (EVSE), appears as the most convenient and
cost-effective method for EV owners. This approach enables
them to charge their vehicles overnight, taking the advantage
of typically lower electricity rates during that time [23].
Furthermore, home chargers can be installed in a garage or
outdoors, offering a reliable and secure charging solution.
Particularly, it is suitable for daily commuting and short
trips.
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B. PUBLIC CHARGING

Public charging constitutes an essential aspect of EV
infrastructure, particularly for owners planning long trips
or those lacking access to home charging [24]. Public
CSs are typically located in public areas such as parking
lots, shopping centers, or along major roads [25]. They
can provide either charging mode 3 or mode 4 (refer to
Section III), depending on the capabilities of a CS. Thus,
the utilization of public CSs can vary significantly based
on several factors, including location, day of the week,
time of day, and user requirements. For instance, CSs at
workplaces are often utilized throughout the work hours, e.g.,
from 9 am to 5 pm, as employees can plug in their EVs
when they arrive at work and let them charge throughout
the day. Shopping centers and commercial CSs typically
experience peak power consumption in the midday to early
evening hours, corresponding with the hours when people are
most likely to be shopping or running errands. Furthermore,
many CSs are deployed at highway rest stops or gas stations
and provide charging mode 4 for longer trips. These CSs
typically experience a distributed usage throughout the day
but may also experience peak consumption during weekends
or holidays when long-distance travel is more common.

C. MOBILE CHARGING

Mobile charging, also referred to as on-the-go charging,
emerges as a trend for EV transport, by offering a portable
charging solution for EV owners at remote locations where
the availability of home and public CSs are limited. These
mobile CSs can be mounted on a trailer or truck and are
suitable for public events, construction sites, and emergency
scenarios where home and public CSs are not available [26].
Note that this flexible charging pattern is typically not used
in traditional stations that are based on fuel oil.

V. EV CHARGING STRATEGIES
EV battery charging is typically performed through two
charging strategies: uncoordinated and coordinated.

A. UNCOORDINATED CHARGING

This strategy refers to a random charging behavior, where
EV owners can charge their vehicles at any type of CS and
at any time as they prefer. The problem with uncoordinated
charging is that it can lead to overloaded transformers,
power outages, and increased electricity costs. Moreover,
it can result in battery degradation and shortened battery
lifespan due to frequent charging and discharging. According
to [27], uncoordinated charging can introduce high variability
in electricity demand, posing a challenging task for grid
operators to balance supply and demand.

B. COORDINATED CHARGING

This type of charging involves planned and managed charging
schemes that are applicable to optimize and manage EV
charging operations, such as mitigating grid stress, enhancing
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FIGURE 1. The architecture of a centralized system for EV charging.

energy efficiency, and minimizing costs [28]. These schemes
also consider various factors in their management, e.g., grid
capacity, electricity demand, renewable energy availability,
and user preferences. Generally, coordinated schemes can be
implemented using two types of charging systems: central-
ized or decentralized charging. There are also hybrid charging
systems that combine both centralized and decentralized
approaches, e.g., those investigated in [29], [30], and [31].
However, discussing hybrid approaches is beyond the scope
of this article.

1) CENTRALIZED SCHEMES FOR COORDINATED CHARGING
Following centralized schemes, a central entity coordinates
the charging of EVs within a specific geographic area, such
as a neighborhood in a city [32]. The central entity in this
charging system, know as an aggregator, communicate with
both EV users and grid operators. It obtains and transmits
demands as well as performs system configuration and
coordinates other operations. To achieve this, the aggregator
first collects charging information from EV owners, such
as the identity (ID) number of an EV, the EV’s battery
capacity, the State of Charge (SOC), and the arrival time at
a CS. Then it executes an algorithm to optimize charging
schedules based on the collected data, by taking into account
the overall power demand and electricity prices in the market.
The aggregator submits these schemes to the grid operator
for approval. From the perspective of a business model, the
aggregator and the grid operator are regarded as independent
of each other but they are cooperating entities. The role of the
grid operator is crucial and the operator should ensure that
the adopted scheme aligns with the stability and efficiency
of the power grid, considering factors such as grid load,
peak demands, and the balance between supply and demand.
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FIGURE 2. The architecture of a decentralized system for EV charging.

To keep this balance, the grid operator may execute some
kind of admission control for new charging requests, based on
the current grid status. If a charging schedule scheme is not
acceptable, the grid operator will reply to the aggregator to
revise the scheme, or to wait until the grid resource conditions
allow to execute this scheme.

With such an approach, a negotiation procedure would
be involved and consequently, the complexity of the overall
handshake overhead will be significantly high. The charging
scheme (output data transmitted from the aggregator to EV
owners and/or CS operator) may include information such as
the amount of electricity to be supplied from CSs to EVs,
the assignment of the EV to a most appropriate CS, charging
mode preference, and charging patterns (e.g., home, public,
or mobile charging).

However, the specific features of the scheme and the
data involved may vary based on factors such as the
algorithm used, system configuration, and optimization
objectives. This variability arises because the nature of the EV
charging problem faces multiple criteria. Figure 1 presents
a simplified high-level architecture of a centralized charging
system, showing the primary functional units responsible for
implementing system management and control. Note that
Figure 1 does not illustrate the power flows or communication
links between EV users, CSs, and the aggregator. Several
optimized charging schemes that are applied in centralized
systems are available in [33], [34], [35], [36], [37], and [38].

2) DECENTRALIZED SCHEMES FOR COORDINATED
CHARGING

In the decentralized charging approach, an incentive-based
strategy is introduced where the charging schedules of EVs
are affected indirectly by electricity prices [39]. The EV
owners play an active role in making their charging decisions,
utilizing information provided by the aggregator, such as
current electricity prices and the availability of CSs in the
area managed by that aggregator. The primary objective of
adjusting electricity prices is to motivate EV users to charge
their vehicles during off-peak hours, thereby reducing the
load on the grid during periods of high demand. Similar
to a centralized approach, each aggregator collects user
information or, even predicts the charging demand of EVs
for the next period of time. This information is used to
find an optimal charging scheme. The aggregator cooperates
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with the grid operator to align the charging prices with the
conditions of the electricity market and the status of the power
grid. As a result of this pricing strategy, EV owners make
a charging schedule based on their personal preferences,
aiming to minimize the charging cost.

Figure 2 presents a simplified high-level architecture of
a decentralized charging system. For decentralized charg-
ing, multiple aggregators manage the charging of EVs
across a large region, where each one coordinates local
charging within a small geographic area. Each aggregator
communicates with the grid operator and EV owners. These
aggregators also communicate with each other to ensure
the stability and reliability of the power grid [40]. Several
optimized charging schemes that are applied in decentralized
systems are available in [41], [42], [43], [44], [45], [46],
and [47].

TABLE 2. Centralized versus decentralized charging: A comparison.

Decentralized
Lower, serves fewer

Centralized
High, serves many

System nature

Capacity vehicles at a time vehicles at a time
Flexibility Less, due. to fixed High, can adapt to user
locations patterns
Scalability Requlr.es significant Easily scalable with
expansion for growth demand
Risk of . . Lower, distributed
. Higher at peak times -
Congestion across many locations
Computational | High if the number of DlStl‘lbLl.ted
. . computational
Complexity EV is large .
complexity

Prone to failure

Failure Impact | problem affecting the

entire system
Significant
investment

Distributed nature offers
more resiliency

Lower investment
required

Infrastructure
Investment

3) CENTRALIZED VERSUS DECENTRALIZED CHARGING

As summarized in Table 2, both centralized and decentralized
charging systems discussed above have their advantages and
disadvantages. A centralized charging system may be applied
to large-scale or small-scale communities, particularly suit-
able for high-density urban areas or commercial hubs.
In a centralized system, the central aggregator comprises
many CSs and can handle a large number of vehicles
simultaneously. However, such a system faces a real-time
response problem, especially during peak hours. The time
needed to collect data from EVs and to perform computation
corresponding to the number of EVs is lengthy. Additionally,
a sole aggregator in the system represents a single point of
failure, raising security concerns. Furthermore, significant
investment in infrastructure is needed to build a large network
interconnected CSs, managed from a central aggregator. This
approach demands substantial financial input for hardware,
software, and network capabilities to handle the scale and
complexity of the system. Traditional centralized energy
systems face various challenges like scalability, grid capacity,
and inconvenience for EVs that are far away from a CS. These
constraints can limit the popularity of centralized charging in
meeting the growing demand for EV charging.

32805



IEEE Access

H. M. Al-Alwash et al.: Optimization Schedule Schemes for Charging Electric Vehicles

On the contrary, decentralized systems offer flexible
and scalable charging options as multiple aggregators are
distributed at various locations (e.g., home, work, and public
sites). Through multiple smaller aggregators, the demand for
electricity is spread out, potentially reducing the strain on
the power grid and range anxiety. However, decentralized
approaches are more complex compared with centralized
approaches. They require more geography information, such
as current number of EVs in the region of interest, electricity
prices, and the availability of CSs by a specific aggregator,
and such information needs to be continuously updated.
A decentralized system can handle fewer number of EVs
compared with a centralized system. For instance, a home CS
or a charger located at a public parking lot typically supports
one or few vehicles simultaneously. In general, decentralized
systems require lower infrastructure investment. The cost is
often distributed among different stakeholders based on their
demands, including homeowners, businesses, grid operators,
and local governments.

VI. CLASSICAL OPTIMIZATION TECHNIQUES FOR EV
CHARGING

In this section, we discuss and review classical optimization
techniques used to optimize charging schemes for EVs,
classified into three categories, namely, linear programming,
dynamic programming, and heuristic algorithms.

A. LINEAR PROGRAMMING

Linear Programming (LP) stands out as a widely employed
optimization technique. It formulates a problem model as
a linear set of equations and aims at optimization, where
both the objective function and constraints adhere to linearity.
This characteristic is algebraic and applies to both the
problem and the algorithm [48]. LP has been proved to be
effective in optimizing charging schedules that encompass
multiple EVs, CSs, and power grids. For example, the study
in [49] developed an LP model for EV charging/discharging
scheduling based on real-world datasets collected at the
parking lots of the University of Deusto, Spain. The objective
of that study was to decrease power consumption of parking
lots during peak hours using a peak-to-valley strategy.
EVs are charged during periods of low power demand
(valley filling) and discharged during periods of high-power
demand (peak shaving). The LP algorithm was validated
through MATLAB simulations, demonstrating the model’s
effectiveness in energy management and its potential for cost
savings, especially during peak power demand.

On the other hand, the emerging Vehicle-to-Grid (V2G)
technology has also attracted increasing attention [50]. The
V2G concept enables EVs to feed their redundant power back
into the grid (discharging) or other vehicles, instead of merely
drawing power from the grid (charging). This capability
of EVs provides a valuable source of distributed energy
storage [51]. If the V2G technology is involved in a charging
system, it would require additional coordination among EV
owners/users, aggregators, and grid operators to manage the
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bidirectional flow of energy. As mentioned earlier, the PVs
systems also provide RESs for EV charging. If PVs are
involved in an EV charging system along with V2G, it would
add another level of complexity in terms of scheduling
and energy management. The study in [52] developed a
model that integrated EVs with PV power and aimed to
increase the PV power self-consumption by using smart EV
charging strategies and the V2G technology. The model was
implemented in a microgrid placed in a neighborhood in
Utrecht, Netherlands, where the emulation involved 31 kW of
PV with solar energy, three households, and two EVs. Three
charging methods were evaluated to reveal their impact on
PV self-consumption and peak demand reduction, including
a real time control method, a real time control with V2G
method, and an LP method. The results indicated that the
LP method was more effective than the others, as it led
to increased self-consumption from 49% to 62%-87% and
reduced peak demand (ranging from 27% to 67%). These
methods contribute to grid stability by decreasing peak
demand and enhancing PV self-consumption, showing the
potential for more efficient utilization of renewable energy
in real-world microgrids. Their study also provides insight
into the effects of these charging strategies on EV battery
degradation.

Moreover, Mixed-Integer Linear Programming (MILP)
represents a type of LP model that extends the capabilities of
traditional LP by accommodating integer decision variables.
The study in [53] utilized MILP to formulate the scheduling
of EV charging and discharging. The charging system has
been integrated with other energy sources, such as PV gen-
erated power, V2@, and dynamic electricity prices. Through
simulations conducted based on the datasets collected in
Austin, TX, USA, a significant reduction in the energy cost
of EV charging from PV is demonstrated, in comparison
with immediate and average rate charging policies. The
findings of their study indicate that integrating various smart
applications for EV charging provides a sustainable and
cost-effective approach to manage the charging of an EV
fleet in workplaces or public places with PV installations.
Moreover, the incorporation of V2G technology offers
ancillary services, enhancing grid stability.

Furthermore, it is also feasible to apply LP to dynamic
systems under certain circumstances, by solving a series
of LP problems to optimize a system based on varying
parameters over time. For instance, the study in [54]
introduced a novel approach for EV charging optimization,
by integrating energy storage and considering the dynamics
of electricity prices. The authors of [54] employed a MILP
model along with a heuristic algorithm based on LP to
address the scheduling problem. The results demonstrate a
noteworthy enhancement in aggregator revenue, averaging
80.1% with the optimal charging scheme, and a further
increase of 7.8% when energy storage is utilized. Their
finding illustrates that optimized EV charging within existing
electricity market structures can yield commercial benefits
for aggregators.
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B. DYNAMIC PROGRAMMING

Dynamic Programming (DP) is a widely used optimization
technique in mathematics and computer science for solving
complex optimization problems. However, no standard
mathematical formulation of the DP problem exists. Instead,
DP involves a problem-solving method where the problem
is decomposed into smaller subproblems and solved recur-
sively [55]. DP leverages the fact that optimal solutions
to these subproblems contribute to efficiently resolving the
larger problem. It is worth noting that dynamic programs can
be equivalently formulated as linear programs. As a result,
LP can serve as an efficient alternative to the functional
equation approach in solving such problems, when it is
combined with DP, helps to characterize the polyhedral
structure of discrete optimization problems. Additionally,
DP ensures global optimality for a solution in general
nonlinear optimization problems with nonconvex constraints.
It is particularly well-suited for dynamic systems, such as
optimizing charging schedules involving multiple EVs, CSs,
and power grids, where the charging rate of each EV may vary
over time.

The study in [56] formulated the problem of online
charging scheduling as a finite-horizon DP problem, with
a continuous state space and action space. It involves esti-
mating statistical information about future arrivals of plug-in
EVs. The authors proposed to adopt a Model Predictive
Control (MPC) algorithm to address dynamic EV arrivals
and charging requirements. The approach avoids the high
complexity associated with solving a DP problem. Therein,
three distinct algorithms were employed to oversee the
charging process, namely, Sample Average Approximation
(SAA), heuristic online Average (AVG), and online Expected
Load Flattening (ELF). The evaluation was conducted
under varied traffic patterns to simulate real-life scenarios,
including light, moderate, and heavy load conditions. Their
findings indicate that the proposed ELF algorithm closely
approximates the optimal solution that is achieved by the
SAA algorithm. It adeptly manages EV charging schedules
and proves suitable for systems with fluctuating numbers of
EVs and charging demands, making it applicable in diverse
real-world scenarios.

Moreover, [57] proposed an optimal scheduling method
integrated with DP to minimize the costs of battery replace-
ment during the entire service life of Electric Bus Fleets
(EBFs). The developed method considered the differences
in workload and battery capacity degradation models for
calculating battery capacity loss and the number of battery
replacements. The results indicate that the proposed method
reduces battery replacement costs by 20% in comparison
with an uncoordinated scenario, showcasing its effectiveness
in optimizing EBF scheduling and its contribution to
overall cost-effectiveness. Their approach can be poten-
tially extended to large-scale urban transit systems, further
enhancing the sustainability and economic efficiency of EBF
operations.
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C. HEURISTIC ALGORITHMS

Heuristic optimization algorithms employ approximate meth-
ods to find solutions for complex problems, especially
when the problem is too large or complex. These algo-
rithms have been proven beneficial in addressing charging
scheduling problems. A few examples of heuristic algorithms
utilized for charging scheduling optimization, as explained
in [58], include Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), and Ant Colony Optimization (ACO). For
instance, the study in [59] proposed an optimal charging
scheduling scheme considering that EVs were parked at
home (static). The objective of their study was to minimize
charging costs and actual charging duration for EVs while
adhering to the constraints related to the status of a CS.
The results show the proposed method that is based on PSO
exhibits superior performance in minimizing charging costs
and duration compared with other methods such as Arrival
Time-based Priority (ATP) and State of Charge-based Priority
(SBP). The authors claim that PSO is favorable in cases when
a trade-off between charging duration and cost needs to be
considered.

The study in [60] utilized PSO for EV charging scheduling
at parking lots, incorporated with V2G. The authors consid-
ered factors such as EV battery lifetime, distribution network,
and local transformer loading. Their proposed method was
compared with a traditional charging scheme where an
aggregator provided EVs with full-capacity charging at the
maximum power rate. Their study incorporated real-world
data including the activities at a parking lot and electricity
prices. According to their results, EV charging management
and cost reduction in parking lots were effectively achieved
through the proposed method. That study demonstrates how
the V2G technology can be seamlessly integrated into parking
lots efficiently to enhance energy management.

Furthermore, the study in [61] developed a GA to introduce
an intelligent scheme for coordinating the charging of EVs.
The scheme considered electrical parameter constraints such
as thermal line limits, voltage limits, load on transformers,
and parking availability patterns. A real-life simulation was
conducted on a low-voltage residential distribution network
in Madrid, Spain, involving 100 individual EVs. Three
scenarios of EV penetration were considered: a low level
(5%), a medium level (20%), and a high level (50%).
The results indicate a flattening in the load profile, peak
load shaving, and prevention of the aging of power system
elements. This approach fits well in smart grid systems,
contributing to better management and lifespan extension of
power system components by optimizing the load profile.

The study in [62] introduced a Genetic Algorithm-based
Emergent Charging Scheduling (GECS) scheme to address
routing and scheduling optimization problems for EVs, when
there is a sudden demand for rapid charging in a high-density
area. The GA is incorporated with the scheduling policies of
Earliest Deadline First (EDF) and Nearest Job First (NJF)
to streamline the multiobjective optimization process. While
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EDF prioritizes the minimum recharging deadline time, NJF
focuses on the minimum recharging path from an EV to
a CS. The results therein reveal that the proposed scheme
minimizes the average distance and waiting time for emergent
EV charging. This approach is particularly suitable during
peak hours when the density of EVs is high and EVs need
to obtain enough energy to reach their destinations.

Moreover, [63] introduced a charging scheme based on
ACO to schedule EV charging within a CS. The study
considered power constraints such as maximum contracted
power and maximum power imbalance. The experimental
setup utilized a real-world benchmark configuration, emu-
lating a charging system with three lines, representing a
CS and 180 charging units (also referred to as charging
points), each line connected with 60 charging units. The
results demonstrate that ACO outperforms other methods,
including First Come First Serve (FCFS), Latest Starting
Time (LST), Earliest Due Time (EDT), and GA, in terms
of minimizing total charging delays for EVs. The approach
in [63] contributes to grid stability by efficiently managing
the charging load and avoiding peak hours, particularly
beneficial for optimizing charging schedules at CSs with
multiple lines and high EV traffic.

VII. APPLYING MACHINE LEARNING FOR EV CHARGING
OPTIMIZATION

The ML algorithms can analyze and interpret large datasets,
identify patterns, and make predictions or decisions based on
the patterns discovered. ML algorithms are not predetermined
but are discovered by a machine through its learning process
and based on its prior experiences. In the context of EV charg-
ing, ML algorithms may also be developed for the purpose
of optimizing charging schedules. Through training based on
historical charging data, ML algorithms can predict future
charging patterns, potentially improving the efficiency and
reliability of charging processes. Moreover, these techniques
facilitate intelligent decision-making, adapting to dynamic
grid conditions in accordance with user preferences. In this
section, we first revisit various categories of ML techniques
and explore their applicability to EV charging, then explain
the interpretability of ML algorithms as well as its importance
for designing optimal EV charging schemes.

A. A REVISIT OF ML TECHNIQUES AND THEIR
APPLICABILITY TO EV CHARGING

1) SUPERVISED LEARNING

Supervised Learning (SL) algorithms are firstly trained, using
labeled data. Particularly, they are effective in scenarios
when historical data are available. Various supervised
ML algorithms exist, including Support Vector Machines
(SVMs), Naive Bayes (NB), K-Nearest Neighbors (KNN),
Neural Network (NN), and Random Forests (RF). RF is
an ensemble method that relies on multiple decision trees.
According to [64], several studies have revealed that RF
can produce more stable and accurate results than SVMs
in load prediction, indicating its effectiveness in forecasting
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electrical load. In general, SL. algorithms can be applied to
EV charging, from learning of instances to predicting optimal
charging schedules.

2) UNSUPERVISED LEARNING

Unsupervised Learning (UL) algorithms make decisions
without requiring labeled data to train the model. UL algo-
rithms autonomously identify patterns and structures in unla-
belled data, without human supervision. These algorithms
group data based on similarities and/or differences, useful
in applications like customer segmentation. UL algorithms
also comes with drawbacks, such as algorithm’s complexity
and the potential for predicting faulty outputs when utilizing
unlabeled data.

UL algorithms are applicable to identifying suitable
EV charging schemes and these types of algorithms are
particularly useful in scenarios when the availability of
historical labeled data is scarce or unobtainable.

3) SEMI-SUPERVISED LEARNING

Semi-Supervised Learning (SSL) integrates the concepts
from both SL and UL, where data training undergoes a
division into two segments: smaller portion with labeled
data and larger portion with unlabeled data. This approach
harnesses the labeled data to enhance the deduction of
patterns in the unlabeled data, resulting in more precise
outputs. Despite the advantages, SSL algorithms have a
drawback. Namely, they may not produce consistent results
per iteration.

SSL offers various benefits for EV charging scheme
optimization, including forecasting energy demand, applying
dynamic pricing models to manage demand and grid load, and
predicting strategic station placement. SSL may also provide
personalized charging recommendations to EV owners, such
as suggesting the best time and location for charging based
on their typical routes and schedules.

4) REINFORCEMENT LEARNING
Reinforcement Learning (RL) involves learning from past
experiences and improves the performance through a
trial-and-error-correction approach. Unlike other learning
algorithms that rely on initial training data, RL explores
various options, aiming to refine itself with each iteration.
This approach provides a versatile framework for decision-
making, where the key components act as an agent and
an environment. The agent interacts with the environment,
triggering changes within it. These changes result from
the agent’s actions and external factors that are beyond
the agent’s control. The agent observes the state (s)
of the environment, often an incomplete view, and must
make decisions based on this information. The main objective
is to maximize cumulative rewards obtained from the
environment.

RL can be instrumental in implementing demand response
strategies. An RL algorithm can learn to adjust charging
rates or suggest charging times to EV owners based on
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grid conditions, promoting energy conservation during peak
hours. RL can also be adopted to develop algorithms that
schedule charging times for EVs in a way that minimizes grid
stress and/or maximizes cost efficiency. Such an algorithm
can dynamically adjust schedules based on current grid load
and electricity prices.

5) DEEP LEARNING

Deep Learning (DL) algorithms rely on the concept of NN,
which comprises interconnected nodes (neurons) that are
arranged into multiple layers. The input layer manages the
input data, hidden layers uncover patterns within the data,
and the output layer presents the results. The input data
traverses each layer, establishing a sequential learning path
for the model. Various types of DL networks exist, including
modular, recurrent, and convolutional neural network.

The study in [65] developed four DL algorithims to
forecast EVs charging demand: Gated Recurrent Units
(GRUs), Long-Short-Term Memory (LSTM), Recurrent
Neural Networks (RNNs), and Artificial Neural Networks
(ANNSs). The study tackled various problems linked to the
growing adoption of EVs and its potential ramifications
on distribution networks based on the datasets collected
from two public charging stations in Morocco. The results
indicate that the GRU model exhibits superior performance
in estimating EV power charging demand.

6) DEEP REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) combines RL and DL
taking their benefits to solve complex problems. While the
RL part defines the objective, the DRL component offers
problem-solving mechanisms. DRL algorithms are widely
adopted today in various domains, thanks to their ability
to handle high-dimensional input data and learn optimal
strategies through trial and error-correction.

DRL algorithms have also exhibited applicability in
EV charging optimization. For instance, the study in [66]
introduced an optimal charging scheme utilizing DRL for
Fast Charging Station (FCS) selection and route planning for
EVs in the smart grid. The approach considered constraints,
such as charging availability and electricity price fluctuations,
to minimize the overall EV charging overhead in terms of
both time and monetary costs. It also relies on the integration
of two technologies, namely, Software-Defined Networking
(SDN) and Vehicular Edge Computing (VEC). The outcomes
of the proposed DRL method showed a substantial reduction
in charging overhead compared with conventional charging.
It demonstrates the capability to manage charging demands
in a dynamic urban environment, devising charging policies
based on historical data to adapt to real-world conditions.

B. INTERPRETABILITY OF ML ALGORITHMS

1) A SUMMARY ON INTERPRETABILITY

The interpretability of ML algorithms is important, especially
when human decisions have to be taken based on the results
of a specific ML algorithm. Explainability is regarded as
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a similar term which is closely related to interpretability —
Interpretable systems are explainable if their operations can
be understood by human beings. However, there is no unique
definition of ML interpretability. The work in [67] describes
interpretability as the degree to which a human can consis-
tently predict the model’s result. Due to the interpretation
subjectivity, interpretability is not a monolithic notion [68]
implying that it has several dimensions. Interpretation itself
can be formulated either in terms of low-level parameters or
as input features used by a model.

ML low interpretability comes from the hidden behavior
of the so-called black box ML models (e.g., Deep Neural
Networks (DNN) and others) [69], where the internal ML
logic and rationale are hidden to human users. Multilayer
NNs typically operate as black boxes without exposing
why specific features are selected during training; how the
correlations in the training data are represented for feature
extraction; and why a specific pathway in the network is
selected over others [68].

In [69] and [70], an overview and a taxonomy of inter-
pretable models and explanation methods based on different
criteria were presented. The study in [71] presented an
extensive and in-depth identification analysis, and provided
an comparison of various ML interpretability methods,
including Pre-model, In-model, Post-model; Intrinsic, Post-
hoc; Model-specific, and Model-agnostic. When building an
ML model, one has to decide which method is applicable,
namely, before (premodel), during (in-model), or after (post-
model) model development. Another criterion is intrinsic
versus post-hoc. It is used to distinguish whether inter-
pretability is achieved through the constraints imposed on
the ML model complexity (intrinsic) or by applying methods
that analyze the model after training (post-hoc). Another
rather important criterion is model-specific versus model-
agnostic. In the former case, each method is based on a
specific model’s internals (e.g., weights in a linear model).
The model-agnostic methods can be applied to any ML
model (black box or not). These methods rely on analyzing
pairs of feature input and output. Such methods cannot
have access to the model inner workings, such as weights
or structural information. One can differentiate between
explanation methods based on the results that each method
produces: feature summary, model internals, data point, and
surrogate intrinsically interpretable model.

The degree of interpretability is related to accuracy [72].
If two models lead to similar accuracy, additional criteria
can be applied to select a model. In addition, there is a link
between interpretability and usability of models. The work
in [73] reveals that interpretability may assist in overcoming
several bottlenecks of DL.

2) INTERPRETABILITY OF ML ALGORITHMS FOR EV
CHARGING OPTIMIZATION

The interpretability of ML algorithms is important for
developing optimal EV charging schemes, given that many
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ML-based solutions have been proposed recently, for pre-
dictions, optimizations and so on. On the other side, human
users are involved in such systems and the rationale behind
decisions should be explainable well enough.

When designing a public EV charging system which
includes ML-based decisions, ML interpretability is needed
to evaluate the system capabilities to meet the regulation
requirements and the degree of assurance for safety guaran-
tees. The amount of information for EV charging is increasing
exponentially from both EV user and electricity grid sides.
The study in [74] employed three ML algorithms to predict
EV charging time, namely, Extreme Learning Machine
(ELM), Feed Forward Neural Network (FFNN), and Support
Vector Regression (SVR). Multiple ML parameters have
been optimized by a Grey Wolf Optimizer (GWO), a meta-
heuristic technique, to enhance prediction accuracy. The
study also applied Shapley Additive Explanation (SHAP),
an ML interpretation method, to overcome the low inter-
pretability of ML algorithms, by monitoring the output of
multiple variables and measure their impact on charging time.
The results show that the A/C compressor, start SOC, and
end SOC are the most important parameters in determining
optimal EV charging time. The heater and the day of the
week are two of the least sensitive input variables, whereas
the lighting condition, season, and time of day are the medium
critical input variables.

We believe that there is still a need for more exploration
on the interpretability of ML models for developing optimal
EV charging systems. Apart from prediction accuracy, the
complexity of the models needs to be better understood on
how they produce predictions. Although the interpretability
evaluation can be performed at the human-level, application-
level, or functional-level, the major areas of interest in
EV charging systems are at the functional-level and then
the application-level. Developing methods to interpret and
understand the output of ML models will enhance the
reliability and transparency of ML-based solutions for
optimal EV charging.

VIil. COMPARISONS, LIMITATIONS, AND POTENTIAL
RESEARCH DIRECTIONS

In this section, we provide an analysis of existing research,
addressing various aspects including charging optimization
from a grid, a user, or both grid and user, perspective,
the selection between centralized and decentralized systems.
Additionally, we delve into factors such as computational
complexity and computation time, pointing out the limita-
tions and gaps of these existing studies. In addition, potential
research directions are suggested.

A. COMPARISONS AND DISCUSSIONS

1) COMPLEXITY AND COMPUTATION TIME

The study in [49] focused on optimizing grid operation
by reducing peak power demand and filling low-demand
periods, commonly referred to as peak to valley filling.
A decentralized scheme was proposed therein, considering
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that the developed model applied to a university campus.
Although LP suffers from complexity, it offers more effective
optimization within reasonable computation time. However,
when the number of EVs or parking lots becomes larger,
an LP based scheme leads to a significant increase in terms
of complexity and computation time.

The study in [52] focused on grid operation optimization
by implementing a microgrid energy system that controls
EV charging patterns in a decentralized manner. Real-
time algorithms, which are less complex than LP but less
effective in optimizing self-consumption of PV energy,
have been developed. Although no specific details about
computation times were provided, the inherent complexity
of LP suggests that potentially longer computation times
are needed compared with real-time control algorithms.
The model and control algorithms presented in that study
considered both real-time and predictive data, making them
suitable for both dynamic and static operations. The authors
discussed also potential issues when scaling up the microgrid,
noting that self-consumption and peak reduction might
decrease when using the V2G technology. Scaling up the
microgrid involves adding more components, such as extra
households, solar panels, and EVs. The complexity of
managing these additional elements in a larger system can
lead to higher complexity when optimizing energy use,
as balancing the energy demand of the additional components
requires sophisticated control algorithms.

2) ENERGY COSTS AND CHARGING EFFICIENCY
The study in [53] concentrated on optimizing energy
costs and charging efficiency for both grid and EV fleet
operations, by employing time of use (TOU) pricing and PV
integration. Assuming that PV installation was performed
at a workplace-owned parking lot, energy management
control and EV scheduling were implemented through a
decentralized system. Although no explicit detail on com-
putational complexity and time was given in [53], it is well
known that MILP is computationally intensive, especially
when the number of EV fleets is large. In contrast, the
study in [54] concentrated on maximizing the revenue of
aggregator, which acts as a grid operator serving as the central
controller to manage EV charging rates and energy storage
operations. The MILP model offers an optimal solution with
high computational complexity. On the other hand, the LP
rounding algorithm provides solutions close to optimal in
polynomial times with lower complexity. This exhibits its
ability to solving large-scale problems and striking a balance
between computational efficiency and optimization quality.
Furthermore, DP has been proven to be effective in
addressing intricate problems such as optimal plug-in EV
charging scheduling [56] and minimizing battery replacement
costs [57]. However, solving DP problems can be computa-
tionally expensive due to the curse of dimensionality. In [56],
a centralized MPC-based algorithm has been employed to
mitigate such complexity with a focus on optimizing charging
schedules for the power grid rather than for EV users. Given
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TABLE 3. Summary of EV charging algorithms.

. s . . s Computational
Algorithm Application in EV Charging Advantages Limitations Complexity
R . Effective in multiscenario .
Linear Optlml'zmgI chargmg schedules optimization, suitable for Can be complex n Variable; can be high in
Programmin considering multiple EVs, . scenarios with a large >
g g . peak shaving and valley . large-scale scenarios
(LP) CSs, and power grids - . number of variables
filling strategies
) . . . Effective for multistage Computationally expensive
Dynamla; m(z;l:n; C}:jarir;%iscgsd:rl;?vga’]s decision problems, (curse of dimensionality), High due to recursive
Programming ging ¢y . adaptable to changing requires substantial computations
(DP) and charging requirements diti .
conditions computational resources
Scheduling charging of EVs in GO(.)d a fmdl.n & . Variable: lower than
Heuristic . . . near-optimal solutions for Parameter tuning can be )
¢ various settings like homes, laree or complex problems complex. may not always exact methods but can
Algorithms (e.g., parking lots, considering user ga da tablepto dili)lferent ? fin dpthe’ lob);I o timur}rll increase with problem
PSO, GA, ACO) behavior P . & P size
scenarios
Predicting future charging Adaptive to new data, can Requires large datasets for Depends on the model;
Machine Learning patterns, optimizing charging improve accuracy over training, some models may deep learning models
(ML) Techniques schedules based on historical time, suitable for dynamic be “black box” with low can be computationally
data systems interpretability intensive

that an MPC-based algorithm has a computational complexity
level of 0(T3), where 7' is the total number of time stages, this
complexity is regarded as low for handling such scheduling
problems as it leads to manageable computation times.

The study in [57] focused on optimizing the operational
efficiency of EBF from an operator’s perspective for a cen-
tralized system. Despite of unknown computation complexity
and times for their study in [57], DP is considered as complex
but effective for solving multistage decision problems. On the
other hand, the use of a reverse order matching strategy could
increase complexity and computation time but ensure optimal
results.

In [59], [60], [61], [62], and [63], heuristic algorithms
such as PSO, GA, and ACO were proposed and their
effectiveness in solving EV charging scheduling problems
was demonstrated. These methods prove to be adept in
finding near-optimal solutions, even in scenarios where the
problem is too large or complex. Broadly, PSO exhibits lower
computational complexity and faster convergence compared
to ACO and GA. The computational complexity of GA
and ACO tends to rise, particularly with larger problem
sizes. However, it is essential to understand that heuristic
algorithms require tuning of algorithm-specific parameters,
which can be a complex process. The study in [59] focused
on reducing charging costs and time consumption for EVs in
microgrids, benefiting both grid operators and EV owners.
A centralized charging scheme was employed for deciding
charging schedules, determined by the microgrid’s energy
management team. Although that study did not discuss the
computational complexity and time taken by each algorithm,
we can infer general principles here. The PSO algorithm
is relatively more complex compared to the ATP and SBP
algorithms because it involves multiple particles searching
through the solution space, which may take longer time due
to its iterative nature and higher complexity.

3) OPTIMIZED EV CHARGING: CENTRALIZED AND
DECENTRALIZED APPROACHES

The study in [60] focused on minimize charging costs
for parking lots, from the perspective of a grid operator,
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indirectly benefiting the grid. Optimal charging schedules
are determined for all EVs at a parking lot in a centralized
manner. The study ascertains that the proposed method does
not require sophisticated systems, implying manageable com-
putation time. Moreover, the study in [61] concentrated on
charging optimization for power grid operators, by employing
a GA-based model to manage EV charging schedules in a
centralized system. That study also reveals the effectiveness
of GA in solving complex optimization problems, which can
be computationally intensive.

Furthermore, the study in [62] put more effort on optimiz-
ing the performance metrics that are related to EV charging
rather than minimizing computational complexity or costs.
Therein charging schedules are managed in a centralized
system, by taking the entire network of EVs and CSs into
account. The authors found out that the GA converged to the
solution before reaching the maximal iteration counts, and
recommended keeping the population size and the number
of iterations up to 200 for maintaining optimal results.
This implies that increasing the number of iterations does
not necessarily lead to better results but instead would
extend computation processing and time. On the other hand,
[63] focused on optimizing charging operational efficiency
within CSs rather than taking care of individual EV user
preferences, by utilizing a centralized charging system. That
study indicates that ACO is efficient in solving problems
within reasonable time frames and suggests using the same
termination conditions and the same number of iterations
(i.e., 200) for both ACO and GA methods. Both ACO and GA
can be computationally demanding, and their performance
and computational load may vary significantly depending on
the specifications of the implementation and the problem at
hand.

Reference [65] focused on predicting power demand
of CSs, providing benefits for grid operators in regulated
electricity markets. The approach can be applicable in both
centralized and decentralized charging systems. Although
DRL models, especially GRU, are known for their compu-
tational intensity and require many resources, they are highly
effective for performing prediction tasks. A single hidden
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layer in the GRU model emerged as the best-performing
model in [65], demonstrating the highest accuracy in
predicting EV charging demands. It was suggested that using
DL models such as LSTM and GRU could lead to cost savings
and efficiency in managing energy demand and supply.

The authors of [66] studied total charging time and cost
minimization from an EV user perspective. They proposed a
DRL-based a centralized system, where the SDN controller
collects real-time information and schedules charging sched-
ules of EVs. They conclude that traditional game-theoretical
methods (which perform exhaustive searches) are not appli-
cable when dealing with large numbers of EVs due to their
high computational complexity. In contrast, the proposed
DRL-based solution appears to be more efficient even
with incremental updates. Also, the computational time of
DRL-based methods is less than that of game-theoretical
methods.

In Table 3 above, we provide a comprehensive analysis
that summarizes various algorithms for EV charging, and
present their applications, advantages, limitations, as well as
computational complexity.

B. LIMITATIONS AND GAPS
In this subsection, we identify the limitations and gaps that
exist in the state-of-the-art studies within this topic.

1) Scalability: Several studies, including [52], [53], and
[56], were conducted in small-scale environments with
specific scenarios. The applicability of these schemes
may not be suitable for larger-scale areas or more
complex grid systems. For instance, these schemes may
face scalability problems in handling many EVs or com-
plex charging scenarios, making them computationally
intractable or less effective.

2) User-centric optimization: Most of these studies, e.g.,
[49], [52], [53], [56], [61], and [63], have focused
on EV charging optimization from a grid perspective.
However, individual EV user information, such as EV
arrival times, charging mode preference, SOC, or EV
location, in generally overlooked. Although incorpo-
rating users’ information with respect to their needs
and preferences would increase scheme complexity and
requires sophisticated algorithms, more efficient charg-
ing schemes could be developed when this aspect is
considered. As such, user-centric schemes that achieve
close-to-optimal performance are expected.

3) Handling real-time data: Many approaches rely on
predictive models or historical data, which may not
fully account for dynamic real-time changes, result-
ing in suboptimal charging schedules. For example,
uncertainty in various factors, such as PV power and
predictions of load demand, number of EV trips, and
energy consumption, was ignored in [57]. While some
studies such as [52], [53], [56], [63], and [66] seem to be
dynamic and suitable for real-time systems, other studies
like [57], [59], [60], and [62] rely heavily on static data
and do not address their adaptability to real-time grid
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variations. In general, adopting real-time data calls for
more efficient and adaptive EV charging schemes.

4) Integration with other technologies: The integration of
the grid system with the V2G technology, RES systems,
or dynamic price strategies is only explored in a few
studies like in [52], [53], [56], [63], and [66]. Other
solutions like presented in [56], [61], and [65] suggest
that they can be potentially integrated into a V2G
system.

In Table 4, we summarize multiple popular charging
optimization solutions highlighting their findings and con-
tributions, address their integration feasibility, and point out
their limitations and gaps.

C. OPEN RESEARCH AND FUTURE DIRECTIONS

Based on the above observations, we share our thoughts on
open research questions and shed light on potential directions
for further development of optimal EV charging schemes.

1) INCREASING THE AVAILABILITY OF PUBLIC CHARGING
DATASETS

Developing ML models to optimize EV charging encounters
a substantial obstacle due to the limited availability of public
charging datasets. Effective ML techniques demand a vast
amount of data for training and validation. The absence of
open access, comprehensive datasets on charging behavior,
infrastructure utilization, and related factors can impede the
development of accurate and generalized models. Despite a
few public available datasets, such as those from ElaadNL
and MyElectric Avenue [75], [76], that offer valuable insights
into residential and public charging facility usage, they are
restricted to specific geographical locations and periods.
This scarcity often results in over-reliance on proprietary
or simulated data, which may not always accurately reflect
real-world conditions. To address this challenge, enhanced
collaborations among various players and stakeholders along
the EV transport value chain, including industries, govern-
mental organizations, researchers, engineers, and EV owners
are highly recommended. Creating standardized, anonymous
public datasets could enable more researchers to engage in
developing robust models. Accordingly, developing novel
business models to encourage sharing experimental datasets
among stakeholders would also be interesting. Such efforts
would improve the accuracy and reliability of optimized ML
models, leading to cost-effective and stable grid operations.

2) MAXIMIZING THE UTILIZATION OF RESS

Effectively integrating RESs into the charging scheduling
process is a vital element in maximizing the utilization of
green energy while minimizing environmental impact and
cost [77]. For instance, contemplate a scenario where a
community possesses an abundant source of wind energy,
particularly during nighttime when wind speeds are at their
peak. On the other hand, the demand for electricity in this
community is low during this period of time. Therefore, this
excess energy could be used to charge EVs. A smart charging

VOLUME 12, 2024



H. M. Al-Alwash et al.: Optimization Schedule Schemes for Charging Electric Vehicles IEEEACC@SS

TABLE 4. Examples of charging optimization solutions.

- oo Charging Integration s
Ref. Algo. Key Findings/Contributions System With Limitations and Gaps
o The study was conducted in a small-scale area
o The study ducted i 11-scal
Developed an LP model to optimize power (a university) with a limited number of EVs
consumption at parking lots, demonstrating and parking spots.
[49] LP effective peak shayipg and valley fi.lling Decentralized None o Lack of consideration of EV user preferences
strategies (optimizing from a grid such as required SOC and charging mode, or
perspective) a specific time for charging.
e The study is limited to small-scale areas, so
- ) ) improvement is needed in order to apply it to
Utilized LP to enhance self-consumption of large-scale areas.
PVina microgrid, showing significant . V2G and e Uncertainty in various factors, such as PV
[52] LP reduct'i(?n in peak 'de'rn'and and incre:ased Decentralized RES (PV) power and load demand predictions, EV trip
efficiency (opElmlzlng fr(?m a grid times, and energy use.
operator’s perspective) e Lack of consideration of the EV constraints
(e.g., SOC, charging mode, EV location).
) ) o The study was limited to a small area and may
Demonstrated cost-effective EV charging face challenges in real-world implementation
management with PV and minimizing V2G. RES at a larger scale.
[53] MLP charging costs of EVs and power 19?‘1 on Decentralized (PV; and o The model relies on prediction data of solar
the .gr%d.to enhance the. grid stability TOU generation and energy prices.
(optimizing both the grid and the user e Lack of consideration of the EV constraints
perspectives) (e.g., SOC, charging mode, battery capacity).
Presented a novel approach for optimizing . . .
MILP EV charging, significantly maximizing ® Tk{e model was based on s1'mulé.1t10ns and its
[54] and aggregator revenue and energy storage Centralized None effectiveness needs validation in real-world
LP usage (optimizing from the grid operator’s applications.
perspective)
Proposed effective algorithms for managing o The study was b.asec.i on si.mulations and may
P dynamic EV arrivals and charging, focused neeq further \_/alldatlor_l with real—world data.
1561 o on minimizing EV charging cost, power Centralized None Eor instance, 1nfqrmat10n such as aq1val EVs
MPC load, and computation time (optimizing is not known. This makes the potential to ap-
from the grid perspective), suitable for ply real-time scenarios integrated into a V2G
fluctuating EV numbers and demands system.
Suggested a DP-based method for reducing e The study was conducged i_n a public transit
battery replacement costs in EBFs, system for five EBFs with five routes a day.
[57] DP enhancing sustainability and economic Centralized None o The applicability to different or larger-scale
efficiency (optimizing from a user transit systems (e.g., decentralized) was not
specti discussed.
perspective)
RESs .
Developed a PSO-based method to (wind o The study considered a small number of EVs
[59] PSO minimize charging costs and time in Centralized turbine and did not account for varying user behavior
parking-lots (optimizing both the grid and and five and preferences in charging.
the user perspectives) PV)
Implemented PSO for efficient EV Th dv did h . h
charging management to minimize . o Ihe study did not use the aggregation tech-
(601 PSO charging costs of parking lots (optimizing Centralized V26 nique.
from a grid operator’s perspective)
Introduced a GA-based scheme for load . .
profile optimization, by flattening the load e Lack Of consideration of the EV preferences or
[61] GA prevent aging of power system elements Centralized None constraints (e.g., SOC, charging mode, battery
(optimize from a grid operator’s capacity).
perspective)
GA, Proposed a GA-based scheme to minimize o The study was conducted for urgent EV charg-
[62] NIJF, waiting time zm.d dlStaﬂCﬁ‘: for emergency Centralized None ing in high-density regions and did not con-
and EV charging during peak times (optimizing sider the charging costs aspect.
EDF from a user perspective)
Optimizing charging operation efficiency . Lo
for a grid perspective by minimizing the . . fl"he7 gtudy did not e_iddress the variability in
[63] ACO total delay in EV charging at stations with Centralized None individual EV charging needs or preferences.
high traffic
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TABLE 4. (Continued.) Examples of charging optimization solutions.

o The study was specific to Morocco’s regu-
lated electricity market, and the applicability
Developed DL models to accurately predict Centralized of the findings to other regions or market
[65] GRU EV charging demand, partlcule}rly ?ffective or Decen- None structures may vary.
in the context of Morocco (optimizing from tralized o The study did not consider the variability of
a grid operator’s perspective) EV user behavior and its impact on charging
demand predictions.
Utilized DRL for efficient CS selection and o Inflexible to select the charging mode of the
route planning, reducing EV charging costs . SDN, EV user, its adaptability to different urban
[66] DRL and time for EV (optimizing from a user Centralized VEC, and environments with varying traffic needs to be
perspective) TOU further explored.

system could encourage EV owners to charge their vehicles
during these periods of time of high wind energy generation.
In this way, integrating RESs into EV charging schedules
can maximize the utilization of clean energy, reduce carbon
footprint, and potentially save costs.

However, the output of energy volume from solar and
wind sources may vary over time, and their production
may not always meet the demand in a real-time manner.
To overcome this drawback, future research could investigate
the effectiveness of integrating the EV technology into RESs.
As mentioned earlier, EV batteries can act as a mobile CS,
that stores the energy generated by renewable sources (e.g.,
wind or solar), and the saved energy can be used to power
vehicles or feedback into the grid during peak demand hours.
EVs have the potential to reshape the dynamics of the grid
by acting as mobile energy storage units. As the number of
EVs in parking lots increases, the aggregation of their battery
energy may serve as a dynamic resource for stabilizing the
grid. Therefore, how to integrate RESs with EV charging
systems to improve energy efficiency and environmental
sustainability requires more research efforts.

3) IMPROVING TIME EFFICIENCY AND DEMAND
AWARENESS

Developing optimal charging schemes that can respond to
changes in real-time, handle large-scale charging demands,
and deliver effective charging services in a computationally
manageable manner is another interesting topic deserving
further investigation [78]. This topic addresses the need for
time-efficient charging solutions by reducing waiting time
and ensuring reliable access to charging infrastructure with
enhanced user convenience.

For instance, consider a large city with a high concentration
of EV penetration. An unexpectedly high demand for EV
charging during specific periods of time (e.g., public events or
even workday hours) may arise for such a scenario. Further-
more, the charging requirements of these vehicles may vary,
depending on their battery capacity, SOC, preferred charging
mode, and the accessibility of charging infrastructure (e.g.,
public or home). This situation may lead to increased waiting
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time for EV charging and an undue burden on the grid,
leaving EV owners unsatisfied as normal charging schemes
are unable to deal with unexpectedly high demand.

Therefore, data monitoring-based charging schemes, that
can dynamically modify charging schedules and optimize
charging criteria according to current circumstances and
context, need to be developed. For example, if a particular
part of a grid (e.g., stations) is under heavy load, the
system could redirect charging demands to other less-loaded
energy sources, to ensure stable operations and guarantee
reliable operations. Furthermore, to effectively manage
energy resources, it is recommended to consider various
factors like current power demand, charging infrastructure
availability, power grid capacity, and real-time traffic data
when developing charging schemes.

4) INCREASING GRID STABILITY AND USER ACCESSIBILITY
Load balancing is an important aspect for charging scheme
design, especially when grid capacity and demand fluctuation
at CSs are taken into consideration. A challenging task
for grid operators is how to manage overloaded CSs and
accommodate high charging demands during peak hours.
To address this issue, future research efforts towards more
dynamic and adaptive approaches are required.

Within this topic, ML techniques can be applied as they
exhibit promising potential for charging scheme optimiza-
tion. ML-based solutions may implement adaptive algorithms
that introduce constraints or measures on charging services
when heavy load is observed in a grid, such as enforcing a
maximum SOC threshold for EVs to be charged during peak
hours. Through such a measure, a well-balanced and stable
grid could be ensured while maintaining accessibility for all
EV users.

5) MAINTAINING USER CONVENIENCE AND COST
OPTIMIZATION

Despite the importance of satisfying dedicated require-
ments for battery charging, a carefully designed charging
scheme can ensure a convenient, efficient, and cost-effective
experience from the perspective of user convenience.
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TABLE 5. List of abbreviations.

Acronym | Full Name

AC Alternative Current

ACO Ant Colony Optimisation

Al Artificial Intelligence

ANN Artificial Neural Network
ATP Arrival Time-Based Priority
AVG Heuristic Online Average
BEV Battery Electric Vehicle

BSS Battery Swap Stations

CcC Conductive Charging

CPP Critical Peak Pricing

CS Charging Station

DC Direct Current

DL Deep Learning

DNN Deep Neural Network

DP Dynamic Programming

DRL Deep Reinforcement Learning
EBF Electric Bus Fleet

EDF Earliest Deadline First

EDT Earliest Due Time

ELF Expected Load Flattening
ELM Extreme Learning Machine
EV Electric Vehicle

EVSE Electric Vehicle Supply Equipment
FCFS First Come First Serve

FCEV Fuel Cell Electric Vehicle
FCS Fast charging Station

FFNN Feed Forward Neural Network
GA Genetic Algorithms

GECS Genetic Algorithm-based Emergent Charging Scheduling
GRU Gated Recurrent Unit

GWO Grey Wolf Optimizer

HEV Hybrid Electric Vehicle

D Identity

KNN K-Nearest Neighbors

LSTM Long-Short-Term Memory
LST Latest Starting Time

LP Linear Programming

MILP Mixed-Integer Linear Programming
ML Machine Learning

MPC Model Predictive Control

NB Naive Bayes

NJF Nearest Job First

NN Neural Network

PEV Plug-In Electric Vehicle

PSO Particle Swarm Optimization
PTR Peak Time Rebates

PV Photovoltaic

RES Renewable Energy System
RF Random Forests

RL Reinforcement Learning

RNN Recurrent Neural Network
RTP Real-Time Pricing

SAA Sample Average Approximation
SBP State of Charge-Based Priority
SDN Software-Defined Networking
SHAP Shapley Additive Explanation
SL Supervised Learning

SOC State of Charge

SSL Semi Supervised Learning
SVR Support Vector Regression
SVM Support Vector Machine

TOU Time of Use

UL Unsupervised Learning

VEC Vehicular Edge Computing
V2G Vehicle-to-Grid

WPT Wireless Power Transfer

Service providers should allow EV owners to specify their
charging preferences, such as preferred charging infrastruc-
ture (e.g., home, public, or via a mobile station), charging
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modes, acceptable price rate, and intended charging hours.
Customized preferences for an optimal charging scheme are
an essential aspect that should be considered for EV charging
scheme design when user convenient is considered.

For instance, some EV owners may prioritize fast charging
(e.g., mode 3 or mode 4) over slow charging (e.g., mode 1 and
mode 2), especially during peak hours. A drawback with
fast charging lies in its high requirement for power supply
rate, which faces a risk of straining the grid and, and in
extreme cases, leads to power outages if the overall demand
exceeds the grid’s capacity. To diminish this risk, how to
optimize charging schedules based on user demands and grid
capacity, e.g., potentially by adopting a TOU pricing strategy
to manage the charging demand during peak hours, needs to
be explored.

Finally, how to balance user convenience with cost-
effective grid management in terms of cost optimization
needs to be further studied. For instance, a charging scheme
could schedule EV users for fast charging only for those who
have long-drive route or urgent demand, particularly during
peak hours by increasing charging prices. In contrast, those
EV users who are not urgent would be advised to select
slow charging to enjoy the benefit of lower pricing rates for
electricity. Such a strategy can not only flatten the power
demand curve and increase the revenues of grid operators but
also meet the requirements of EV users.

IX. CONCLUSION

This article addresses several facets of EV charging including
the adoption of EVs, their impact on power grid, and the
necessity for charging scheme optimization. Two major
classes of charging systems, namely, uncoordinated and
coordinated (where the latter one includes both centralized
and decentralized), are presented with their advantages
and disadvantages elaborated. Both classical and machine
learning based techniques for optimization are analyzed.
In addition, we present and analyze recent research efforts
that have utilized these techniques in order to achieve
charging scheme optimization. The computation time and
complexity of various algorithms are also summarized.
Furthermore, the limitations and gaps existing in the state-
of-the-art solutions are identified. Finally, a few potential
research directions related to the theme of EV charging opti-
mization, such as adaptation to dynamic charging demands,
load prediction and balancing, time efficiency improvement,
and the integration of RESs and V2G with EV charging, are
pointed out.

APPENDIX A

LIST OF ABBREVIATIONS

A list of the abbreviations introduced in this article is
tabulated in Table 5.
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