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ABSTRACT This paper presents the Bias-Boosted Extreme Learning Machine guided Brain Emotional
Learning (B2ELM-BEL) model, a significant advancement in chaotic time series prediction that effectively
incorporates knowledge transfer learning. Integrating traditional Brain Emotional Learning (BEL) with the
novel Biased-ELM method, the B2ELM-BEL introduces a bias term into the output weights of Extreme
Learning Machines (ELM). This addition enhances the model’s predictive accuracy, proving particularly
beneficial in configurations with a minimal number of hidden nodes. Our evaluation of the B2ELM-BEL
model across various datasets, including complex chaotic time-series benchmarks and real-world scenarios,
demonstrates its superior performance over several BEL models. It achieves lower mean RMSE, MAE, and
SMAPE values, and exhibits enhanced generalizability and efficiency. The findings indicate that while the
single hidden node variant of B2ELM-BEL is suitable for simpler tasks, the multi-node version is more adept
at handling challenging environments. This highlights the necessity of tailoring the model to the complexity
of the specific dataset being analyzed.

INDEX TERMS Chaotic time-series forecasting, brain emotional learning (BEL), extreme learning machine
(ELM), transfer learning, bias-boosted prediction models, machine learning robustness.

I. INTRODUCTION
Many real-world systems exhibit dynamic properties that
evolve and exhibit chaotic characteristics. The term ‘‘chaos’’
suggests that these systems are susceptible to minor changes
in their initial conditions, rendering their behavior largely
unpredictable. Chaotic time-series problems manifest these
complexities and hold significant importance in various
domains. They find extensive applications in areas such as
wind power prediction using chaotic time series [1], financial
time series forecasting [2], [3], and weather forecasting [4].

Efforts have been made to employ machine learning and
artificial neural networks (ANN) to address time-series pre-
diction challenges. For example,Wang et al. [5] introduced an
improved extreme learning machine for the online sequential
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prediction of multivariate time series. Duduku et al. [6]
presented a hybrid approach that combines temporal convo-
lutional networks and recurrent network methods, yielding
promising results.

Recent advancements in transfer learning (TL) or knowl-
edge transfer (KT) have significantly impacted the field of
machine learning, particularly in tasks related to recognition
and classification, as evidenced by the works of [7], [8], and
[9]. This approach empowers the improvement of predictions
in target tasks by leveraging insights from previously
established source domains. Notably, Obst et al. [10] have
contributed a theoretical framework that harnesses TL for
linear model predictions.

Among the techniques in this domain, the Extreme
Learning Machine (ELM), a prominent artificial neural
network (ANN) method, stands out. ELM is characterized
by its random initialization of weights between inputs and
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hidden layers, as well as its analytical determination of
output weights through a generalized inverse operation.
These features expedite the training phase and ensure
robust generalization performance, distinguishing ELM from
traditional neural networks. In the context of knowledge
transfer, ELM has proven to be an effective method,
enhancing the adaptability of machine learning models,
a subject extensively reviewed by Salaken et al. [11].
The Brain Emotional Learning (BEL) models are compu-

tational representations inspired by the emotional processes
of the mammalian brain, simulating signal propagation in
emotional brain structures. Key components include the
amygdala (AMYG), which preserves emotional memories
and interfaces with both the orbitofrontal cortex (OFC)
and thalamus. A notable innovation in this field is the
emotional backpropagation (EmBP) learning algorithm,
which integrates emotional variables, updated by anxiety and
confidence parameters, into machine learning processes [12].
EmBP mimics emotional learning within the amygdala,
a pivotal region in emotion processing [13].
These models find practical application in the brain-

emotional-learning-based intelligent controller (BELBIC),
inspired by the computational model of the mammalian
limbic system. BELBIC, analogous to a linear-quadratic
regulator (LQR) and designed for omni-directional robots,
maximizes a quadratic reward function [14]. Furthermore,
the Adaptive Decayed Brain Emotional Learning (ADBEL)
network has demonstrated effectiveness in online time
series forecasting, with its predictive capabilities further
enhanced when integrated with a neo-fuzzy network [15].
This integration focuses on the OFC segment of the network
and employs three membership functions for neo-fuzzy
neurons in online prediction tasks [16].
An evolution in BEL models is marked by the integration

of interval knowledge, allowing these models to better handle
uncertainty and imprecision during the learning process [17].
In dynamic system control, the BELBIC Controller, inspired
by emotional learning principles akin to those in the human
brain, shows promise and has been compared to conventional
feedback control systems such as the Proportional-Integral
(PI) controller within specific applications, shedding light
on the advantages and limitations of these innovative control
strategies [18].

Another intriguing development combines emotional
learning with the optimization of DVRs operations, optimiz-
ing dual objectives to potentially enhance DVR performance
and reliability in mitigating voltage fluctuations [19]. Addi-
tionally, an adaptive control system has been conceptualized,
merging elements from a typical BEL network and a
self-organizing radial basis function network, with a focus on
mobile robot control [20].
The BEL approach is gaining traction across various

applications, including earthquake prediction, where emo-
tional impact plays a significant role in understanding and
preparing for seismic events [21]. Novel control strate-
gies that integrate BEL with Adaptive Model Predictive

Control [22] have been developed for induction motor drives,
while methods combining Recursive Terminal Sliding-Mode
Control (RTSMC) with a Double Hidden Layer Fuzzy
Emotional Recurrent Neural Network (DHL-FERNN) have
improved robustness and adaptability in controlling nonlinear
systems [23]. However, emotional learning-based controllers,
including the nonparametric ELBC, encounter challenges
such as computational complexity and lack of robustness,
especially in uncertain environments [24]. Recent proposals
aim to enhance learning accuracy and convergence rates
through dopamine-inspired methods and stochastic learning
on high-dimensional datasets [25]. Additionally, a bionic
memristive circuit, capable of replicating emotional learning,
that can generate a spectrum of emotions through valence and
arousal signals, has been designed [26].
While significant progress has been made in brain

emotional learning (BEL) methods, challenges persist when
dealing with intricate chaotic time series like the Henon
problem. The existing BEL-IK model utilizes the ‘max’
function as the emotional neuron, emphasizing localized
emotion influenced by the present context and its potential
modulation by experiences. As a result, we aim to find
a straightforward machine-learning model that facilitates
effective knowledge transfer.

To address these challenges, this paper introduces an
enhanced version of the existing BEL-IK model, leverag-
ing transfer learning with Biased-ELM as the source of
knowledge to enhance BEL-IK. Our contributions encompass
two key aspects: the introduction of a Biased-ELM method
that augments traditional ELM models by incorporating
a bias term into the output weights and the introduction
of an improved BEL-IK approach that selects the optimal
Biased-ELM from multiple candidates based on error min-
imization.

In summary, we present the Bias-Boosted Extreme
Learning Machine guided Brain Emotional Learning
(BBELM-BEL or B2ELM-BEL) model. In this model,
Biased-ELM serves as both an enhancer for traditional ELM
models and a source of essential knowledge for the improved
BEL-IK model. These contributions collectively enhance
the BEL-IK approach’s overall performance, particularly in
handling complex chaotic time series data.

The paper is organized into the five following sections:
Section II lays out the background knowledge on transfer
learning, ELM, BEL, and the improved BEL version
(BEL-IK) [17]. Section III details the newly proposed
methods and algorithms. Section IV describes experiments
that compare the performance of the new method against
other BEL methods. The final section concludes the paper
and outlines future research directions.

II. RELATED WORKS
A. KNOWLEDGE TRANSFER LEARNING
Knowledge transfer among animals often occurs in nature.
This is exemplified by Namibian desert-dwelling elephants

VOLUME 12, 2024 35869



S. Iamsa-At et al.: Bias-Boosted ELM for Knowledge Transfer in BEL for Time Series Forecasting

passing their unique survival skills and knowledge to subse-
quent generations [9], [27]. These elephants have adapted to
the Namib desert’s high-temperature environment, acquiring
abilities not necessarily inherited through DNA [28]. Another
example can be observed in humans, where experience and
knowledge in one domain can enhance learning performance
in another. For instance, those skilled at playing the guitar
may learn to play another string instrument, such as the violin,
more quickly.

Inspired by natural knowledge transfer, researchers have
broadly applied this concept specifically in the machine
learning field, where it has shown considerable promise.
A general definition of transfer learning [8], [9] involves a
domain D = {X ,P(X )}, consisting of a feature space X and
a marginal distribution P(X ), where X = {x1, . . . , xn} ∈ X .
Additionally, it involves a task denoted as T = {Y, f (·)},
comprising a label space Y and an objective predictive
function f (·).
The goal of transfer learning is to improve the target

prediction function fT (·) in a target domain DT =

{(xT1 , yT1 ), . . . , (xTnT , ySnT )} by leveraging knowledge from
a source domain DS = {(xS1 , yS1 ), . . . , (xSnS , ySnS )}}. Here
xSi ∈ XS and ySi ∈ YS represent the corresponding target or
class labels of DS , and DS ⊂ DT .
This paper explores the application of ELM models in

predicting time series data. Our approach involves using a
specific subset of data DS , which we have defined as the
knowledge transfer learning space. This subset comprises
elements {xi}, with i ranging from 1 to NS , and is selected
from a larger set of the training data DT . By training the
ELMmodels using theDS subset, our objective is to enhance
the prediction accuracy of the BEL model, specifically in the
context of time series analysis.

B. EXTREME LEARNING MACHINE
The ELM was proposed by Huang et al. [29]. It is a learning
algorithm for single-layer feedforward neural networks
(SLFNs) that offers several key concepts and advantages:

1) Random Input Weight Initialization: ELM initializes the
weights connecting the input layer to the hidden layer
randomly and does not adjust them during training,
which differentiates it from traditional neural network
learning algorithms that use iterative tuning [29].

2) Analytic Output Weights Determination: The weights
between the hidden layer and the output layer are
determined analytically by a simple generalized inverse
operation (such as Moore-Penrose pseudoinverse),
which is a form of linear system solution. This avoids
the need for iterative fine-tuning, see Remark 5 in [29].

3) Fast Learning Speed: Because of its noniterative weight
determination, ELM can train much faster than tradi-
tional neural networks that use backpropagation [29].

4) Generalization Performance: Despite the randomness in
weight initialization, ELMs can achieve good general-
ization performance. They often require fewer hidden

nodes than traditional feedforward networks to achieve
comparable or even superior performance [29].

5) Ease of Use: ELMs are straightforward to implement
and use, with fewer hyperparameters to tune compared
to other learning methods, making them accessible
to practitioners with limited machine learning exper-
tise [29].

6) Universal Approximation Capability: ELMs have been
proven to have universal approximation capability under
certain conditions, meaning they can approximate any
continuous function given a sufficient number of hidden
nodes [30].

7) Online and Sequential Learning: ELMs can be adapted
for online and sequential learning scenarios where data
comes in a stream or batches, and the model needs to
update its parameters on the fly [31].

8) Versatility: ELMs have been successfully applied to a
wide range of tasks, including regression, classification,
clustering, and feature learning [29], [32].

These concepts make ELM a powerful tool for various
machine learning tasks, particularly where speed and ease of
use are important considerations.

The ELM model consists of input weights wj, biases bj,
a number of hidden nodes #Hn, an activation function g(x),
and output weights β ′, all of which operate on SLFNs.
Let X = {(xi, ti)}Ni=1 represent a set of N samples of d
dimensional vector. Each (xi, ti) denotes the order pair of (the
i-th input, the i-th target), where xi = [xi1, . . . , xid ]T ∈ RN×d

and ti ∈ T ⊂ RN×1.
The output of ELM for the i-th input sample is given by

oi =
#Hn∑
j=1

β ′jg
(
w′j · xi + bj

)
, (1)

where w′j and bj are a randomly connecting weight vector
of the j-th hidden node, and bj is its associated input bias.
Both are randomly initialized and fixed. The vector β ′ =[
β ′1, . . . , β

′

#Hn

]T represents the output weight.
For the training data of size N , we have N equations that

can be written in the matrix form as

Hβ ′ = T (2)

where H is the hidden output matrix, N × #Hn. Each of the
i-th rows of H is written as
hi =

[
g
(
w′1 · xi + b1

)
, . . . , g

(
w′#Hn · xi + b#Hn

)]
. For com-

puting β ′, it is solved by

β ′ = H†T, (3)

whereH† is theMoore–Penrose generalized inverse of matrix
H according to the smallest training error as

min
β
∥T−Hβ ′∥ (4)

where #Hn≪ N .
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FIGURE 1. The structure of the amygdala and orbitofrontal cortext
model [13].

C. BRAIN EMOTIONAL LEARNING
Morén et al. [13] proposed a computational model of
emotional learning in the amygdala (MBEL). The model
comprises twomain parts: one representing the amygdala and
the other representing the orbitofrontal cortex. The function
of the amygdala is to respond to an input stimulus Si that
carries an emotional charge and neutral stimuli. At the same
time, the role of the orbitofrontal cortex is to make decisions
that will inhibit inappropriate responses from the amygdala.

From Fig. 1, for the stimulus Si ∈ Rd , Aj ∈ R represents
the input at the j-th dimension of amygdala, while Oj ∈ R
represents the input at the j-th dimension of the orbitofrontal
cortex, which are computed as

Aj = SijVj, (5)

Oj = SijWj, (6)

where V = [V1, . . . ,Vd ] and W = [W1, . . . ,Wd ] are the
connecting weight vectors of the amygdala and orbitofrontal
cortex, respectively. For a special input of the amygdala, it has
an additional input or an expanded feature, which is computed
as

Ad+1 = max(Si1, . . . , Sid ). (7)

For the MBEL, Ad+1 is directly produced by the thalamus
and fed to the amygdala. It is different from other parts
of Si that are obtained from the sensory cortex part. The
approximated values of MBEL are written as

E = (
d∑
j=1

Aj + Ad+1)−
d∑
j=1

Oj, (8)

where (
∑d

j=1 Aj) + Ad+1 is the output of the amygdala
that reacts to the sensory input Si while

∑d
j=1Oj inhibits

inappropriate reactions for Si.
The updating of connecting weight Vj, iinvolves the

difference between the reinforcer (Rew) and the activation

of A, which is computed as

1Vj = ε(Sij ×max(0,Rew−
d∑
k=1

Ak )) (9)

where ε is the learning rate of the model, Rew is a reward
value and

∑d
k=1 Ak is the summation of A at the previous

period. The authors of this model have claimed that adjusting
the weight rule of V is a monotonic increase [13].
Adjusting the j-th component ofW, is written as

1Wj = α(Sij × (
d∑
k=1

Ok − Rew)), (10)

where α is the learning rate.

D. BRAIN EMOTIONAL LEARNING BASED ON INTERVAL
KNOWLEDGE (BEL-IK)
Sharafi et al. [17] have proposed an improved brain emotional
learning model based on interval knowledge (BEL-IK)
to enhance the MBEL model. It was reported that the
performance of BEL-IK is better than that of MBEL. The
strengths of BEL-IK lie in its efficiency, quick training and
testing, compact size, simplicity, and ease of computation.
BEL-IK, designed using the rough neural network concept,
is based on interval knowledge (IK). For BEL-IK, connection
weight vectors Vj of the amygdala are divided into two
parts: V upper

j and V lower
j , while weight vectors Wj of the

orbitofrontal cortex are modified toW upper
j andW lower

j .
Each orbitofrontal cortex node is divided into two parts

for the structure of a BEL-IK neural network. The first and
second are written as the following

Oupper =
d∑
j=1

Sj ×W
uppper
j , (11)

Olower =
d∑
j=1

Sj ×W lower
j . (12)

Each amygdala node is composed of two parts that are written
as

Aupper =
d∑
j=1

Sj × V
upper
j , (13)

Alower =
d∑
j=1

Sj × V lower
j . (14)

The orbitofrontal cortex output is computed as follows

Oob = µ1Oupper + µ2Olower , (15)

while the amygdala output is written as

Oam = σ1Aupper + σ2Alower , (16)

where µ1 and µ2 are weights of the orbitofrontal cortex
output, σ1 and σ2 are weights of the amygdala output.
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FIGURE 2. The structure of the Extreme Learning Machine guided Brain
Emotional Learning model (ELM-BEL). There is no output bias term in the
model.

FIGURE 3. The Biased-ELM model features a single-hidden layer
feedforward network with an output bias term sourced from the
B2BELM-BEL’s bias, affecting neuron activations and the network’s
decision-making process.

FIGURE 4. The proposed BBELM-BEL or B2ELM-BEL model includes a
built-in bias term. This model builds upon the BEL and the Biased-ELM
methods. The Biased-ELM is a single-hidden layer feedforward network,
with the output bias coming directly from B2ELM-BEL’s integrated bias.

The output of BEL-IK is computed as

E = (Oam + Ad+1)− Oob. (17)

FIGURE 5. The structure of the BEL-BEL model.

Algorithm 1 Training of Biased Extreme LearningMachines
(1) call the TrainBiasedELM procedure to train and find
a feed forward neural network giving the minimum error.
(2) call the FFELM function to get the ELM-guided
expended feature.
procedure TrainBiasedELM(XS ,YS ,NH ,NE )
1. create a set of ELM neural networks size NE .
2. find the minimum error ELM neural network.

for i← 1 to NE do
w′i ∈ Rd+1×NH ← 2× rand ∈ Rd+1×NH − 0.5
H←

[
h1, . . . ,hNS

]T , Hi←
[
1NH×1,H

]
βi← H†YS , Ŷi← Hiβi
Errori gets from (30)

end for
find BELMbest using (31)
WBELM ←W′ibest , βBELM ← βibest

return WBELM , βBELM
end procedure

The updating of µ1, µ2, σ1 and σ2 at time t , they are
computed as

µ1(t) = µ1(t − 1)+ η1 × e× (−1)× (1)× (Oupper ) (18)

µ2(t) = µ2(t − 1)+ η2 × e× (−1)× (1)× (Olower ) (19)

σ1(t) = σ1(t − 1)+ η3 × e× (−1)× (1)× (Aupper ) (20)

σ2(t) = σ2(t − 1)+ η4 × e× (−1)× (1)× (Alower ), (21)

where e is an approximating error, e = ti − E when ti ∈ T
is the i− th target vector, η1, η2, η3 and η4 are learning rates.
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Algorithm 2 The Bias-Boosted Extreme Learning Machine
guided Brain Emotional Learning(B2ELM-BEL)

procedure B2ELMBEL(X,Y,ηA,ηO,ω,Rew,XS ,YS ,NH ,NE )
aELM ,βELM ← TrainBiasedELM(XS ,YS ,NH ,NE )
V,W← rand ▷ uniform random weights in [−1,1]
pMSE ← realMax ▷ realMax is a very large MSE.
loopEps← 1e− 8 ▷ a small value for loop breaking.
for k ← 1 to Ne do ▷ Ne is the number of epochs

for i← 1 to NT do ▷ NT is the training size
Ŷi ← B2ELMBEL_Test(Xi, V,

W,WBELM ,βBELM )
compute Eobi and Eami from (33), (34)
, respectively.
ei ←

(
Yi − Ŷi

)
for j← 1 to size(V) do

1V← eiϵ1
(
Xijmax(0,Rew−

∑
Eami )

)
1W← eiϵ2

(
Xij(

∑(
Eobi

)
− ωRew

)
)

Vj ← Vj +1V, Wj ←Wj +1W
end for

end for
if |pMSE − cMSE| ≤ loopEps then

cloop← cloop+ 1
if cloop ≥ LoopLimit then

break
end if

end if
pMSE ← cMSE ▷ cMSE is the current validated

mean square error.
end for

return V, W, WBELM , βBELM
end procedure
function B2ELMBEL_Test(X, V, W,WBELM,βBELM )

for i← 1 to size(X) do
Athi ← FFELM( WBELM ,βBELM ,Xi)
compute Eobi and Eami from (33), (34), respectively
Ei ←

(
Eami + A

th
i

)
− Eobi ), Ŷi ← Ei

end for
return Ŷ
end function
function FFELM(WBELM ,βBELM ,X)

create a H matrix according to (28)
H←

[
1NH×1,H

]
, Ŷ← HβBELM

return Ŷ
end function

V upper
j and W upper

j are updated according to (9) and (10),
respectively.

III. PROPOSED METHODS
A. THE BIAS-BOOSTED EXTREME LEARNING MACHINE
GUIDED BRAIN EMOTIONAL LEARNING (BBELM-BEL OR
B2ELM-BEL)
In this section, we propose a new method for enhancing or
structuring the Brain Emotional Learning processes based on
functionalities derived from the Biased-ELM. The following
pieces of literature have inspired this method:
• Khashman [12] delivered a thorough philosophical
review encompassing emotions, their significance in AI,
and previous emotion models. A modified variant of

FIGURE 6. Data division in ELM-BEL and B2ELM-BEL: Illustrated with
three training data proportions (30%, 50%, 75%). When 100% of the
training data is used (%NST

= 100), it exemplifies complete knowledge
transfer learning.

TABLE 1. Percentage-based data division for chaotic time series: DT and
DS (%NST

) sizes. If %NST
= 100, then NST

= NT .

TABLE 2. Consolidated experimental settings.

the backpropagation (BP) learning algorithm, referred
to as the EmBP learning algorithm, was introduced for
weight update in the generalized EmBP-based neural
network topology. This algorithm focused on updat-
ing the weight of emotional neurons. Architecturally,
it incorporates emotional neurons as an extra input
dimension within every node, spanning both the hidden
and output layers. Comparing the BEL-IK with the
generalized EmBP-based neural network topology, the
‘max’ function of BEL-IK performs as the emotional
neurons.
We view emotion as localized information, influenced
by the present context rather than encompassing the
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FIGURE 7. Examples of seven chaotic time series benchmark data sets.

FIGURE 8. Comparison preliminary predicting of Rossler problem,
between ELM and Biased-ELM, averaged from 30-runs and trained using
(%DT = 75 and #Hn = 1).

entire experience. Nonetheless, it’s important to note
that emotions can be modulated by one’s experi-
ences [33] and these experiences can also be trans-
ferred [34]. Consequently, we are in search of a
straightforward machine learning model for facilitating
knowledge transfer.

• Vincent and Bengio [35] showed that certain dictionary
functions can help reduce errors. Specifically, if the
output of these functions aligns closely with the current
residue, the overall error goes down.

• Kwok and colleagues [36] found that tweaking the
Projection Pursuit Learning (PPL) algorithm with a bias
term better represents complex data. This change also
helps the algorithm converge faster to solutions.

For approximation in the regression problem, PPL is
formulated in the form of the projection pursuit regression
(PPR) as

fPPR(x) =
ñ∑

k=1

gk (ak · x), (22)

where x ∈ Rd is the input vector having the dimension
d , ak is the projection vector with ∥ak∥ = 1 and gk is a
transfer function or

{
g1, . . . , gR̃

}
are called smoothers, from

a statistics perspective, R̃ called the order. The behavior of the
smoothers in PPL are parametric functions that are written in
linear combinations of Hermite functions as

g(z̃) =
R̃∑
r=1

ρrhr (z̃), (23)

where z̃ = a · x, hr (z̃) is a Hermite function having
orthogonormal property and defined by

hr (z̃) = (r !)−
1
2 π

1
4 2−

(r−1)
2 H̃r (z̃)φ(z̃), (24)

where each H̃r (z̃) is a Hermite polynomial. It is created in the
recursive style as

H̃0(z̃) = 1

H̃1(z̃) = 2z̃

H̃r (z̃) = 2[z̃H̃r−1(z̃)− (r − 1)H̃r−2(z̃)]

r = 2, 3, 4, . . .

and φ(z̃) is the weighting function

φ(z̃) =
1
√
2π

e−
z̃2
2 .
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FIGURE 9. Example of prediction comparisons using scatter plots with the regression lines of B2ELM-BEL and ELM-BEL for the Rossier problem.
Note that they were trained using (%DT = 75, %NST

= 5 and #Hn = 1).

FIGURE 10. Comparison testing estimation of B2ELM-BEL and ELM-BEL methods when the number of hidden nodes was varied in the range
[1-15] by showing testing averaged RMSE from 30 runs, (%DT = 75, %NST

= 5).

FIGURE 11. Distinguishing the variances in weight: Proper versus Improper BEL models.

To formulate PPL by PPR in a feedforward neural networking
structure having a hidden layer and output layer, the
output of the neural network with the n hidden nodes is

written as

fn(x) =
ñ∑

k=1

β̃kgk (ak · x). (25)
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FIGURE 12. Comparative one-step predictions by various methods for the Exptqp3 and
Henon datasets, illustrating the performance of ELM-BEL and B2ELM-BEL with 5 hidden
nodes trained using (%DT = 30 and %NST

= 5).

However, Kwok and colleagues claimed that PPL has
a major problem involving convergence because a neural
network, as in (25) with the fixed order R̃ will degrade both
training and testing. In addition, they reported that both R̃
and the number ñ of hidden nodes affected the generalization
performance. To address the problem, in the case of fixed
R̃, and still be able to be a universal approximation, they
suggested adding a bias term to the parameter of each transfer
function. Therefore, the equation (25) is modified to be

fn(x) =
ñ∑

k=1

β̃kgk (ak · x+ θ̃k ), (26)

where β̃k are the output weights, ñ is the number of hidden
units and θ̃k is a bias value of the k-th hidden node. PPL
can be constructed by adding one hidden node into the

network as

fn(x) =
ñ∑

k=1

β̃kgk (ak · x+ θ̃k )+ β̃ñ+1gñ+1(añ+1 · x+ θ̃n+1).

(27)

Based on our findings, incorporating ELM principles is
expected to enhance the performance of the BEL model in
predicting time-series data. To this end, we have created a
novel model that replaces the ‘max’ function in the existing
BEL-IK framework with ELM. This integration is executed
without incorporating a bias term. This results in the ELM-
BEL model, as shown in Fig. 2. Moreover, introducing an
output bias term into our ELM-BEL model could further
boost its predictive accuracy.

To identify the optimal bias value, we integrated this
term into the output layer of the ELM, utilizing the
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FIGURE 13. Comparative analysis of preliminary test predictions for the Henon and AEP hourly problems, focusing on the variation in learning rates.
This comparison involves the BEL-IK, BEL-BEL, B2ELM-BEL, and ELM-BEL methods over 10 runs. Each method is denoted with a shorthand that includes
the respective learning rate values: %DT = 50, %NST

= 100, and #Hn = 1 (specifically in the case of B2ELM-BEL and ELM-BEL).

pseudo-inversion method as detailed in equation (3). Notably,
the original ELM, as described in [29], does not include this
bias term. Consequently, we have developed an enhanced
version, termed the Biased-ELM. The architecture of the
Biased-ELM is depicted in Fig. 3 where β0 is the added bias
term.

Additionally, we have devised a further advanced model
named the Bias-Boosted Extreme Learning Machine guided
Brain Emotional Learning (BBELM-BEL or B2ELM-BEL),
with its structure illustrated in Fig. 4. The design of the
B2ELM-BEL structure draws inspiration from the work
proposed in [12].

We anticipate that the inclusion of the output bias term will
enable the B2ELM-BEL model to outperform other models

in predicting time-series data, particularly when the number
of hidden nodes in the ELM is limited.

IV. TRAINING PROCESS OF B2ELM-BEL
A. PHASE 1: DEVELOPMENT OF BIASED-ELM MODELS
In the first phase, we developed a set of NELM Biased-ELM
models by training with the dataset DS . The primary goal at
this stage was to select a Biased-ELM model that effectively
determined the right thalamus stimulus for directing the
amygdala’s response.

For training the Biased-ELM algorithm with NH hidden
nodes, we considered the dataset DS =

{(
xSi , y

S
i

)}
and

the randomized weight vector w′j =
[
bj,w′j1, . . . ,w

′
jNH

]T
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FIGURE 14. Example of data in the context of real-world energy consumption data, %DT = 75.

for each hidden node j = 1, . . . ,NH . The feature set
Xs = {xs1, . . . , x

S
NS } and the corresponding target YS =

{ys1, . . . , y
s
NS } were used for a transfer learning perspective.

The hidden output matrix H is computed as follows:

hi =
[
1, g(w′j1 ·

[
1, xsi

]s
i ), · · · , g(w

′
jNH ·

[
1, xsi

]s
i )
]
1×(NH+1)

,

(28)

where g(·) is an activation function, such as the sigmoid
function.

The predicted target Ŷi of the i-th input in the Biased-ELM
model is obtained as follows:

Ŷi = β0 +Hβ[1,...,NH ], (29)

where minβ[1,...,NH ],β0
∥Yi −

(
β0 +Hβ[1,...,NH ]

)
∥ which

β[1,...,NH ], β0 are estimated using the least squares approach.
This approach involves computing the pseudo-inverse matrix,
which utilizes experience-transformed information viaH and
is supervised by the actual target Yi of the i-th Biased-
ELM model, thereby guiding their optimized values. If every
Biased-ELM model utilizes the same training data, then
Yi equalsYS . The output weights β, including bias terms,
are computed similarly to β ′ in the ELM model but with
different dimensions. The prediction error for each model is

evaluated using:

Errorj =
NS∑
i

(Yi − Ŷi)2, (30)

and the model with the minimum error BELMbest is selected
from the following condition:

min(Error1, . . . ,ErrorNE ), (31)

where j = 1, . . . ,Ne, Ne is the pool size or the number of
ELM-based models.

B. PHASE 2: TRAINING OF THE BRAIN EMOTIONAL
LEARNING MODEL
In the second phase, the BEL model is trained using the
dataset DT , influenced by the thalamus stimulus selected
in the first phase. This training is guided by the chosen
Biased-ELM model, ensuring accurate tuning to the specific
thalamus stimulus, leading to effective learning and response
patterns.

The selected Biased-ELM, as outlined in Algorithm 1,
yields two essential elements: WBELM and βBELM . These
are used to construct the FFELM function. FFELM plays a
key role in transferring knowledge, transforming xi into Ath,
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FIGURE 15. Comparison of testing RMSE and SD for time series benchmark data. %DT = 30.

which is expressed as:

Athi = FFELM (WBELM , βBELM , xi) . (32)

Athi serves as a guideline or knowledge transfer from expe-
rience, influencing the amygdala’s reaction automatically.
Additionally, FFELM is pivotal in predicting ŷ for a given
sample xi.
The training and predicting with the BEL Model are

detailed in Algorithm 2, this phase focuses on usingDT , a set
of training samples for the target domain. The output of the
orbitofrontal cortex and the amygdala are computed as:

Eobi =
d∑
j=1

xij × wj, (33)

Eami =
d∑
j=1

xij × vj. (34)

Here, d represents the dimension number of xi, with weight
vectors w = [w1, . . . ,wd ]T and v = [v1, . . . , vd ]T for the
orbitofrontal cortex and amygdala, respectively. The output
for sample xi in B2ELM-BEL is:

Ei = (Eami + A
th
i )− E

ob
i . (35)

Here, Athi is produced using (32).
The updates of w and v follow BEL methodologies by

Morén [13] and BEL-IK. The updating formulas are:

1vj = errori × ϵ1 × (xij ×max(0,Rew− Eami )) (36)

vj(t) = vj(t − 1)+1vj (37)
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FIGURE 16. Comparison of testing SMAPE and SD for time series benchmark data. %DT = 30.

1wj = errori × ϵ2 × (xij × (Eobi − ω × Rew)) (38)

wj(t) = wj(t − 1)+1wj, (39)

where j = {1, . . . , d} and errori = yi − ŷi is the prediction
error for time series input xi, in the case of if d = 2 then
j = 1 is lower and j = 2 is upper . In these formulas, Rew
denotes the reinforcer value, with ϵ1 and ϵ2 as learning rates
for v and w, respectively and ω adjusting the value of Rew in
the orbitofrontal cortex.

C. THE BRAIN EMOTIONAL LEARNING GUIDED BRAIN
EMOTIONAL LEARNING (BEL-BEL)
Shifting our focus from the ELM to explore the potential of
BEL in knowledge transfer, we investigated the capability
of BEL to function independently in this capacity. This

exploration led to the development of a model we’ve termed
the Brain Emotional Learning guided Brain Emotional
Learning (BEL-BEL). This model echoes the structural
complexity of the B2ELM-BEL, employing a two-stage
training process.

In the initial stage, we utilized a datasetDS to train a BEL-
IK model. This model is designed to approximate the stimuli
in the thalamus. Following this, the second stage involves
training another BEL-IK model using a different dataset DT .
This stage is distinct,in that it operates under the guidance
of the initial BEL-IK model, fostering a deeper and more
nuanced knowledge transfer.

Fig. 5 illustrates the BEL-BEL model’s design and main
features, providing an visual guide to its structure and how it
supports knowledge transfer.
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FIGURE 17. Comparison of testing SMAPE and SD for time series benchmark data. %DT = 50.

D. COMPLEXITY ANALYSIS
The complexity analysis of B2ELM-BEL based on the
floating point operations per second (FLOPS), from [37]
claimed that the number of FLOPS required to solve the least
squares equation Ax = b is mn2+2n3 where A ∈ Rm×n, x ∈
Rn and b ∈ Rm. Therefore, the complexity of Algorithm 1
is approximated as O

(
NE

(
NS (NH + 1)2 + 2 (NH + 1)3

))
FLOPS where NE is the number of Biased-ELM models to
be trained, NS is the training source sample size, which is
very small when compared with the training sample size of
BEL, Ns ≪ NT , NH is the number of hidden nodes. For the
complexity of Algorithm 2, the number of FLOPS in each
part is approximated as

• for computing the B2ELMBEL_Test function to get Athi ,
the number of flops is NS (NH + 1) cd + 2d where c is

the number of dimension of Yi, Y ∈ RNT×c, d is the
number of features in xi ∈ Rd .

• for computing Eobi and Eami , the number of FLOPS is
4d .

• for computing ei, the number of FLOPS is c
• for computingWj and Vj, the number of FLOPS is 10d

The FLOPS total in Algorithm 2 is approximated as

O (NeNT (tFFELM + 14d + c)+ tBELM )

where tFFELM = NS (NH + 1) cd + 2d , tBELM =

NE
(
NS (NH + 1)2 + 2 (NH + 1)3

)
, Ne is the number of

epochs. In the case of ELM without a biased term in
Algorithm 1 and 2, the modified version of B2ELM-BEL is
called ELM-BEL. The number of FLOPS of ELM-BEL is
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FIGURE 18. Comparison of testing SMAPE and SD for time series benchmark data. %DT = 75.

approximated as

O (NeNT (tFELM + 14d + c)+ tELM )

where tFELM = NSLcd + 2d , tELM = NE
(
NSN 2

H + 2N 3
H

)
.

The number of FLOPS for BEL-IK training is approx-
imated as O (NeNT (14d + 2c)) which is faster than of
B2ELM-BEL. If NT is very large, then tBELM/NT might
be close to zero, therefore the proportion of FLOPS
between BEL-IK and B2ELM-BEL can be transformed
from NeNT (14d+2c)

NeNT (Ns(NH+1)cd+2d+14d+c)+NE
(
NS (NH+1)2+2(NH+1)3

) to

be 14d+2c
Ns(NH+1)cd+16d+c

. If we the set values to c and d as c = 1,
d = 2 then the proportion is modified as 15

Ns(NH+1)+17
. That

mean training time scale of B2ELM-BEL is greater than of
BEL-IK, which depends on the number of the source size Ns

and the number of hidden nodes. However, usuallyNs andNH
sizes usually tend to be small values.

V. ADVANCED BEL MODELING TECHNIQUES:
EXPERIMENTAL DESIGN AND TIME SERIES FORECASTING
This section explains the experimental design of B2ELM-
BEL and ELM-BEL and assesses their performance com-
pared to BEL-IK and BEL-BEL. All experiments presented
in this paper were conducted using MATLAB 2022a on
a PC equipped with 8GB of RAM and running the
Windows 10 operating system. The data sets analyzed in
this paper are divided into two categories: seven chaotic
time series benchmark data sets and four real-world data
sets.
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FIGURE 19. Comparative ranking of methods using a critical difference diagram based on
RMSE, MAE, and SMAPE metrics across seven time series benchmark datasets.

A. NAMING SCHEME AND EVALUATION METRICS
This section outlines the naming scheme to be used for
the short-term identification of comparative methods and
describes the evaluation metrics employed.

1) EXPLANATION OF THE NAMING SCHEME USING THE
SPECIFIED FORMAT
When determining the size of DT , the naming for BEL-BEL
and BEL-IK is straightforward since NST (which equals the
size ofDT ) is fixed and involves no variation in hidden nodes.
In contrast, for ELM-BEL and B2ELM-BEL, both NST and
the number of hidden nodes vary, resulting in more complex
naming.

• Training Size Percentage (%DT ): The dataset portion
used for training.

• Method Short Name: Identifies the algorithm, like
B2ELM-BEL.

• Number of Hidden Nodes: Indicates hidden nodes in the
network.

• Transfer Learning Size Percentage (%NST ): The training
set part used for transfer learning.

For example, ‘‘(50%)-B2ELM-BEL-H1-5’’ means:
• ‘‘50%’’: Half of the dataset is for training (%DT = 50).
• ‘‘B2ELM-BEL’’: The algorithm used.
• ‘‘H1’’: One hidden node.
• ‘‘5’’: 5% of DT for transfer learning (%NST = 5).
This concise naming offers quick insights into the model

setup, useful for analysis and comparison. %DT can be
omitted if already mentioned.

2) UNDERSTANDING THE TRAINING SIZE IN TRANSFER
LEARNING MODELS
When working with transfer learning models, it’s crucial to
determine the size of the knowledge transfer learning set that
will be utilized. This is represented by NS in our calculations
as follows:

NS = %NST ×
NT
100

. (40)
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FIGURE 20. Comparative analysis of different methods using testing SMAPE metrics across real-world data sets.
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TABLE 3. Training and testing time (Seconds) for Exptchao, Exptper, Exptqp2, and Exptqp3 problems.

where:
-NT : This is the total number of training data samples in the

models. It represents the full set of data available for training
purposes.

- %NST : This percentage indicates how much of the total
training data (represented by NT ) is being used for transfer
learning. If %NST=100, then NST = NT .

Example: Using the last row of Table 1 for %DT=75.
Consider the B2ELM-BEL model, where the total training
data (NT ) consists of 6144 samples. If we set %NST to 100%,
it means we are using the entire training dataset for transfer
learning. Therefore, in this case, the number of data samples
for transfer learning (NS ) is also 6144. The model name
will be (75%)-B2ELM-BEL-Hn-100, where n represents the
number of hidden nodes in the model.

By adopting this approach, it is hoped that the config-
uration of an experiment is straightforward and allow for
the accurate calculation of the specific amount of original
training data used in any given transfer learning mode.
Alternatively, refer to Fig. 6 for more details.

3) EVALUATION METRICS
For every experiment conducted, it was important to evaluate
how well the algorithm performed. In this paper, we used
three key measures for this evaluation: the root mean square
error rate (RMSE), the mean absolute error (MAE), and the
symmetric mean absolute percentage error (SMAPE). Their
formulas are written as follows:

RMSE =

√√√√( 1
N

N∑
i

(
Yi − Ŷi

)2)
, (41)
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TABLE 4. Training and testing time(seconds) for Henon, Lorenz and Rossler problems.

MAE =
1
N

N∑
i

|Yi − Ŷi|, (42)

SMAPE =
1
N

N∑
i

|Yi − Ŷi|(
|Yi| + |Ŷi|

)
/2

, (43)

where Yi, Ŷi are an actual target value and a predicted value
of the i-th sample.

4) ALGORITHM PERFORMANCE COMPARATIVE ANALYSIS
The results of the experiment are presented in a series
of tables. These tables contain data for analyzing the
performance of various machine learning models, with a
primary focus on ELM-related models. We examined two
versions of these models: one with a single hidden node
and another with multiple hidden nodes, specifically tailored
for the time series benchmark dataset. The objective was
to evaluate the models’ effectiveness in predicting complex
chaotic time series data.

Table 11 functions as a comprehensive summary of testing
performance metrics, denoted by Total Score and Position.
The methodology for calculating the Total Score and Position
can be explained as follows:

• Total Score: A lower Total Score indicates better
performance. The Total Score for each method is the
cumulative sum of ranks obtained from three different
percentages of the training size (%DT = 30, %DT =
50, and %DT = 75) across different metrics (RMSEs,
MAEs, and SMAPEs).
Formula:

Total Score = Rank%DT=30 + Rank%DT=50
+ Rank%DT=75. (44)

In this formula, Rank%DT=30 + Rank%DT=50 +
Rank%DT=75 represent the ranks of the method for
each specified training size percentage, which are
typically averaged across the metrics RMSEs, MAEs,
and SMAPEs. Based on the experimental results, the
ranks for each method, varying by #Hn, %NST , metrics
and %DT , are shown in Tables 12, 13, and 14.

• Position: A lower Position indicates better performance.
The Position of each method is determined based on the
lowest Total Score, as follows:
Let S = {s1, s2, . . . , sn} be the set of Total Scores for
n methods, where each si is the Total Score of the i-th
method.

35886 VOLUME 12, 2024



S. Iamsa-At et al.: Bias-Boosted ELM for Knowledge Transfer in BEL for Time Series Forecasting

TABLE 5. Comparison of testing performance metrics for Exptchao, Exptper, Exptqp2 and Exptqp3 problems where #Hn, %NST
is the number of hidden

nodes and the training size percentage for specifying the transfer learning size, respectively.

- Sort S in ascending order to get S ′ = {s′1, s
′

2, . . . , s
′
n},

where s′1 is the smallest score, s′2 is the second
smallest, and so on.

- Assign a position to each method based on its rank in
S ′. The position function P(i) for the i-th method in
the original set S is given by:

P(i) = the index of si in S ′. (45)

This means that P(i) returns the position of the i-th
method’s score in the sorted list.

B. EXPERIMENTAL SETUP
This experimental phase is designed to assess how different
training sample sizes affect the forecast accuracy of the
B2ELM-BEL and ELM-BEL models. It employs seven
unique chaotic time series datasets. The total sample sizes
of these datasets are listed in Table 1, which originates
from [38]. For preprocessing the data from the seven chaotic
time series datasets, we rescaled each dataset to fit within the
range [0,1]. We then prepared the features of each sample
using a sliding window with a size of 2. After rescaling, the

VOLUME 12, 2024 35887



S. Iamsa-At et al.: Bias-Boosted ELM for Knowledge Transfer in BEL for Time Series Forecasting

TABLE 6. Comparison of testing performance metrics for Henon, Lorenz and Rossler problems where #Hn, %NST
is the number of hidden nodes and the

training size percentage for specifying the transfer learning size, respectively.

samples were divided into training and testing sets according
to the percentage designated for training, denoted as %DT .
For B2ELM-BEL and ELM-BEL, the size of their transfer
learning is defined according to %NST . Fig. 7 displays
example graphs for each of these seven datasets.

In these experiments, both models were trained using a
single or five hidden neurons (#Hn = {1, 5}). Each set of
experiments was repeated over 30 different runs.

The training regimen of the B2ELM-BEL model includes
adjusting the %NST parameter, which represents the propor-
tion of the training data allocated for the knowledge transfer
learning size. This process is detailed in Table 1. For instance,
in our approach, 30% of the total data (2458 samples)
was assigned for DT , and 5% of DT (specifically the first
123 samples) was used as the knowledge transfer learning
size (%NST = 5) for DS , as shown in the last row of Table 1.
This example illustrates the application of %NST in the
model’s training process, highlighting its role in the allocation
of data for knowledge transfer learning.

Meanwhile, the ELM-BEL’s training mirrors that of the
B2ELM-BEL but differentiates by employing an ELMdevoid
of a bias component at the output.

The foundational BEL-IK model was also benchmarked
against its augmented counterpart, the BEL-Guided BEL
(BEL-BEL). The BEL-BEL is an advanced iteration of BEL-
IK, leveraging the latter to facilitate knowledge transfer
that modulates the thalamic stimulus Athi . In this paper, the
knowledge transfer learning data for BEL-BEL was the same
as the training data.

C. ASSESSING MODEL PARAMETERS IN PREDICTIVE
TASKS: A COMPARATIVE STUDY WITH ROSSLER, HENON,
AND AEP HOURLY DATASETS
This subsection explores the optimization of BEL models,
focusing on the impact of the number of hidden nodes
and learning rate adjustments on prediction accuracy. The
goal is to systematically demonstrate their influence on the
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TABLE 7. Comparison of testing performance metric standard deviations (SD) for Exptchao, Exptper, Exptqp2 and Exptqp3 problems where #Hn, %NST
is

the number of hidden nodes and the training size percentage for specifying the transfer learning size, respectively.

efficiency and effectiveness of BEL models in forecasting
tasks.

Various configurations of BEL models, including both
ELM and Biased-ELM, are employed across three datasets:
Rossler, Exptqp3, and Henon. The Rossler and Exptqp3
datasets serve as a baseline for prediction accuracy, while the
Henon dataset presents a more complex challenge.

In the study of the Rossler problem, a comparative
analysis of the Biased-ELM and ELMmodels was conducted,
each undergoing 30 tests with a single hidden node. The

Biased-ELM model notably outperformed the ELM model,
achieving a lower average testing RMSE (refer to Fig. 8).

The number of hidden nodes greatly affects performance,
particularly when there are fewer hidden nodes. This was
true of the ELM-BEL model, which faced more difficulties
compared to the B2ELM-BEL model. However, as the
number of hidden nodes increases, the performance of both
models tends to converge. This is illustrated in Fig. 10.

In analyzing the complex Henon problem, signifi-
cant performance differences were observed between the
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TABLE 8. Comparison of testing performance metric standard deviations (SD) for Henon, Lorenz and Rossler problems where #Hn, %NST
is the number

of hidden nodes and the training size percentage for specifying the transfer learning size, respectively.

B2ELM-BEL and ELM-BEL models, especially with less
than five hidden nodes. Their alignment with actual data was
notably better than other BEL models (refer to Figs 12(a-b)).

When setting the learning rate for training BEL models,
choosing an improper value can sometimes lead to undesir-
able weights w and v, as shown in Fig. 11 The experiments
identified 0.0001 as a suitable learning rate. This rate not only
yielded desirable weights w and v but also produced the best
results across multiple metrics for all tested models, as shown
in Fig. 13.

This study underscores the vital importance of hidden
nodes and learning rates in optimizing BEL models. For
reference, the specific parameter settings employed in our
experiments are detailed in Table 2. These settings will be
applied in the deployment of the models.

D. REAL-WORLD DATA
The BEL models were further tested using four real-world
datasets from Kaggle [39]: (1) American Electric Power

(AEP), (2) Dayton Power and Light Company (DAYTON),
(3) PJM Interconnection LLC East Region (PJME), and
(4) PJM Interconnection LLC West Region (PJMW). These
datasets represent actual energy capacities in Megawatts
(MW) and are briefly described as follows:

• AEP Hourly: This dataset, with 121,273 samples,
presents hourly electrical power capacity data in
megawatts from American Electric Power (AEP)
between 2004 and 2018. It reflects AEP’s total power
generation capacity, crucial for evaluating their ability
to meet energy demands.

• DAYTON Hourly: With a sample size of 121,275
samples spanning from 2004 and 2018, this dataset
provides data of the electrical capacity, measured in
megawatts, associated with the Dayton Power and Light
Company. The dataset likely includes values recorded
over a specific period. This would allow for the analysis
of the company’s power generation or consumption
patterns and provide a better understanding of the
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TABLE 9. Comparative testing performance metrics for AEP Hourly and DAYTON hourly datasets using parameters, %DT , #Hn and %NST
. Note: In each

cell, the upper row represents the metric value, and the lower row indicates the standard deviation.

company’s contributions to the power grid; potentially
identifying trends or patterns in its energy-related
activities.

• PJME Hourly: The dataset covers 2002 to 2018,
and consists of 145,366 records of hourly power
consumption in the PJM Interconnection LLC East
Region, measured in megawatts (MW). Originating
from PJM, a regional transmission organization in
the Eastern United States, this dataset reflects the
electric transmission system’s capacity across sev-
eral states and jurisdictions, including Delaware,
Illinois, Indiana, Kentucky, Maryland, Michigan,
New Jersey, North Carolina, Ohio, Pennsylvania,

Tennessee, Virginia, West Virginia, and the District of
Columbia.

• PJMW Hourly: The dataset spans from 2002 to 2018,
and comprises 143,206 samples of hourly power con-
sumption in the PJM Interconnection LLCWest Region
(PJMW). Measured in megawatts (MW), this data is
sourced from PJM, a regional transmission organization
in the Eastern Interconnection grid of the United States.
Covering specific states and areas in the West Region,
the dataset’s scope and availability may have varied over
the years due to regional changes.

We preprocessed these datasets by first removing the best
straight-fit line from each using the ‘detrend’ function in
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TABLE 10. Comparative testing performance metrics for PJME Hourly and PJMW hourly datasets using parameters, %DT , #Hn and %NST
. Note: In each

cell, the upper row represents the metric value, and the lower row indicates the standard deviation.

MATLAB version R2022a. Then, we rescaled the datasets to
fit within the range [0,1]. Finally, we slide the data with a
specified window size of 2. The examples of each dataset are
illustrated in Fig. 14.

Each ELM-based model was designed with a simplified
architecture featuring two specific hidden nodes, denoted as
#Hn=1 and #Hn=2. The experiments were conducted using
a training size, a percentage of knowledge transfer learning,
and other essential parameters consistent with those listed in
Table 2.

E. EXPERIMENTAL RESULTS
In a comprehensive analysis of various BEL models applied
to time series data, a fascinating pattern emerged, particularly

when comparing B2ELM-BEL, ELM-BEL, BEL-BEL and
BEL-IK. The study, which scrutinized the performance across
chaotic time series benchmarking and real-world energy
consumption datasets, brought to light a detailed picture
of how these models stack up against each other, offering
valuable insights for practitioners in selecting the appropriate
model based on the dataset and desired outcomes.

Central to this evaluation were the testing performance
metrics, namely Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Symmetric Mean Absolute Per-
centage Error (SMAPE), alongside their standard deviations
(SD). These metrics are pivotal in gauging the accuracy
and consistency of the models, with lower values indicating
superior performance and reliability.
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TABLE 11. Summary of testing performance metrics.

1) SEVEN CHAOTIC TIME SERIES BENCHMARK
EXPERIMENTAL RESULTS
In the context of time scales for comparative methods,
Tables 3-4 show that BEL-IK has the shortest training and
testing times. Following BEL-IK, the BEL-BEL model ranks
second in speed, while ELM-BEL is the third fastest, and
B2ELM-BEL is the slowest. The extended training time
for B2ELM-BEL and ELM-BEL, in comparison to the
others, can be attributed to their requirement to train Ne
Biased-ELM models. This process is necessary to select
the optimal Biased-ELM model for transfer knowledge in
BEL. In terms of testing times, ELM-BEL outperforms
B2ELM-BEL. This difference arises because the B2ELM-
BEL model includes a biased term, which impacts its testing
speed.

The experimental results for the chaotic time series bench-
marks are extensively documented in Tables 5-6. These tables
provide a thorough analysis of RMSEs, MAEs, and SMAPEs
for each testing evaluation metric. To better clarify the
assessment of testing performance across various problems
and methodologies, Standard Deviations (SDs) for the testing
evaluation metrics are presented in Table 7 and Table 8.
These tables provide additional insights into the variability
of standard deviations (SDs) across different scenarios and
experimental setups. Moreover, tables mentioned provide a
report on testing evaluation metrics. These tables furnish
specific information regarding the number of hidden nodes
(#Hn) and the training size percentage (%NST ). Notably, #Hn
represents the number of hidden nodes, while %NST denotes
the training size percentage used to specify the transfer
learning size.

Utilizing seven chaotic time-series datasets, Fig. 19
features the Critical Difference (CD) diagram, where the
average ranks of various methods are depicted on the x-axis.
In this diagram, lower ranks indicate superior performance,

while higher ranks point to less favorable outcomes. The CD
diagram distinctly illustrates that the B2ELM-BEL model
with five hidden nodes (#Hn=5) surpasses other models
in its category in terms of overall predictive performance.
Notably, the position of the B2ELM-BEL with one hidden
node (#Hn=1) in the middle of the CD diagram implies
its moderate effectiveness based on the chosen performance
metrics, without exhibiting extreme performance in either
direction. However, in direct comparison to the baseline BEL-
IK method, the B2ELM-BEL model with one hidden node
#Hn=1) demonstrates superior performance in all metrics,
including RMSE, MAE, and SMAPE.

Table 11 shows a comprehensive summary of testing
performance metrics, denoted by Total Score and Position.
In the chaotic time series benchmarking datasets, the
performance of various models displayed distinct variations.
The standard BEL-IKmodel ranked seventh with a total score
of 484, while its variant, BEL-BEL, placed slightly lower at
eighth with a score of 489.

The experimental results from Figs. 15e, 16e, 17e, and 18e
demonstrate that the B2ELM-BEL model, when equipped
with five hidden nodes (#Hn=5), significantly outperforms
its counterpart with only one hidden node (#Hn=1), par-
ticularly in complex scenarios such as the Henon problem.
This is especially noticeable in the Henon case, where the
one-hidden-node model shows notably weaker performance,
highlighting its limitations in handling intricate challenges.
Consequently, although the B2ELM-BEL model with one
hidden node is functional for simpler tasks, it falls short in
more complex situations, underscoring the need to increase
the number of hidden nodes beyond one.

In conclusion, the B2ELM-BEL model with one hidden
node (#Hn=1) and a 5% transfer learning size (%NST )
secured fifth positionwith a score of 362. Thismodel excelled
further with five hidden nodes (#Hn=5) and the same transfer
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TABLE 12. Performance rankings of machine learning methods for Exptchao, Exptper and Exptqp2 chaotic time-series.

learning size, achieving the first runner-up position with a
score of 153.5.

The ELM-BEL model, on the other hand, trailed in the
bottom, securing the tenth position with a score of 570 when
set at one hidden node (#Hn=1). However, it reached its best
ranking, third place, with a score of 163 when enhanced to
five hidden nodes (#Hn=5) and a 100% transfer learning
size (%NST ). These findings underscore the importance of
a higher number of hidden nodes for effectively managing
challenging datasets, and demonstrate that a single-node
ELM-BEL model is not viable in such contexts.

2) REAL-WORLD DATA EXPERIMENTAL RESULTS
The experimental results based on the real-world data,
meticulously detailed in Tables 9-10, are complemented

by summaries of RMSEs, MAEs, SMAPEs and SDs of
each testing evaluation metrics. Figure. 20 displays the
performance, summarized by SMAPEs and SDs.

Table 11 offers a detailed overview of the testing
performance metrics, encompassing both Total Score and
Position. The ranking results are not much different in
the real-world energy consumption datasets. Here, BEL-
IK and BEL-BEL occupied the lower tiers, ranking eighth
and seventh, with scores of 279.5 and 261.5, respectively.
B2ELM-BEL emerged as a clear front-runner, especially
with 2 #Hn and 5%NST , achieving the first runner-up position
with a score of 50.5. It consistently outperformed BEL-IK in
various combinations of %DT , %NST , and #Hn, underlining
its superior predictive accuracy and reliability across differ-
ent datasets. ELM-BEL, although displaying inconsistency,
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TABLE 13. Performance rankings of machine learning methods for Henon, Lorenz and Rossler chaotic time-series.

showed potential in specific settings, particularly with 2 #Hn
and 100 %NST , where it ranked fourth with a score of 145.

From these results, it is evident that B2ELM-BEL, with its
varying configurations, demonstrated a significant advantage
over BEL-IK across diverse datasets, consistently recording
lower RMSE, MAE, SMAPE, and SD. This underlines its
superior predictive accuracy and performance under these
settings. ELM-BEL’s performance, while varied, suggested
its effectiveness under certain conditions, particularly with
higher %NST and #Hn.

In contrast, the BEL-BEL model, when compared with
BEL-IK, did not show a marked statistical advantage. The
performance metrics across datasets for these models were
closely matched, suggesting similar levels of accuracy and
reliability. The choice between BEL-BEL and BEL-IKwould
likely hinge on factors beyond just the basic error metrics,
such as computational demands or specific application
requirements.

VI. CONCLUSION
Our extensive analysis of time series forecasting has
revealed insights regarding the performance of various

predictive models, with a particular emphasis on the BEL
models. This conclusion synthesizes the key findings of
our study, offering a comprehensive view of the capa-
bilities and potential applications of these models within
the broader context of machine learning and predictive
analysis.

The paper introduces the Bias-Boosted Extreme Learning
Machine-Guided Brain Emotional Learning (B2ELM-BEL)
model, marking significant advancements in chaotic time
series prediction and machine learning. A notable con-
tribution of this research is the innovative integration of
the existing BEL-IK model with the ELM method. This
integration effectively replaces ‘emotion’ with ‘experience,’
where the ELM functions as a knowledge transfer unit. Such
a unique combination signifies a considerable advancement,
offering a novel perspective in approaching chaotic time
series prediction.

Another key aspect of this research is the introduction
of a bias term into ELM output weights. This modification
is a minor tweak and a fundamental enhancement that
significantly improves the model’s predictive accuracy.
It distinguishes the B2ELM-BEL model from traditional
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TABLE 14. Performance rankings of machine learning methods for real-world energy consumption at different training sizes.

approaches, adding a unique feature that bolsters its perfor-
mance.

Compared to BEL-IK, the B2ELM-BEL model consis-
tently demonstrates superior accuracy, as indicated by its
lower RMSE, MAE, SMAPE, and SD scores. For instance,
in the chaotic time series benchmarking, B2ELM-BEL
notably outperformed BEL-IK, showcasing its robustness
in handling complex predictive tasks. The B2ELM-BEL
model’s effectiveness, even with fewer hidden nodes and a
lower percentage of knowledge transfer data size, represents
a significant advantage, particularly in scenarios requiring
computational efficiency.

This attribute reflects the model’s sophisticated design,
enabling it to maintain high-performance levels despite

reduced computational complexity. Our evaluations across
various benchmarks and real-world scenarios affirm the
model’s versatility and robustness. B2ELM-BEL has consis-
tently proven its superiority over other BEL models, making
it a preferred choice for diverse forecasting applications.

The performance of the ELM-BEL model, which operates
without a bias term in the ELM, varies but demonstrates
effectiveness in specific settings. This is particularly evident
when the model is configured with higher %NST and #Hn,
highlighting its adaptability and potential effectiveness in
certain scenarios. This finding suggests that ELM-BEL could
be highly effective for specific applications, necessitating a
tailored approach based on the particular requirements of the
task.

35896 VOLUME 12, 2024



S. Iamsa-At et al.: Bias-Boosted ELM for Knowledge Transfer in BEL for Time Series Forecasting

The comparison between the BEL-BEL and BEL-IK
models reveals no distinct statistical advantage. With similar
performance levels, BEL-BEL requires more computational
effort than BEL-IK.

Looking ahead, the success of B2ELM-BEL opens numer-
ous avenues for further research and development. Potential
focus areas include enhancing the model’s algorithmic
efficiency, exploring its applicability to a broader spectrum
of data types, and conducting comparative studies with
other advanced models. These endeavors aim to amplify
the model’s capabilities and extend its utility in the rapidly
evolving landscape of data science and machine learning.

In summary, the B2ELM-BEL model, with its established
strengths in accuracy and adaptability, emerges as a potent
tool in the field of chaotic time series prediction. Its
potential for further development and varied applications
holds great promise for advancing methodologies in time
series forecasting.

APPENDIX
TABLES
See Tables 12–14.
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