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ABSTRACT With the continuous progress of technology, the equipment and technical complexity of
thermal systems are increasing, resulting in higher requirements for thermal inspection systems. Traditional
inspection systems often have problems such as un-reasonable path planning and incomplete equipment
monitoring, which may lead to low equipment operation efficiency and even lead to safety accidents.
To address these issues, this study proposed using chaotic optimization algorithms to optimize Proportion-
integral-derivative (PID) controllers and using Resilient Back Propagation (RPROP) to optimize image
denoising models. Subsequently, a new thermal inspection system was constructed based on improved PID
controllers and optimized image denoising models. In this study, the thermal system data in the public
database and the problem data set collected in the actual thermal environment were used for experimental
verification. Through comparative experiments of denoising models, the improved image denoising model
had a CPU running time of 0.35 s, 0.78 s, and 0.69 s for Parrot, Phantom, and Frame denoising, respectively,
which was superior to the comparison models. Later, in the comparison experiment of improving the PID
controller, the adjustment time, peak time, and rise time of the chaos optimized PID controller were 0.719 s,
0.731 s, and 0.595 s, respectively, which were superior to the comparative controller. Finally, an empirical
analysis was conducted on the proposed new thermal inspection system. The average detection accuracy and
average detection time of the new thermal inspection system were 94.6% and 28.4 minutes, respectively,
which were significantly better than traditional thermal inspection systems. The above results indicate that
the proposed new thermal inspection system has good performance and can be applied to the actual inspection
process of thermal equipment, thereby promoting the development of the thermal systems.

INDEX TERMS Chaos optimization, RPROP, thermal system, image denoising, PID controller.

I. INTRODUCTION
Thermal systems are an important research object in engi-
neering, involving multiple physical processes such as energy
conversion, heat conduction, and fluid flow [1], [2]. Ther-
mal inspection is a component of the thermal system used
for inspecting and monitoring thermal equipment. As an
important tool to ensure the normal operation of equip-
ment and prevent potential risks, the design optimization of
the thermal inspection system is gradually receiving wide-
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spread attention [3], [4]. The thermal inspection system is
a comprehensive system that integrates sensor monitoring,
data processing, user inter-action, communication transmis-
sion, and alarm linkage to ensure the safe, efficient, and
stable operation of the heating system. Thermal inspection
systems also face many challenges in practical application.
First of all, the traditional thermal inspection systems may
have problems such as un-reasonable inspection path plan-
ning and inaccurate data collection, resulting in failure to
fully and effectively monitor and evaluate the equipment.
Secondly, as the size and complexity of thermal inspection
systems increase, the performance and stability of the thermal
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inspection system are also put forward higher requirements.
Moreover, due to the complexity and variability of the thermal
environment, how to achieve real-time and accurate moni-
toring of the equipment is also a problem that needs to be
solved. To improve the efficiency and performance of ther-
mal inspection systems, relevant experts have continuously
explored new optimization methods and algorithms in recent
years. Chaos Optimization Algorithm (COA) and Resilient
Back Propagation (RPROP) are two methods widely used in
optimization problem in recent years, and they have achieved
significant results in different fields [5]. COA is a global
optimization algorithm based on chaos theory, whose basic
principle is to search for the optimal solution by introducing
chaotic sequences [6]. Chaotic sequences have the charac-
teristics of irregularity and strong randomness, which can
effectively avoid falling into local optimal solutions [7]. In the
optimization of thermal inspection systems, COA can be
applied to parameter optimization, structural optimization,
and other problems. The optimal solution of the system is
ultimately found by continuously updating parameter values.
However, COA has certain shortcomings in terms of con-
vergence speed and search ability, so further improvement
and optimization are needed [8]. RPROP is an optimization
algorithm based on neural networks, whose basic idea is
to achieve information transmission and update by simulat-
ing the working mode of neurons [9]. In thermal system
optimization, RPROP can continuously adjust the weights
and biases of neural networks to ultimately achieve system
optimization [10]. This study innovatively proposes a new
optimization strategy to better solve the problems existing
in the practical application of the thermal inspection sys-
tem, which further improves the overall performance of the
thermal inspection system by integrating COA and RPROP.
Through exploration and practice, it is hoped to provide a
new approach and method for improving the performance of
thermal systems and bring new breakthroughs and progress
to research and practice in the engineering field.

This paper will be discussed in four sections. The first
section is devoted to the analysis of COA, RPROP, and
related studies of thermal systems. The second part describes
the design of thermal inspection system which combines
COA and RPROP. In the third section, the performance of
the proposed thermal inspection system is analyzed using
thermal system data from public databases and problem
datasets collected in real thermal environments. In the fourth
part, the results of the thermal inspection system proposed in
the research are compared and analyzed, and the conclusion
is drawn.

II. RELATED WORKS
COA is an optimization algorithm based on chaos theory.
Its basic idea is to utilize the characteristics of chaotic sys-
tems and search for the optimal solution by introducing
randomness and non-linear factors. Many scholars have con-
ducted extensive research on it. For example, Duan et al.

used COA to optimize the weight parameters and acceler-
ation coefficients of particle swarm optimization algorithm
to improve its practical application performance and intro-
duced control factors based on chaos theory to obtain a new
hybrid algorithm. Actual performance tests had confirmed
that the stability, convergence speed, and accuracy of this
algorithm were superior to the comparison algorithm, and
its practicality was robust [11]. Premkumar et al. proposed
an optimization algorithm that combined COA and gradi-
ent optimizer to address the low efficiency of photo-voltaic
system efficiency estimation models. Performance testing
had confirmed that the average RMSE and runtime of the
optimization algorithm were 0.00237 and 18.44 seconds,
which were superior to the comparison algorithm [12].
In addition, RPROP, as an improvement of back propaga-
tion algorithm, was also being studied by more and more
scholars. Priyadarshi et al. proposed a fusion algorithm based
on RPROP and constant modulus algorithm to improve the
performance of un-supervised weight adaptive techniques
used in channel equalization, and the actual performance of
the fusion algorithm was tested. These results confirmed that
compared to traditional algorithms, the convergence, com-
plexity, and residual ISI of this proposed fusion algorithm
had been significantly improved [13]. Abdulkarim et al.
used RPROP to optimize the particle swarm optimization
algorithm and obtain a hybrid method to better predict neural
network time series in different environments, and compar-
ison experimental analysis was conducted on this hybrid
algorithm. These results confirmed that it a prediction accu-
racy of 94.7% for time series, which was significantly better
than the improved algorithm [14].
A thermal system is composed of various thermal equip-

ment and pipe-lines, used to achieve the transfer and conver-
sion of heat energy. As the thermal system rapidly develops,
there is also increasing research on it. For example, Wang
et al. proposed a hierarchical deep domain adaptive thermal
system to address the low accuracy of fault diagnosis in peak
shaving power plants under different operating conditions.
Compared to before, the fault diagnosis accuracy of this ther-
mal system had been significantly improved under different
working conditions, which had practical value [15]. Violante
et al. proposed a thermal management system model that
integrated thermal resources such as co-generation units, heat
pumps, and boilers to better manage energy in the power grid.
These performance tests confirmed that the thermal man-
agement system model could effectively manage the energy
of the power grid, with significant economic benefits [16].
Toth et al. proposed a solar thermal control system based on
C language and Simulink model to address the low control
effectiveness of current solar thermal systems. These results
confirmed that the thermal system could effectively control
solar energy and had strong adaptability [17]. Babu et al. pro-
posed a two-stage controller based on a cascaded combination
of fractional order proportional derivative and proportional
integral derivative to improve the performance of actual dish
Stirling solar thermal systems under de-regulation. And they
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used group search algorithm to optimize the controller and
finally applied it to the solar thermal system. These per-
formance tests confirmed that the dynamic response of the
optimized solar thermal energy system was lower than that
before optimization, resulting in a significant improvement
in performance [18].

The above related research indicates that the application
range of COA and RPROP is relatively wide, and there are
various methods for applying them in thermal systems. How-
ever, there is currently relatively little research on combining
COA and RPROP with thermal systems. To fill the research
gap in this area and better improve the overall performance
of thermal systems, this study combines COA and RPROP
and applies them to thermal systems. In the above studies, the
relative effect of the new thermal system proposed by Wang
et al. was good, and its recognition accuracy was 91.2%,
which could be further improved. Toth et al. proposed a solar
thermal control system based on C language and simulink
model. Although the adaptability was strong, its recognition
performance needed to be improved. Although the dynamic
response of the thermal system based on the cascade combi-
nation of fractional proportional derivative and proportional
integral derivative proposed by Babu was greatly improved,
its overall performance still needed to be optimized. There-
fore, this study combines COA and RPROP and applies them
to the thermal system to improve its overall performance and
make up for the gaps in the combination of COA and RPROP
with the thermal system. It is expected that the working
performance of thermal engineering system can be improved
in this way, so as to promote the development of the thermal
engineering field.

III. DESIGN OF THERMAL INSPECTION SYSTEM
INTEGRATING COA AND IMPROVED IMAGE DENOISING
MODE
Thermal inspection systems play a crucial role in ensuring
the efficient and safe operation of thermal systems. So this
study focuses on these systems. They can monitor and inspect
thermal equipment, which is essential to prevent potential
risks and maintain optimal system performance. To optimize
the performance of the thermal inspection system for visible
light images, a fusion RPROP image denoising model and
a COA-based Proportion-integral-derivative (PID) controller
are proposed in this chapter. Subsequently, a new thermal
system is constructed based on the proposed denoising model
and improved PID controller. This chapter mainly introduces
the construction of image denoising models, optimization of
PID controllers, and the architecture of new thermal systems.

A. OPTIMIZATION OF IMAGE DENOISING MODEL WITH
RPROP FUSION
The thermal inspection system for visible light images
requires image denoising operations to improve image quality
and signal-to-noise ratio. The purpose of denoising is to
reduce or eliminate noise in images and improve the clarity
and readability of images, thus better analyzing and monitor-

FIGURE 1. Schematic diagram of TV in denoising.

ing thermal equipment [19], [20]. Statistical filters, wavelet
denoising, and image enhancement algorithms are common
denoising methods, but they may introduce image blur, detail
loss, artifacts, or noise. Total Variation (TV) is amathematical
model used to describe the dynamic behavior of a system,
which has the advantages of preserving edges and details,
removing noise and artifacts, and adapting to different types
of noise [21]. TV reduces noise in the image by constraining
TV and tries to maintain the detailed structure of the original
image asmuch as possible. It has certain adaptability to Gaus-
sian noise, salt and pepper noise, and other non-linear noise.
Figure 1 shows the schematic diagram of TV in denoising.

From Figure 1, it should first determine the image that
needs to be denoised, and then establish an optimization
problem based on the principle of TV. Afterwards, in the
established optimization, the total change is taken as the
objective function and a difference term is added as a con-
straint condition. Afterwards, an iterative algorithm is used
to solve the above optimization problem. In the iteration, the
calculation is repeated and the image is updated until the
convergence condition is reached. Finally, through multiple
iterations, the optimization algorithm will gradually reduce
the total change in the image and obtain a denoised image
as the final result. TV is used for image denoising, but its
calculation is complex and may lead to image smoothing.
RPROP is an optimization method that optimizes TV image
denoising by adaptively adjusting the gradient step size.
RPROP monitors the gradient direction and changes of each
parameter to determine the update direction and step size
of the parameters in each iteration, thereby more efficiently
searching the parameter space and finding better solutions.
Equation (1) describes the additive noise.

f (x, y) = u(x, y) + n(x, y) (1)

In equation (1), f represents the observed noisy image. n is
a random noise with a mean of 0 and a variance of σ 2. u
represents the original image that needs to be solved. For the
original image u, the equation needs to be transformed into
TV and described by equation (2).

E = inf
u∈H1(�)

(∥f − u∥2L2(�) + λ ∥u∥21) (2)
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FIGURE 2. Image denoising of fusion RPROP.

In equation (2), E is the error function. u is the perturbation
function. equation (2) is discretized using a finite difference
scheme, resulting in equation (3).

∂En

∂uij
= (fi,j − uni,j) + λ(

∣∣∣uni+1,j − uni,j
∣∣∣ +

∣∣∣uni,j+1 − uni,j
∣∣∣) (3)

In equation (3), i and j both represent the scale of the itera-
tion. λ is a constant greater than 0. RPROP can intelligently
adjust the direction and amplitude of update values based
on the derivative of each parameter, making the updates of
each parameter in-dependent and without mutual influence.
Specifically, when the derivative of parameter is positive,
RPROPwill cause the updated value to decrease relative to its
original value. When the derivative of parameter is negative,
the updated value will increase relative to the original value.
This study considers that the step size adjustment in RPROP
needs to be determined based on the gradient direction of the
current parameter and the direction of the previous update to
determine whether back-tracking is necessary. Therefore, for
two adjacent iterative updates, equation (4) describes the sign
change of the error function on its derivative.

1i(t) = −
ηi(t)
σi(t)

∂E
∂wi

(4)

In equation (4), 1i(t) is the update amount of the ith param-
eter at the tth iteration, ηi(t) is the learning rate, σi(t) is
the gradient symbol, and ∂E

∂wi
is the partial derivative of the

error function with respect to the ith parameter. To ensure the
effectiveness of the descent, the original descent scale can be
multiplied by a number less than 1 to limit the magnitude of
the descent. Meanwhile, if the sign of the derivative remains
un-changed, the descent scale can be multiplied by a number
greater than 1 to accelerate the algorithm’s convergence to
the minimum point. By adopting this strategy, the downscale
can be effectively adjusted, resulting in faster finding of the
minimum point of the error function and improving the con-
vergence speed and performance of the algorithm. Figure 2
shows the image denoising using RPROP fusion.

In Figure 2, in the denoising of fused RPROP images,
it is first necessary to initialize the parameters required for
RPROP. These parameters include step size and update rules.
Next, the experiment converts the image into a matrix or
vector and performs data normalization or pre-processing
according to the needs of RPROP. Afterwards, based on TV,

FIGURE 3. Schematic diagram of PID controller.

with the goal of minimizing image noise or error, RPROP
is used for iterative optimization. Based on the objective
function and initial parameters, the gradients of parameters
are calculated, and the parameters are updated according
to the step size adjustment rules of RPROP. This process
is repeated until convergence or reaching the preset stop
condition. Finally, in the iterative optimization, the updated
parameters are used to generate denoised images.

B. OPTIMIZATION OF CONTROLLER PARAMETERS FOR
INTEGRATING COA
PID, as a commonly used closed-loop controller, can be used
to stabilize control and regulate the output of the system
to the desired target [22]. In the thermal inspection sys-
tem, the parameter optimization of PID control can help
the system quickly stabilize in the required state, which is
crucial for the thermal system. Because rapid stabilization
can reduce energy consumption and improve production effi-
ciency. In addition, the system can be made more stable by
optimizing the PID parameters. Integral control eliminates
the steady-state error of the system by continuously adjusting
the output signal, while differential control can predict its
future change trend, thereby reducing the oscillation of the
system. This stabilization is essential to prevent equipment
damage, reduce maintenance costs, and increase production
efficiency. The design of a PID controller relies on three
parameters: proportional gain, integral time, and differential
time, which can be adjusted to optimize the performance
and stability of the control system [23]. Figure 3 shows the
schematic diagram of the PID controller.
r(t) in Figure 3 is the given value. y(t) is the actual output

value. e(t) represents the control deviation, and equation (5)
is the expression between them [24].

e(t) = r(t) − y(t) (5)

In equation (6), u(t) represents the PID control law in Figure 3
[25].

u(t) = Kp

(
e(t) +

1
Ti

∫ t

0
e(t)dt +

Tdde(t)
dt

)
(6)

In the thermal inspection system of visible light images, the
response and sensitivity of the image processing algorithm
are adjusted through PID controller parameters. But the per-
formance of PID controllers largely depends on the precise
adjustment of parameters [26], [27]. When applying PID
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controllers, it is necessary to adjust and optimize parameters
based on specific system characteristics and requirements.
Gradient descent and chaos algorithm are two optimization
methods. Gradient descent has problems with local opti-
mal solutions, convergence speed, and stability, while chaos
algorithm has global search ability and can handle non-linear,
non-convex, and high-dimensional parameter spaces. Based
on these advantages, this study adopts the logistic mapping in
chaos algorithm to generate chaotic sequences and optimize
PID control parameters. For optimizing search, the ergod-
icity of chaotic motion is crucial. By traversing all states,
it can find the optimal solution globally and avoid falling into
local optima. In addition, the non-repetitive nature of chaotic
motion can also ensure the efficiency of the optimization
process. Equation (7) describes the logistic mapping [28].

xn+1 = f (xn, µ) = µxn(1 − xn) (7)

In equation (7), xn+1 is the chaotic variable, n = 1, 2, . . . ,N .
x0 is within (0, 1). When µ is set to 4, the model is in a
chaotic state. Equation (8) describes the assignment equation
that can obtain several chaotic variables from several initial
values with a difference of one bit.

xn+1 = µxn(1 − xn) (8)

The optimization of setting a class of continuous objects for
each initial variable is described by equation (9).

min J (xi), i = 1, 2, . . . , n, ai ≤ xi ≤ bi (9)

In equation (9), J is the performance indicator that reflects
the dynamic and steady-state performance of the system.
Equation (10) describes it.

J = w1

∫ 1

0
t |e(t)|

dt
max(e(t))

+ w2σ (10)

In equation (10), the sum of weights w1 and w2 remains
constant as 1. σ is the overshoot. Equation (11) describes the
discretization results of performance indicators.

J = min

[
w1

l∑
k=0

|e(k)|
k

max(e(k))
+ w2σ

]
(11)

In equation (11), l is the step size for each chaotic optimiza-
tion. Figure 4 shows the tuning steps for Logistic mapping to
optimize PID controller parameters.

According to Figure 4, optimizing PID controller param-
eters using Logistic mapping mainly involves seven steps.
Firstly, it is necessary to determine the parameter range of
the PID controller, including the range of proportional gain,
integration time, and differentiation time. The second step
is to initialize the parameters of the PID controller. Then
there are parameters for initializing the Logistic mapping,
including mapping constants and initial values. The next step
is to optimize through iteration, using logistic mapping to
adjust the parameters of the PID controller. In each iteration,
the current PID parameters are used to control the system’s
state, followed by the use of logistic mapping to generate

FIGURE 4. Tuning steps of PID controller parameters optimized by
Logistic mapping.

new parameters. The new parameters are used to control the
system’s state. This process will be repeated multiple times
until the optimal PID parameters are found. The fifth step is to
evaluate the optimization results, including the performance
and stability of the system. If the results are satisfactory, the
optimized PID parameters can be used to control the system.
If the optimization results are not satisfactory, the parameter
range of the PID controller can be adjusted and the opti-
mization can be carried out again. Finally, if the optimization
results are not satisfactory after adjusting the parameter range
of the PID controller, the parameters of the logistic mapping
can also be adjusted and re-optimized.

C. ESTABLISHMENT OF A THERMAL SYSTEM MODEL
THAT INTEGRATES CHAOTIC OPTIMIZATION STRATEGY
AND RPROP
The thermal inspection of visible light images is a system that
utilizes visible light images for thermal equipment inspection.
It uses visible light camera technology to obtain visible light
images of thermal equipment, analyze the thermal informa-
tion, and achieve monitoring of equipment operation status
and anomaly detection [29]. This system can obtain real-time
thermal information of equipment, identify problems such
as temperature anomalies, hot spots, and leakage, and pro-
vide corresponding alarm and diagnostic results. Through
this system, the inspection efficiency can be improved, the
safety risks for inspection personnel can be reduced, and the
potential faults and accidents can be detected and prevented
in advance. In the construction of a thermal inspection system
based on visible light images, this study includes a PID con-
troller fusedwith COA and an image denoising TV fusedwith
RPROP. Figure 5 shows the architecture of the constructed
thermal inspection system.

According to Figure 5, the thermal inspection system
architecture studied and constructed mainly includes seven
modules. Firstly, it is data collection, responsible for col-
lecting real-time data of thermal systems. The second one is
image denoising, in which RPROP fusion image denoising
TV is applied. By denoising the collected image data, the
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FIGURE 5. Thermal system architecture constructed by this research.

FIGURE 6. Mobile video capture system.

quality and accuracy of the image are improved. The PID
control module mainly uses PID controller optimized by
the chaotic algorithm to calculate the output signal of the
collected data to control the operating status of the thermal
system. The control execution module is mainly responsi-
ble for converting the output signal of PID controller into
actual control actions. The functions of the feedback and data
processing modules are to provide feedback on the actual
operating status of the thermal system to the PID controller,
and to process and analyze the collected data to provide
decision support and optimize control strategies. The last
module is the user interface module, which is responsible
for providing a user interaction interface, allowing users to
easily view the operating status and control parameters of the
thermal system. In the data acquisition, it is very important
to choose a correct camera to better collect real-time data
of geothermal engineering systems. A mobile video capture
system is used in this study to ensure complete image capture
of the switch. In Figure 6, the system includes components
such as a wide-angle camera, embedded terminal, mobile
power supply, display, and command input device.

According to Figure 6, the video capture system of the
switch achieves video data collection and monitoring by
using devices such as mobile cameras and embedded termi-
nals. And mobile power supplies provide power support for
the system. Equation (12) is the power supply for mobile
power sources.

P = V ∗I (12)

In equation (12), P represents the power supply. V repre-
sents the voltage. I represents the current. The display and
instruction input devices are used to operate and display the
collected video data. Equation (13) is the expression for video
data acquisition and monitoring.

Q = f ∗t (13)

In equation (13), Q represents the amount of data collected
and monitored. f represents the frequency of data collection
and monitoring. t represents the time.

To maintain the stable operation of the system, the mobile
power supply provides a reliable power supply for the entire
system, ensuring the continuous operation of video capture.
The monitor can display the captured video images in real-
time, and the instruction input device is used to operate
the system, control the movement of the camera, and oper-
ate other system functions. After data collection, the image
denoising TV fused with RPROP is applied to denoise visible
light images to improve image quality and thermal infor-
mation accuracy. And thermal information is extracted from
visible light images. Afterwards, a PID controller integrated
with COA is applied to analyze and process the extracted
thermal information, identify problems such as temperature
anomalies, hot spots, and leakage, and provide corresponding
alarm and diagnostic results.

IV. COMPARATIVE ANALYSIS OF DENOISING MODELS
AND CONTROL STRATEGIES AND EMPIRICAL ANALYSIS
OF THERMAL SYSTEMS
The effectiveness and superiority of the proposed image
denoising model, COA-based PID controller, and ther-
mal inspection system were analyzed. Firstly, comparative
experiments were conducted on the performance of image
denoising models based on RPROP, and then the superiority
of the PID controller fused with COA was demonstrated
through comparative analysis. Finally, the effectiveness of the
proposed new thermal inspection systemwas verified through
empirical analysis.

A. PERFORMANCE COMPARISON OF IMAGE DENOISING
MODELS BASED ON RPROP
This study optimized the TV image denoising model through
RPROP and obtained the RPP-TV image denoising model.
To test the specific performance of this denoising model,
comparative experiments were conducted with ROF, VETV,
HOTV, TGV, and ATVF models. The performance of six
models for denoising Parrot, Phantom, and Frame images was
compared, with indicators such as CPU runtime, SNR, and
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FIGURE 7. Comparison of CPU runtime for different models.

actual denoising effect. Figure 7 shows the CPU runtime of
six models for denoising three images under different balance
parameters.

According to Figure 7, the proposed RPP-TV denoising
model had lower CPU runtime when denoising three images
than other comparison models, and its CPU runtime for Par-

rot, Phantom, and Frame denoising was 0.35s, 0.78s, and
0.69s, respectively. In addition, the overall performance of
the RPP-TV denoising model varied slightly when obtaining
different equilibrium parameters, and its performance was the
best when the equilibrium parameter was 0.01. The above
results confirmed that the proposed RPP-TV denoisingmodel
had superiority over other denoisingmodels for CPU runtime.
To further evaluate the performance of the proposed denois-
ing model, Figure 8 also shows the convergence curves of
different models for re-storing noisy images.

According to Figure 8, for three different images, the six
denoising models had almost the same denoising results, and
the curve remained un-changed after 20 iterations. In addi-
tion, the proposed RPP-TV denoising model had a higher
signal-to-noise ratio compared to other denoising models,
and the highest signal-to-noise ratios of the RPP-TV denois-
ing model when restoring Parrot, Phantom, and Frame were
20.9 db, 10.2 db, and 23.2 db, respectively. This result
indicated that the proposed RPP-TV denoising model was
more effective than other models in image denoising. Finally,
to compare the denoising effects of the six models more
intuitively, the study would denoise Parrot image using the
six denoising models, and compare and analyze the denoised
effect images. Figure 9 shows the effect of six denoising
models on Parrot image after denoising.

According to Figure 9, the proposed RPP-TV denoising
model successfully preserved details while eliminating the
maximum noise, leaving only scattered small noise points.
Moreover, its overall denoising effect was significantly better
than the compared denoising models. This result confirmed
that the proposed RPP-TV denoising model performed better
than the comparison models in terms of denoising effec-
tiveness. Based on the comparison of the above dimensions,
the overall performance of the proposed RPP-TV denoising
model was significantly better than the comparison model.
Therefore, applying it to the image denoising process of
thermal systems could effectively improve the overall perfor-
mance of thermal inspection systems.

B. ANALYSIS OF THE CONTROL EFFECT OF PID
CONTROLLER INTEGRATED WITH COA
This study utilized COA to optimize the parameters of the
PID controller. To analyze the performance of the optimized
PID controller using this method, it was compared and ana-
lyzed with PID controllers based on Z-N equation and GA
algorithm optimization. Firstly, in Figure 10, the controller
parameters of the PID controller obtained by the three meth-
ods were compared.

According to Figure 10, the Kp, Ki, and Kd values of
the PID controller obtained from the Z-N equation were
40.13, 0.391, and 0.053, respectively. The Kp, Ki, and Kd
values of the PID controller optimized by GA were 21.41,
0.489, and 0.052, respectively. The Kp, Ki, and Kd values
of the PID controller obtained by the chaotic optimiza-
tion method were 71.45, 0.256, and 0.082, respectively.
After obtaining the parameters of three PID controllers, the
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FIGURE 8. Variation curve of SNR with the iterations.

dynamic characteristic indicators of the unit step response
under the action of the three PID controllers were calculated.
Figure 11 shows the dynamic characteristics indicators of
Z-N PID, GA-PID, and PID control based on chaos optimiza-
tion parameter tuning.

According to Figure 11, the adjustment time, peak time,
and rise time of the chaos optimized PID controller were
0.719s, 0.731s, and 0.595s, respectively. The adjustment
time, peak time, and rise time of the Z-N PID controller

FIGURE 9. Effect of six denoising models on Parrot image after denoising.

FIGURE 10. PID controller parameters obtained by different methods.

were 1.822s, 0.714s, and 0.614s, respectively. The adjustment
time, peak time, and rise time of the GA-PID controller
were 1.388s, 0.803s, and 0.713s, respectively. In addition,
it could be analyzed from Figure 11 that the overshoot of
Z-N PID controller, chaos optimized PID controller, and
GA-PID controller were 21.3%, 0.53%, and 0%, respectively.
The above results indicated that the PID controller based on
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FIGURE 11. Comparison results of dynamic characteristic indicators of
three PID controllers.

chaos optimization parameter tuning had better control per-
formance than the comparison controller, with faster response
speed and smaller over-shoot of the target. To further analyze
the effectiveness of the chaotic PID controller, the control
system pressure was adjusted to 10 MPa and 15 MPa, respec-
tively, and step experiments were conducted under the Z-N
PID controller and chaotic PID controller on the material
testing machine with elastic load. Figure 12 shows the step
response curves of two PID controllers.

According to Figure 12 (a), when the control system
pressure was 10 MPa, the peak times of the chaos opti-
mized PID controller and Z-N PID controller were 0.618 s
and 0.832 s, respectively. And the adjustment times of the
chaos optimized PID controller and Z-N PID controller were
1.121s and 1.384s, respectively. These results confirmed that
under a control system pressure of 10 MPa, the control
effect of the chaos optimized PID controller was better than
that of Z-N PID controller. According to Figure 12 (b),
when the control system pressure was 15 MPa, the peak
times of the chaos optimized PID controller and Z-N PID
controller were 0.703 s and 0.756 s, respectively. And the
adjustment times of the chaos optimized PID controller and
Z-N PID controller were 1.135s and 1.653s, respectively.
This result indicated that under a control system pressure
of 15 MPa, the control effect of the chaos optimized PID
controller was also better than that of Z-N PID controller.
Afterwards, two controllers were used for simulation in
Figure 13.
According to Figure 13, the simulation and experimen-

tal curve trends of these two controllers were basically
consistent, and the experimental response time was longer
compared to the simulation response time under the same
conditions. In addition, compared to Z-N PID controllers,
chaotic optimization PID controllers achieved stability ear-
lier. The above results indicated that the chaotic optimization
PID controller had better control effect and effectiveness.
Therefore, applying it to the construction of thermal inspec-
tion systems could enhance the overall performance of
thermal inspection systems.

FIGURE 12. Step response curves under two control strategies.

FIGURE 13. Simulation and experimental results of two control strategies.

C. ANALYSIS OF THE PRACTICAL APPLICATION EFFECT OF
A NEW THERMAL INSPECTION SYSTEM MODEL
After the completion of the thermal system design based on
chaos optimization strategy and RPROP, it was applied in
the thermal equipment inspection of a certain factory in the
experiment to analyze its practical application effect. Part
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FIGURE 14. Part of the inspection image of the thermal system.

of the inspection image of the thermal system is shown in
Figure 14.

The actual application effect of the thermal inspection sys-
tem was analyzed based on its detection accuracy, detection
time, and ratings from relevant personnel. This experiment
would propose a new thermal inspection system and a tra-
ditional thermal inspection system to inspect 500 thermal
equipment. For the convenience of statistics, the 500 thermal
equipment would be evenly divided into five groups. Table 1
shows the detection accuracy and detection time obtained by
two inspection systems.

According to Table 1, the overall detection accuracy of
the proposed new thermal inspection system was higher than

TABLE 1. Detection accuracy and detection time obtained by the two
inspection systems.

TABLE 2. Detection accuracy and detection time obtained by the two
inspection systems.

that of traditional thermal inspection system. And the average
detection accuracy of the new thermal inspection system was
94.6%, significantly better than 77.8% of the traditional ther-
mal inspection system. In addition, the overall detection time
of the proposed new thermal inspection system was lower
than that of traditional thermal inspection system. And the
average detection time of the new thermal inspection system
was 28.4minutes, significantly better than the 52.0minutes of
traditional thermal inspection system. Then, the new thermal
inspection system proposed in this study and the thermal
inspection system based on machine vision were compared
and tested to demonstrate its superiority in the above exper-
imental environment. The detection accuracy and detection
time obtained by the two inspection systems are shown in
Table 2.

From Table 2, the overall detection accuracy of the pro-
posed new thermal inspection system was also higher than
that of the machine vision-based thermal inspection system.
Moreover, its overall detection time was also lower than that
of the thermal inspection system based on machine vision.
The above results demonstrated the advantages of the pro-
posed thermal inspection system in this study compared to the
more popular thermal inspection system at present. In addi-
tion, 100 relevant practitioners were selected as evaluators
and randomly divided into two groups to further evaluate
the practical application effect of the proposed new thermal
inspection system. The performance differences between the
new thermal inspection system and the traditional thermal
inspection system were analyzed by comparing the reliabil-
ity, effectiveness, and real-time performance ratings of two
groups of evaluators. Figure 15 shows the ratings of two ther-
mal inspection systems. The maximum score was 100 points,
and a high score indicated that the indicator was good.

According to Figure 15 (a), the average scores for relia-
bility, effectiveness, and real-time performance of the new
thermal inspection system were 88.3 points, 89.7 points, and
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FIGURE 15. Scoring results of two thermal inspection systems.

TABLE 3. Comparison results of different thermal inspection systems.

88.1 points, respectively. According to Figure 15 (b), the
average scores for reliability, effectiveness, and real-time per-
formance of traditional inspection system were 72.5 points,
70.3 points, and 71.8 points, respectively. Overall, relevant
practitioners had a higher overall performance evaluation of

the proposed new thermal inspection system, indicating that
the performance of the new thermal inspection system was
better.

V. CONCLUSION
In response to the shortcomings of incomplete equipment
monitoring and inaccurate fault diagnosis in the current ther-
mal inspection system, a new thermal inspection system was
designed in this study. In the thermal inspection system,
RPP-TV fused with RPROP was applied to denoise visible
light images to improve image quality and thermal informa-
tion accuracy. Then, a PID controller fused with COA was
used to analyze and process the extracted thermal informa-
tion, and corresponding alarm and diagnostic results were
provided. Comparative experiments were conducted on the
performance of the proposed RPP-TV denoising model and
the chaos optimized PID controller. These results confirmed
that the highest signal-to-noise ratios of the RPP-TV denois-
ing model in restoring Parrot, Phantom, and Frame were
20.9db, 10.2db, and 23.2db, respectively, which were signif-
icantly better than the comparison models. The peak time
and adjustment time of the chaos optimized PID controller
were 0.618s and 1.121 s, respectively, which were signifi-
cantly better than the 0.832 s and 1.384s of the Z-N PID
controller. In the empirical analysis of the thermal inspection
system, the average scores of reliability, effectiveness, and
real-time performance of the new thermal inspection system
were 88.3 points, 89.7 points, and 88.1 points, respectively,
significantly better than the traditional inspection system’s
72.5 points, 70.3 points, and 71.8 points.

In addition, the thermal inspection system proposed in this
study was compared with some previous similar work, and
Table 3 was obtained.

From Table 3, the accuracy and time consuming of the
thermal engineering system proposed in the study were supe-
rior to the comparison systems. The above results indicated
that the performance of the proposed new thermal inspection
system was significantly superior to traditional inspection
systems. This is thanks to the application of the RPP-TV
denoising model and chaos optimized PID controller, which
improves image quality and thermal information accuracy,
thereby providing more accurate and timely alarm and diag-
nostic results. However, although this study has achieved
remarkable results, there are still some shortcomings that
need to be further explored. First, the RPP-TV denoising
model may have limitations when dealing with specific types
of noise and needs to be further optimized and improved
to adapt to a wider range of application scenarios. Sec-
ondly, chaos optimized PID controller may needmore refined
parameter adjustment and optimization strategy in the face
of complex and changeable thermal environment. To solve
the above issues, future research can be conducted in the
following aspects: First, more advanced denoising tech-
nologies should be explored to improve the image quality
and accuracy of thermal information, such as deep learning
denoising algorithm, non-local mean denoising algorithm,
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BM3D algorithm and other optimized denoising algorithms.
Second, the chaotic optimization PID controller is further
improved to adapt to more complex and changeable thermal
environment by parameter adaptive adjustment, intelligent
control strategy integration, multi-mode control, etc., such
as high temperature and humidity environment, rapid tem-
perature change environment, corrosive thermal environment,
radiation thermal environment, etc. The third is to consider
applying artificial intelligence, machine learning, and other
intelligent technologies to the thermal inspection system to
achieve more intelligent and autonomous equipment moni-
toring and fault diagnosis functions. The fourth is to conduct
more extensive empirical research to verify the applicability
and stability of the new thermal inspection system in different
scenarios. Through the in-depth exploration and practice of
these research directions, it is expected to provide new ideas
and methods for the performance improvement and intelli-
gent development of thermal inspection systems.
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