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ABSTRACT People Identification is a critical aspect in developing modern vehicles, aimed at enhancing
safety and comfort levels. Most traditional methods of people identification in vehicles use RGB images or
videos. In this study, we introduce a novel methodology for identifying individuals in private car scenarios,
utilizing 3D Light Detection and Ranging (LiDAR) technology, generative image inpainting based on
Contextual Attention, and the YOLOVS model. Initially, we gather data utilizing a 3D-LiDAR instrument
and subsequently convert the acquired depth data into depth images. Following this, the depth images are
annotated manually to indicate the positions and identifiers of various individuals occupying distinct seats.
This annotated data serves as the training material for the YOLOv5 model, facilitating the recognition and
categorization of subjects. However, given that individuals seated in the back often have parts of their bodies
occluded by the front seats and the passengers in them, we employ generative image inpainting techniques
to reveal the occluded portions. This step significantly enhances the precision in detecting and identifying
individuals situated in the back seats. We implemented our strategy on a restricted group of four participants,
conducting training and testing phases within identical environments. Prior to the inpainting process, the
classification’s F1 score stood at 66.5%. After inpainting, we observed a notable surge in the F1 score for
the rear-seat passengers increased by 17.1%.

INDEX TERMS YOLOVS5, GAN, people identification, 3D LiDAR, deep learning.

I. INTRODUCTION

In the swiftly evolving landscape of modern society, automo-
biles have become one of the most important tools in every
family. It greatly improves the convenience of every family’s
life. In the meantime, people identification technologies
have developed rapidly and are widely implemented in
vehicles. With the use of this technology, human behavior
while driving and human identity can be more accurately
recognized, improving overall driving comfort and safety.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sangsoon Lim

Human identity can be observed, learned from, and predicted
using in-vehicle person recognition technology. It has the
ability to assess the driver’s degree of focus, spot indicators
of drowsiness, warn the driver or even take over driving
to prevent accidents [1]. Additionally, it can recognize the
driver and adjust the vehicle’s settings in accordance with
their preferences, which adds another level of comfort and
customization [2].

Current methods for identifying individuals predominantly
utilize RGB images or video footage [3]. Such data can
be compromised by environmental conditions, such as
varying lighting or unfavorable weather, leading to potential
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inaccuracies in identification. Beyond these challenges, there
are also significant privacy concerns associated with the use
of RGB images and videos, as they can capture detailed
personal information [4]. Given these limitations, it’s crucial
to explore alternative approaches for people recognition
that are both resilient to environmental variables and more
protective of individual privacy. Such innovations could pave
the way for safer and more reliable identification systems in
various applications.

To address the inherent issues in contemporary people
identification practices, 3D Light Detection and Ranging
(LiDAR) technology is used in our experiment. Our exper-
iment is improving the limitations of traditional RGB images
by utilizing infrared laser beams. These beams meticulously
map out the surrounding environment, generating a detailed
3D spatial representation. Through this method, 3D LiDAR
ensures the acquisition of precise distance and angle data,
markedly more accurate than what RGB images can offer.

3D LiDAR is distinctly advantageous in safeguarding
privacy [4]. Whereas RGB cameras capture detailed images
that may inadvertently reveal personal information, 3D
LiDAR gracefully sidesteps this problem by recording only
the general outlines of objects and distance information
within its view. This approach ensures that personal details
remain confidential, striking a balance between identification
needs and privacy preservation.

Another feature of 3D LiDAR technology is its great
performance under various lighting conditions, including
complete darkness. This characteristic is particularly invalu-
able for applications such as people identification within
private cars, where the interior lighting is often minimal
or non-existent, especially during the night. In such sce-
narios, 3D LiDAR not only maintains its effectiveness
but proves to be a superior alternative, capable of func-
tioning optimally in low-light conditions and protecting
passenger privacy simultaneously. Therefore, employing
3D LiDAR devices promises a robust solution for people
identification across diverse environments, addressing and
resolving the challenges posed by traditional identification
technologies.

Despite its strengths, employing 3D LiDAR for people
identification within private car settings is not without
drawbacks. A primary challenge arises when attempting to
detect passengers seated in the back row. More often than
not, the data representing these passengers is occluded by
the front seats and their occupants. This occlusion leads
to suboptimal detection precision and hinders the overall
accuracy of classifying individuals.

To solve this challenge, our experiment involves utilizing a
generative image inpainting. Generative image inpainting is
designed to restore and repair sections of an image that might
be missing or compromised [5]. This technique proves useful
as it aids in reconstructing the occluded portions of the bodies
of rear passengers. By doing so, it significantly boosts the
precision in detection, ensuring a more accurate identification
process. Through the integration of this method, we envision
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a holistic system that capitalizes on the strengths of 3D
LiDAR while simultaneously mitigating its limitations in
private car contexts.

To summarize, our main contributions are as follows:
1) Transfer depth data captured by 3D LiDAR device into

depth images.

2) Reconstruct the people’s occluded portions from the
back seat.

3) Validate the potential of the YOLOvS model applied
to people identification with 3D-LiDAR images and
compare the result before and after reconstruction.

Our early experimental results have been submitted as a
conference manuscript for publication in [6]. The current
manuscript explains in more details our proposed method,
elaborates on the tuning of the parameters of our models and
experimental settings, and gives more robust basis for our
choices of models, parameters and scenarios. Nonetheless,
more detailed results are given with a more thorough analysis
of the results, the merits and limitations of our proposed
method, and the potential future challenges that need to be
addressed.

In our experiment, we utilize Dynamic Non-linear Map-
ping (DNLM) [7] to transform depth information into depth
images. This transformation provides the foundation for more
sophisticated visual analyses.

A significant challenge we encountered pertained to the
accurate identification of people seated in the back seats of
private cars. Due to the inherent limitations of traditional
methods and the occasional obstructions in the visual field,
identifying these individuals with clarity may be difficult.
Addressing this problem, we devised a method to reconstruct
the occluded part of the body, significantly enhancing the
resolution and clarity of these visual representations.

The next part of our research pivoted around the eval-
uation of the YOLOvV5 model [8], which is the model
utilized in the field of object detection. Known for its
robust capabilities, we sought to understand its performance
specifically in the realm of 3D-LiDAR-based people identi-
fication. Our experiments confirmed its exemplary potential
in this domain. Moreover, we contrast the identification
results before and after the image reconstruction to eval-
uate the role of generative image inpainting in people
identification. These findings underscored the profound
impact of our reconstruction technique when combined with
YOLOVS.

In conclusion, the novelty of our work is that it combines
3D LiDAR technology with generative image inpainting
algorithms to drastically improve recognition accuracy in
these situations, which solves the drawback of RGB images
and videos that cannot be clear when the environment is
dark. 3D LiDAR provides precise depth information and
spatial awareness to effectively identify and locate people in
vehicles, making accurate judgments even when part of the
line of sight is obscured. Additionally, we employ DNLM
technology to enhance the clarity of depth images, particu-
larly in confined spaces such as the interior of private cars.
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This approach ensures that even in these narrow scenarios,
the depth images are distinctly rendered, facilitating more
accurate analysis and interpretation. Notably, there is no
existing state-of-the-art research that has utilized 3D LiDAR
for individual identification in such contexts.

Il. RELATED WORK AND MOTIVATIONS

A. MOTIVATIONS AND CHALLENGES

3D LiDAR (Light Detection and Ranging) has emerged as
a promising technology for human identification due to its
ability to capture high-resolution spatial information. One of
the primary motivations behind its adoption is its capability to
produce detailed 3D point clouds [9] and depth information
[10], which can reveal nuances in human shapes and
gaits. Moreover, unlike traditional camera systems, LiDAR
operates independently of lighting conditions, making it an
ideal choice for environments with variable or low lighting.
This feature not only enhances its versatility but also respects
personal privacy, as LIDAR does not capture facial features
or other sensitive personal details in the same way cameras
do [11]. The integration of 3D LiDAR with other sensor
systems, such as RGB cameras [12], further augments
its accuracy, creating a robust multi-model identification
system.

However, the use of 3D LiDAR in human identification
is not without challenges. One of the primary hurdles is the
current lack of established identification methods tailored
to LiDAR data, given that traditional biometrics like facial
recognition are more mature [13]. Human figures, being
inherently variable in shape, size, and posture, introduce addi-
tional challenges in ensuring consistent identification. The
data collected can also be affected by noise and environmental
artifacts, especially in indoor settings, where people may be
partially occluded, complicating the identification process,
and making feature extraction a complex task.

B. RELATED WORK
3D LiDAR is a form of light detection and ranging that
produces three-dimensional (3D) maps by measuring the
time it takes for laser beams to reflect back after being
emitted [14]. The use of 3D LiDAR has been widespread
in several fields. One of the most basic applications of 3D
LiDAR for humans is to detect and track individuals in
various environments [15], [16], [17]. Yan et al. [18], [19]
presented that 3D LiDAR can create a high-resolution point
cloud, which can be used to discern the general shape and
size of a human. In scenarios such as public events or busy
transportation hubs, LiDAR can provide insights into crowd
dynamics, enabling efficient crowd management and safety
precautions [20]. Lin et al. utilized 3D LiDAR in the field of
place recognition [21]. It is conducive to application in the
field of robotics.

Gait, or the way an individual walks, is unique and can
serve as a biometric identifier. With LiDAR’s detailed spatial
data, researchers have been able to study the subtle nuances
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in gait patterns [22], [23]. Such patterns can be used for
identifying individuals or detecting abnormalities in walking
patterns, potentially useful for medical applications. In the
context of fall detection, especially relevant in healthcare and
elderly care, LiDAR can be employed to detect if a person
has fallen, enabling timely medical intervention [24], [25].

The fusion of machine learning, particularly deep learning,
with 3D LiDAR data has expanded the potential for
people identification. Techniques such as Convolutional
Neural Networks (CNNs) process 3D point cloud data [26],
[27], enabling intricate feature extraction and recognition.
Specifically, architectures like PointNet have been tailored to
directly handle point cloud data, enhancing the accuracy and
reliability of identification systems [28]. Zhou and Tuzel [29]
presented an architecture called VoxelNet for point clouds.
VoxelNet extracts features from sparse points on the 3D
voxel grid and obtains outstanding performance on the KITTI
benchmark dataset.

Traditional object detection is a two-stage algorithm. Pio-
neering the realm of two-stage detectors, Girshick et al. [30]
introduced the Region-based Convolutional Neural Network
(R-CNN). The R-CNN first employed selective search
to generate around 2000 region proposals, which were
then classified using CNNs. Although achieving state-of-
the-art performance, R-CNN is computationally expensive
and unsuitable for real-time applications. Addressing the
computational inefficiencies of its predecessor, Girshick
proposed Fast R-CNN [31]. Unlike R-CNN, which applied
the CNN on each proposed region separately, Fast R-CNN
processed the entire image with a CNN first and then
extracted features for each region proposal, significantly
boosting its speed. Extending the capabilities of Faster
R-CNN, He et al. introduced Mask R-CNN [32], which added
a parallel branch for predicting segmentation masks. This
enhancement made it adept at instance segmentation tasks
alongside object detection.

YOLO [33] is a real-time object detection system based
on deep learning. YOLO employs a one-shot method to
object detection, which significantly enhances the detection
speed and lets it perform well in real-time applications,
in contrast to other object detection algorithms like Fast
R-CNN [31], [34]. The convolutional neural network (CNN)
used by YOLO receives the complete image and outputs
object class and location data in a single forward propagation.
It has been used in the realm of 3D LiDAR technology.
YOLO is used in object classification and detection combined
with LiDAR and camera fusion [35], [36], [37]. Besides
that, Simon et al. [38], [39], [40] proposed a contribution
to the field of 3D object detection with Complex-YOLO.
This neural network architecture is meticulously crafted for
real-time 3D object detection tasks. Unlike traditional models
which might rely on a combination of data types, Complex-
YOLO stands out as it operates directly on point cloud data.
Furthermore, its adaptability extends to semantic point cloud
data, both of which are generated by 3D LiDAR systems [41].
These synergies between deep learning and 3D LiDAR have
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FIGURE 1. A flowchart describing the steps of our proposed framework.

paved the way for more sophisticated and accurate people
identification solutions. The combination of YOLO and 3D
LiDAR has gained widespread recognition in the autonomous
fields [42]. This integration has been pivotal in advancing
autonomous object detection, as exemplified by the work
of Tian and Guo [43]propose a novel approach combining
YOLO with 3D LiDAR. Further research into this domain,
Wau et al. [44] have centered their research on the on-road
detection of objects using both camera and 3D LiDAR,
offering insights into regional aspects of object detection in
autonomous systems.

Ill. OVERALL SYSTEM DESCRIPTION AND EQUIPMENT
A. OVERALL SYSTEM DESCRIPTION
The flow of our experiment is given in Figure 1. Initially,
depth data is captured by a 3D LiDAR device. This data is
then transformed into depth images via Dynamic Non-linear
Mapping (DNLM) [7]. To enhance the image quality, any
missing parts are reconstructed using generative image
inpainting with contextual attention [45], [46].

Following this, individuals in the images are annotated.
The annotated images serve as training data for the YOLOvS
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model, optimizing it for people detection from LiDAR
images. The trained model is then proficiently employed
for the detection and identification of people in private car
scenarios.

FIGURE 2. LiDAR system.

B. EQUIPMENT
LiDAR (Light Detection and Ranging) is a remote sensing
technology that uses infrared laser (IR) beams to measure the
distance between an object and the sensor. Traditional RGB
cameras require visible light to record images, in contrast
to 3D LiDAR, which can function well even in complete
darkness. 3D LiDAR specifically refers to devices capable
of capturing spatial information in three dimensions. The
working principle is as follows: Initially, the system emits a
brief, high-precision laser pulse. When this pulse encounters
an object’s surface, it gets reflected and is captured by the
LiDAR detector. By calculating the time difference between
the emission and reception of the laser pulse, and considering
the speed of light, the system can accurately measure the
distance to the object. The distance is calculated according
to Eq. (1):
R=C d 1

=C- 7, (D
where R is the measured distance, C is the speed of light, and
T is the time difference between the laser signal emission and
reception.

To acquire three-dimensional data, the LiDAR scans in
multiple directions and angles, typically achieved through
mechanical rotation, galvanometer scanning, or optical
phased arrays, the system is shown in Figure 2. Ultimately,
this data is transformed into a three-dimensional point cloud
model, where each point possesses its x, y, and z coordinates
in space, which can be seen in Figure 3, and the coordinates
are obtained from the Egs. (2) to (4),

x=S-sin¢ -cosH, 2)
y=_S§-sin¢ -sinb, 3)
z=S-cosg, @)

where § is the distance measured by LiDAR, ¢ is the vertical
scanning angle of the laser pulse, and 0 is the horizontal
scanning angle.
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X

FIGURE 3. LiDAR three-dimensional coordinate.

C

FIGURE 4. 3D LiDAR generated depth images in different illuminations.

By rapidly repeating this process, the 3D information of
the environment being surveyed may be generated using 3D
LiDAR. By collecting both the distance and the angle of each
item in reference to the sensor, this representation gives a
highly detailed picture of the environment. When setting up
the 3D LiDAR equipment, we verified the imaging status of
depth images under various lighting conditions. Figure 4(a)
presents an RGB image of two experimental participants
in a bright environment, while Figure 4(b) displays the
corresponding depth image. Figure 4(c) is an RGB image
of two participants in a relatively dark environment, and
Figure 4(d) is its corresponding depth image. It can be
seen that there is no significant difference between the
generated depth images under different lighting conditions.
It proves that 3D LiDAR can perform well in different
lighting conditions.

DNLM is the technique that transfers 3D LiDAR infor-
mation into 3D LiDAR images, which are also called
depth images. It helps to accurately capture and interpret
complex nonlinear relationships in raw 3D data, ensuring the
authenticity and detail of 3D images.

In our experiment, we use a 3D+RGB IP67 Kit (Helios2
& Triton 3.2MP Kit), the specifications of this device are
given in TABLE 1. We set up experiments using the LUCID
Arena SDK, provided by LUCID Vision Labs, to collect 3D
LiDAR information. The details of LUCID Arena SDK are
provided in TABLE 2. We use OpenCV to perform image
processing tasks such as generating and saving depth images;
Pytorch libraries to invoke, fine-tune, and infer the necessary
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TABLE 1. The specifications of the 3D LiDAR used in the experiments.

Parameter Value
Number of pixels 0.3 MP
Resolution 640 x 480 px
Frame rate 30 fps
Angle of view 69° x 51°
VCSEL wavelength 850 nm, Indoors
Number of exposure modes | 62.5/250/1000 ps
TABLE 2. LUCID Arena SDK for windows.
Feature Description

Data Interface
Operating System
Compiler
Programming Languages

Gigabit Ethernet (1000 Mbit/s)
Windows 7 / 10 (32-bit and 64-bit)
Visual Studio 2015 project files included.
C++, C, and C#

deep-learning models for people identification and image
inpainting. Data are collected as separate scenarios which
simulate private cars. The device is placed in front of four
passengers. The distance between the device and the front
passengers is less than 1.0 m and the rear passengers are
about 1.5 m which is catering to the scene in a real private
car.

IV. DETAIL SYSTEM DESCRIPTION
A. DATA COLLECTION
In our experiment, we set three different types of scenarios:

1: In our first scenarios, we position four individuals,
conveniently labeled as A, B, C, and D, in distinct
seats facing a 3D LiDAR device. These subjects serve
as the primary entities to validate the effectiveness
of our proposed technique. To ensure comprehensive
data capture, we rotate these subjects, making each
one occupy different seats in successive intervals.
In every such interval, approximately 500 frames of
data are gathered as the subjects engage in a variety
of activities like talking, playing mobile phones, and
so on, culminating in a total of 2000 frames amassed
specifically for this configuration.

2: Advancing to the next set of scenarios, we introduce
an additional element of complexity by integrating an
unknown individual into the mix. This unknown person
sporadically takes the place of one of our original
subjects (A, B, C, or D) from the first scenario.
As with the previous setup, 2000 frames are collected
for each iteration. Moreover, to maintain consistency,
every unique seating permutation of the subjects results
in 500 frames.

3: About the third set of scenarios, we aim to collect data
that is used for image inpainting. Here, our primary
subjects A, B, C, and D are directed to sequentially
occupy two specific seats: the back left and the back
right. This configuration is created to serve as a ground
truth for our generative image inpainting tests.

After collecting multiple frames of 3D LiDAR data,
the subsequent step involves transforming this 3D LiDAR
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FIGURE 5. Depth images before and after using DNLM: Image a is before
using DNLM, image b is after using DNLM.

information into depth images. A notable limitation of depth
images is their representation of closely situated objects.
If objects are in close proximity, their corresponding colors
in the depth image tend to be similar. This similarity
becomes particularly pronounced in private car settings
where passengers are seated closely together. As a result,
the depth-wise distinction between front and rear passengers
frequently becomes inconspicuous, sometimes even blending
indistinctly with the background.

To address this challenge, we’ve employed the advanced
capabilities of DNLM to transfer 3D LiDAR data into depth
images. DNLM, renowned for its dynamic adaptability, can
be meticulously fine-tuned in real time. This versatility
ensures that the depth images generated are tailored to fit a
broad spectrum of scenarios, satisfying diverse requirements
while making object differentiation significantly more effort-
less.

Ilustratively, in Figure 5, we observe a color bar,
referred to as ‘bounds’. This bar is essentially a color
map subdivided into several distinct sections. Each of
these sections represents a specific color value, serving
as a visual guide. Figure 5(a) seeks to establish a one-
to-one mapping relationship between these bounds and
chromatograms. In contrast, Figure 5(b) embarks on the
mission of pinpointing the nonlinear center and finessing the
bounds interval.

A keen observation of Figure 5 reveals that Figure 5(a)
grapples with clarity issues, as it cannot distinguish between
front passengers, rear passengers, and the background. This
lack of clarity stems from the small distance separation
between the front and rear seats. However, upon the
application of DNLM to 3D LiDAR data, discerning between
front and rear passengers becomes clear, cutting through the
earlier ambiguity with precision. More examples of depth
images generated by DNLM can be seen in Figure 6.

Such enhancement not only aids in immediate interpre-
tation but also lays a robust foundation for more in-depth,
subsequent research, paving the way for a better 3D LiDAR
data analysis.

B. PEOPLE IDENTIFICATION MODEL
In recent times, advancements in deep learning methodolo-
gies coupled with the evolution of GPU hardware have greatly
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FIGURE 6. Examples of depth images.

propelled the progress of computer vision technology. Using
computer vision to minimize human labor has profound
practical implications. Object detection is a fundamental
aspect of digital image processing and computer vision.
It also stands as the central component of intelligent
surveillance systems across a wide range of applications. The
YOLO object detection algorithm is the first single-stage
object detection algorithm proposed by Jiang et al. [47].
It is an acronym that stands for You Only Look
Once.

The proposed method for people identification using 3D
LiDAR relies on version 5 of YOLO (YOLOVS). It was
introduced by Ultralytics in June 2020 [8]. Today, it stands
as a prominent object detection algorithm. YOLOVS is
an innovative convolutional neural network (CNN) [48]
adept at identifying objects in real-time with remarkable
precision. Instead of multiple evaluations, this model scans
the entire image using a single neural network pass. It then
subdivides the image and forecasts bounding boxes and
associated probabilities for each section. These bounding
boxes get prioritized based on their predicted probabilities.
The uniqueness of YOLO is in its method: it requires just
a single look or one forward pass through the network to
make its predictions. Post-prediction, detected objects are
presented after a process called non-max suppression ensures
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each object is identified distinctly. YOLOVS architecture is
shown in Figure 7. From an architectural point of view, the
YOLOV5 model is similar to YOLOv4 [49], and relies on
three crucial sub-networks: the backbone, the neck, and the

head.
- Backbone: The foundational element of any detection

system, the backbone is responsible for feature extrac-
tion from the provided image. Within the framework,
the utilization of CSPDarknet, which was proposed
by Bochkovskiy et al. [49], emerges as a pivotal
choice. Compared to Darknet53, which was prominently
employed in the YOLOvV3 model as indicated by Red-
mon and Farhadi [50], CSPDarknet presents a notable
advancement. The core principle behind CSPDarknet is
to split the feature map from the previous stage into
two parts and then merge the partial features after a
series of convolutions, which is the so-called Cross-
Stage Hierarchical (CSH) feature [51]. This method not
only ensures speed enhancements due to its streamlined
architecture, but it also guarantees comparable, if not
superior, detection accuracy. In essence, this optimized
structure facilitates efficient and precise extraction of
critical features from the input image.

- Neck: Acting as an intermediary between the backbone
and the head, the neck has the primary function of
managing and refining the features extracted by the
backbone. Specifically, the Path Aggregation Network
(PANet) [52] serves this purpose. It meticulously con-
structs feature pyramid networks (FPNs), which prove
invaluable for the generalization across varying object
scales. The fundamental advantage of PANet is its ability
to guide information seamlessly from each extracted
feature layer directly to the associated subnetwork. This
ensures that no critical data is lost or diluted during
the transition from the backbone to the subsequent
stages.

- Head: The final part of the system, the head, undertakes
the ultimate task of object detection. It produces
anchor boxes corresponding to different feature maps,
effectively serving as reference points for potential
object locations. Moreover, the head outputs vectors that
indicate class probabilities and the exact coordinates
of detected bounding boxes. This operation aligns with
the methodology employed in earlier YOLO iterations.
In essence, the head transforms the abstract features
procured and refined by the backbone and the neck into
tangible and interpretable results.

According to the research of Ultralytics. YOLOVS boasts
significant improvements over most of the versions of YOLO
in terms of size and speed while maintaining comparable
accuracy. For example, YOLOVS5 is approximately 88%
smaller in size, being 27 MB compared to YOLOv4’s
244 MB. Additionally, it operates at a speed that’s around
180% faster, achieving 140 FPS compared to YOLOv4’s
50 FPS. In terms of accuracy, both versions are closely
matched on the same task.
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TABLE 3. An example of YOLO format annotated data.

Subject ID X center Y center Width Height
0 0.742188  0.517708  0.309375  0.735417
1 0.276562  0.529167  0.303125  0.725000
2 0.578125  0.547917  0.100000  0.520833
3 0.442969  0.576042  0.110937  0.510417

AR AN

FIGURE 8. Operation interface of rectangular box label.

C. DATA ANNOTATION
People identification is a supervised learning task as
discussed by [53]. Using the annotation tool Labellmg [54],
we manually mark distinct individuals, encapsulating each
person within a rectangular bounding box, illustrated in
Figure 8. This tool produces annotations in the YOLO
format, saving them as.txt files. Within these YOLO-format
annotation files, each image’s objects are described over
several columns, where each column corresponds to a distinct
object. Specifically, each line provides the subject ID,
x-center, y-center, width, and height of the object.
Where:
- Subject ID: 1t is an integer indicating the category index
of the object (for example, O for “car”, 1 for “person”,
etc.).

VOLUME 12, 2024



W. Shao et al.: People Identification in Private Car Using 3D LiDAR

IEEE Access

Reconstruction loss

Local

Reconstruction loss

n
]

Y

[ o -

Corase network

Raw image

Input and Mask

h..:'}';f -

Corase image

WGAN-GP loss

Refine network

Output image

FIGURE 9. An overview of generative inpainting framework: Reconstruction loss is utilized to train the coarse network, refine network are trained
by WGAN-GP global and local adversarial loss, as well as reconstruction loss.

TABLE 4. Annotation category information of YOLO.

Category | Subject ID
Subject A 0
Subject B 1
Subject C 2
Subject D 3

- X center, Y center: Represent the center coordinates
of the object, normalized relative to the image’s width
and height. This means these values lie between
Oand 1.

- Width, Height: 1t is the width and height of the object,
also normalized with respect to the width and height of
the image.

A representative sample of our project’s YOLO-format
annotation can be found in TABLE 4. Detailed information
regarding the categorization employed in our YOLO annota-
tions throughout the experiment is presented in TABLE 5.

D. DATA AUGMENTATION

3D LiDAR devices primarily capture depth information of
objects by gauging the distance and angle between the object
and the device. However, there is an inherent limitation to this
method: as the object’s distance from the LiDAR increases,
the accuracy of the information captured diminishes, often
rendering the data sparse [55]. Consider a private car setting
for instance: passengers in the rear seats are positioned
farther from the 3D LiDAR compared to those in the front.
Moreover, those in the back are frequently obscured by
front-seat occupants, resulting in significant data occlusion.
Our proposed solution to overcome this problem involves
inpainting parts of the body that are occluded, thereby
enhancing the process of identification.

In our study, we adopt the generative image inpainting
method fortified with contextual attention. The architecture
of the inpainting network can be visualized in Figure 9 and is
characterized by a two-stage design. The initial part ‘coarse
network’, focuses on generating a coarse prediction of the
image. This is achieved using a reconstruction loss to guide
its training. Following this, the ‘fine network’ steps in to
refine the predictions. Unlike the coarse network, the fine
network’s training harnesses both the reconstruction loss and
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a Generative Adversarial Network (GAN) loss. Diverging
from traditional generative inpainting techniques that leaned
on Deep Convolutional GAN (DCGAN) [56] for adversarial
supervise, our chosen algorithm turns to Wasserstein GAN
Gradient Penalty (WGAN-GP) [57], [58]. Because when the
performance gap between the generator and the discriminator
is very large, the gradient disappearance problem occurs,
causing training to stop. As such, WGAN maintains a balance
between the generator and the discriminator by limiting the
training of the discriminator to certain methods like weight
clipping, thus helping to maintain training stability and
continuous progress. Besides that, the traditional GAN loss
function is usually based on the Jensen-Shannon scatter [59],
which can lead to unstable training. To ensure both global
and local consistency, we apply the WGAN-GP loss to the
second-stage refinement network’s global and local outputs.
WGAN uses the Wasserstein distance [57] as the loss
function, which is a measure of the difference between two
probability distributions. The Wasserstein distance provides
a much smoother gradient even when there is a large
difference between the real data and the generated data.
Itleads to a more stable training process. Incorporated into the
second phase of our network, the WGAN-GP loss combines
the /] reconstruction with the // distance metric, what is
termed the Wasserstein-L distance W (IP,, P;). The model is
constructed by applying Kantorovich-Rubinstein duality [60]
and drawing on the improvement of Gulrajani et al. [58] who
upgrade WGAN with a gradient penalty term, which is shown
in Eq (5):

inf

WP, IP)g) =
yell(P,,Py)

E(x,y)'vy[”x —y||], (5)

where W(P,, P,) is the Wasserstein distance between two
probability distributions [P, and P, inf is the infimum, y is the
joint distribution between [P, and Pg. I1(P,, IPy) is the set of
all possible joint distributions that couple PP, and Pg. E(x y)~y
is the expectation, which is over x and y randomly drawn from
the joint distribution y. Finally, [|lx — y||] is the Euclidean
distance between x and y.

Contextual attention is another important part of the image
reconstruction model, which is shown in Figure 10: First, a
3 x 3 patch is extracted from the background region, which is
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FIGURE 10. Illustration of the contextual attention layer.

used as a convolution kernel, in order to match the foreground
(missing region) patch, a standardized inner product (residual
selective similarity) is used to measure it, then Softmax is
used to compute the weights for each background patch, and
finally the best patch is selected and deconvolved to produce
the foreground region. The overlapped pixels are averaged
for the deconvolution process. To ensure greater image
consistency, perceptual propagation is used. This technique
involves applying an offset to the foreground region, aligned
with a similar offset in the background. This is achieved using
the unit matrix as a convolutional kernel. Contextual attention
employs a two-step approach: first propagating left to right
and then up to down. This dual-phase approach refines the
attentional score. Notably, this method significantly improves
the outcomes of restoration and introduces richer gradients
during the training phase.

For the integration of the perceptual network into the
second stage of the restoration network, a dual-branch
architecture is devised within the second stage’s repair
structure. This architecture is illustrated in Figure 11.
The lower branch is tasked with restoring the content
of the missing areas using expansive convolution. In contrast,
the upper branch is dedicated to extracting regions of interest
from the background. In the final step, the outputs of both
branches are merged using a concatenate function. This
combined output is then passed through a decoder and
processed with reverse convolution to produce the final
outcome.

In our approach, we begin by viewing the subjects
in the foreground (those seated in the front seat) as
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obstructions. The image regions corresponding to their bodies
are pinpointed to create masks for individuals positioned in
the back seats. Our method of choice for this task is the
Canny algorithm [61]. For a start, we transform the image
into grayscale, streamlining the subsequent enhancement
stages. To augment the fidelity of the segmentation process,
we implement thresholding [4]. This step elevates the image’s
contrast, paving the way for more precise edge detection.
Upon successful edge identification, this data is harnessed
to craft a segmentation mask for the image. This mask
is meticulously layered onto the original image, ensuring
the preservation of the initial pixel values in the delineated
regions.

We fine-tuned the implementation of Yu et al. [45],
[46] which is an open-source framework for generative
image inpainting tasks. This is a popular approach based
on deep generative models, adept at crafting unique image
structures. For our training purposes, we sourced the ground
truth data from scenario 3. This dataset comprises 7,000
images. To ensure our model’s integrity and performance,
we segregated an additional 1,000 images specifically for the
validation phase. All our training exercises were conducted
adhering to a specific environment configuration, which is
detailed in Table 6. This table presents an exhaustive list
of parameters, settings, and configurations used, ensuring
reproducibility and a clear understanding of our training
conditions. The trained model was provided with original
images paired with their respective mask images. This setup
was instrumental as it enabled our model to process these
images with the primary objective of removing individuals
seated in the front while simultaneously reconstructing
those in the back seats. For a visual representation of
what our model achieved, the examples are referred to in
Figure 12.
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FIGURE 12. An example of people reconstruction: Image (a) is the
original picture, image (b) is a mask segment extracted from people in
the front, and image (c) is people in the back seat after reconstruction.

E. OCCLUSION RATE

Detection performance in private car surveillance is instru-
mental for ensuring passenger safety and comfort, especially
for those seated in the back [62]. An essential metric for eval-
uating this is the occlusion rate, which quantifies how much
of a backseat passenger is obscured from view. To accurately
compute this rate, the study focuses on determining the ratio
of the hidden portion of a passenger to their total visible
area. Achieving this requires precise identification of the
passenger’s contours or boundaries within the frame, a task
accomplished using image segmentation and edge detection
techniques.

The methodology employed initiates with image segmen-
tation via Gaussian blur [63], a technique that smoothens
an image by reducing noise and minor details. By doing
so, significant boundaries in the image become more
pronounced. Following this, the Canny Edge Detection
method [61], renowned for its efficiency in highlighting
large intensity changes in images, is applied to ascertain
these boundaries. Once these edges are defined, it becomes
feasible to determine the area representing the passengers.
The occlusion rate is then computed using a specific
formula, Eq. (6), which compares the visible area to the
total possible area, providing a percentage-based occlusion
rate.

An
O0r(%)=1-— v 100, 6)

t
where O, refers to occlusion rate, A, is the area of the not
occluded part of the passenger, and A; is the total area of the
passenger.

V. EXPERIMENT

A. EXPERIMENTAL CONFIGURATION

The experiments’ configurations are in TABLE 5. The
implementation of YOLOVS5 used in this work is that of
Jocher et al. [8]

B. EVALUATION METRICS
Given that varying experiments yield different models, it is
essential to establish a robust metric. This aids in the
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TABLE 5. Configuration of experimental environment.

Name Parameter
GPU Quadro RTX 5000, 16384 MB
System Windows 11
Operating memory 16 GB
Environment configuration | Python-3.7.16 torch-1.13.1+cull7

TABLE 6. The hyperparameters used during the training.

Name Value
Batch size 4
Epoch 30
Learning rate 0.01
Optimizer SGA
Weights yolov5s.pt

selection of the most effective models from the entirety
of the experimental outcomes. In our experiment, we use
the F1 score calculated according to Egs. (7) to (9), and
mean Average Precision (mAP) calculated at the Intersection
over Union (IoU) threshold of 50% (mAP50) and 50%-95%
(mAP50-95),

. TP
Precision = ——, @)
TP + FP
TP
Recall = ——, ®)
TP + FN
Fl — 2 - Precision - Recall . TP
"~ Precision + Recall ~ 2-TP+FP+ TN’

©))

Precision represents the proportion of true positive predic-
tions among all positive predictions. TP (True Positives)
denotes the number of positive instances correctly predicted
as positive, while F/P (False Positives) represents the number
of negative instances incorrectly predicted as positive. A high
precision indicates that most of the predicted positive
instances are indeed positive. Recall also known as sensitivity
or true positive rate, recall measures the proportion of
actual positive instances that were correctly identified by
the model. FN (False Negatives) denotes the number of
positive instances incorrectly predicted as negative. A high
recall means that the model correctly identifies most of
the actual positive instances. The F1 Score is the harmonic
mean of precision and recall. It provides a balanced measure
between precision and recall, especially useful when there
is a significant class imbalance. A high F1 Score indicates
a well-performing model in terms of both precision and
recall.

C. RESULTS AND DISCUSSIONS

The main training hyperparameters are shown in TABLE 5.
After training, TABLE 7 summarizes the information includ-
ing the F1 score, the value of mAP50, and mAP50-95 of each
person. The valid is the number of validation datasets. The
instances mean the number of people labeled in validation
datasets.

38267



IEEE Access

W. Shao et al.: People Identification in Private Car Using 3D LiDAR

TABLE 7. Results of people identification.

Class | Valid | Instances F1 mAP50 | mAP50-95
All 552 1671 0.665 0.753 0.626
A 552 552 0.517 0.632 0.48
B 552 453 0.711 0.823 0.684
C 552 115 0.506 0.642 0.566
D 552 551 0.844 0915 0.774

In TABLE 7, we present an evaluation of our detection and
identification models. The results obtained showcase impres-
sive performance benchmarks. Specifically, our proposed
methods registered an F1 score exceeding 60%. Additionally,
the mAP50 score surpasses the 75%. This indicates the
robustness of our approach in confidently identifying objects
with a high degree of overlap. Furthermore, our model’s
ability to maintain a high score in the mAP50-95 range
(surpassing 60%) signifies its consistency and accuracy
across various IoU thresholds, illustrating its adaptability in
different detection scenarios.

Figure 13 offers a more visual representation of our
findings. In this figure, readers can witness direct instances
of people detection and people identification, showcasing the
practical application and effectiveness of our proposed mod-
els in simulation real-world scenarios. Meanwhile, Figure 14
delves deeper into the model’s training outcomes. Here,
we present the confusion matrix, which provides a granular
view of the true positive, false positive, true negative, and
false negative rates. According to Figure 14, subject D had the
best prediction performance with a correct classification ratio
of 0.90, meaning that 90% of the true subject D was correctly
predicted to be D. Subject B had the next highest percentage
of correct classifications at 0.76. Subject C has a correct
classification ratio of 0.75. Subject A has a relatively low
percentage of correct categorization of 0.56. The proportion
of subject A misclassified as subject C was (.18, which
is a relatively high proportion of misclassification. It may
be because Participants A and C are Asian males while
Participant B is a white male and Participant D is an Asian
female whose body shapes are relatively different between A
and C. Therefore, subject A will easily be misclassified to be
subject C. This matrix serves as a testament to the YOLOv5
model’s proficiency in discerning and accurately identifying
individuals in 3D LiDAR imagery.

It is also essential to highlight that the detection F1 scores
and mAP values are not uniform across all individuals in our
dataset. These values exhibit variations, primarily influenced
by the occlusion levels associated with each individual. Such
occlusions could arise from a myriad of scenarios, including
overlapping individuals, obstructing objects, or even the
angle of capture.

Taking into consideration the possibility of some indi-
viduals being obscured by others seated in front of them,
we evaluated the F1 score, mAPS50 values, and mAP50-95
values across varying occlusion rates in our experiments.
Based on the dataset distribution and as calculated by Eq. (6),
we observed that the occlusion rates for rear passengers fall
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FIGURE 13. Some examples of people identification results.

Confusion Matrix

< “ 0.03 0.18 0.04 0.24 08

m- 0.14 0.16
0.6
°
2
§o 0.13 0.43
o -0.4
0.06 0.18
-0.2
o
e
3
‘E" 0.10 0.02 0.01
E
A B o D background 00

True

FIGURE 14. Confusion matrix of training results.

within three ranges: below 60%, between 60% and 70%, and
above 70%. The data distribution across these three intervals
is fairly consistent. A comprehensive visualization of the
data distribution can be found in Figure 15. We separately
conducted F1 score, mAPS50 values, and mAP50-95 values
for each person in the left and right positions of the back row
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FIGURE 15. Data distribution of different occlusion rates.

with different occlusion rates, the specific data are recorded
in TABLE 8. The ‘OR’ column means ‘Occlusion Rate’, the
‘BL” means ‘Back Left’ and the ‘BR’ means ‘Back Right’.
The None means the quantities of data lay in this range are
not enough for training so there is no data in this range.

As we can see in Figures 16 and 17, which is the
illustration of the bar chart of the specific values of F1 score,
mAP50 values, and mAP50-95 values at different occlusion
rates for each person. In general, the performance metrics,
particularly the F1 score, mAP50 values, and mAP50-95
values, tend to decrease as the occlusion rate increases. This
observation is consistent across different individuals in the
dataset, indicating that higher occlusion rates make it more
challenging to achieve accurate detection and identification.
It can explain subject D exhibits superior performance in
people detection and identification, a phenomenon primarily
attributable to the predominance of its occlusion rate being
below 60%. This lower occlusion rate naturally facilitates
improved detection and identification metrics. Additionally,
aunique aspect to consider is that subject D is the only female
participant in our experiment. Her distinct body shape, which
stands out from her male counterparts, potentially augments
the accuracy of people identification, serving as a unique and
distinguishing feature for our proposed module.

In order to solve the problem that some individuals might
be occluded by others seated in front of them that affects the
training result of people identification. In our experiments,
we use the YOLOVS model to train the model on both pre and
post-reconstruction images of participating people in the right
and left back seats separately. The training environment is in
TABLE 6. We then compare the F1 scores and mAP values of
these instances. The results are presented in TABLE 10 and
TABLE 10.

From TABLES 8 and 10, it is clear that the implementation
of the generative image inpainting technique markedly
enhances the performance of our people recognition model,
we can see the bar chart before and after reconstruction in

VOLUME 12, 2024

TABLE 8. Training results from different occlusion rates.

Class OR Seat F1 mAP50 | mAP50-95

Below 60% 0.816 0.91 0.465
60%-70% BL 0.755 0.876 0.273

A Over 70% 0.661 0.511 0.353
Below 60% 0.664 0.857 0.655
60%-70% BR [ 0.661 0.483 0.246

Over 70% 0.587 0.448 0.267

Below 60% 0.785 0.917 0.575
60%-70% BL 0.616 0.762 0.602

B Over 70% None None None
Below 60% 0.454 0.332 0.263
60%-70% BR [ 0.417 0.324 0.236

Over 70% 0.374 0.263 0.182

Below 60% 0.659 0.75 0.461
60%-70% BL 0.530 0.568 0.364

C Over 70% 0.313 0.464 0.173
Below 60% 0.903 0.995 0.625
60%-70% BR 0.851 0.936 0.595

Over 70% None None None

Below 60% 0.656 0.712 0.401
60%-70% BL None None None

D Over 70% 0.645 0.704 0.312
Below 60% 0.728 0.877 0.63
60%-70% BR None None None

Over 70% None None None

TABLE 9. Comparing the results before and after the reconstruction,
people are in the left back seat.

[ Class | Instances [ F1 | mAP50 [ mAP50-95 |
Before Reconstruction

A 70 0.707 0.787 0.501
B 50 0.866 0.961 0.810
C 50 0.774 0.788 0.519
D 50 0.601 0.619 0.265
Overall 220 0.737 0.788 0.523
After Reconstruction
A 70 0.830 0912 0.534
B 50 0.998 0.995 0.881
C 50 0.944 0.974 0.809
D 50 0.770 0.882 0.279
Overall 220 0.885 0.941 0.626

TABLE 10. Comparing the results before and after the reconstruction,
people are in the right back seat.

[ Class [ Instances [ F1 | mAP50 [ mAP50-95 |
Before Reconstruction
A 70 0.670 0.569 0.220
B 50 0.488 0.379 0.248
C 50 0.894 0.919 0.601
D 50 0.567 0.647 0.432
Overall 220 0.655 0.628 0.375
After Reconstruction
A 70 0.892 0.965 0.770
B 50 0.618 0.960 0.712
C 50 0.998 0.995 0.782
D 50 0.893 0.956 0.770
Overall 220 0.850 0.969 0.759

Figure 18. Such reconstruction not only elevates the F1 score
but also bolsters the mAP50 values and mAP50-95 values
metrics across all test subjects. This improvement can be
attributed to the successful mitigation of visual obstructions
that previously hindered clear views of individuals in the
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back seats. Moreover, any body segment earlier occluded by
these impediments has been reconstructed, resulting in a more
accurate and comprehensive body shape of the individuals.
Based on the results, the scores for the participants showed
notable enhancements post-reconstruction. For subject A,
the score increased from 0.707 to 0.830; for subject B,
it increased from 0.866 to 0.998; for subject C, it increased
from 0.774 to 0.944; and for subject D, it increased from
0.601 to 0.770. Similarly, when examining occupants in
the vehicle’s right back seat, the F1 scores experienced
significant boosts post-reconstruction: subject A’s score
increased from 0.670 to 0.892, subject B’s increased from
0.488 to 0.618, C’s increased from 0.894 to 0.998, and
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subject D’s increased from 0.567 to 0.893. The overall F1
score increased by 17.1%. About the mAP values, before
reconstruction, subjects A, B, C, and D in the back left
seat had mAP50 values of 0.787, 0.961, 0.788, and 0.619,
respectively. Their corresponding mAP50-95 values were
0.501, 0.81, 0.519, and 0.265. After the reconstruction
process, there was a noticeable enhancement in these metrics.
Subject A’s mAP50 increased to 0.912 with mAP50-95
0.534. Subject B’s mAPS50 slightly decreased to 0.995 but
had an improved mAP50-95 of 0.881. Subjects C and D’s
mAPS50 values increased to 0.974 and 0.882, respectively,
with corresponding mAP50-95 improvements to 0.809 and
0.279. In the back right seat, Prior to reconstruction, subjects
A, B, C, and D posted mAP50 scores of 0.569, 0.379,
0.919, and 0.647 respectively, and mAP50-95 values of 0.220,
0.248, 0.601, and 0.432. Post-reconstruction, all subjects
witnessed improvements. Subject A’s metrics rose to an
mAP50 of 0.965 and an mAP50-95 of 0.77. Subject B’s
values surged to 0.96 and 0.712 for mAP50 and mAP50-95,
respectively. Subject C, while having a marginal rise in
mAP50to 0.995, saw a slight decrease in mAP50-95 to 0.782.
Subject D mirrored A’s improvement, with mAPS50 increasing
to 0.956 and mAP50-95 to 0.77.

To the best of our knowledge, no research has been
conducted with 3D LiDAR sensors in a manner identical
to our experiments for people identification. While previous
studies have utilized different sensor devices to collect
3D LiDAR images or methods to reconstruct 3D LiDAR
images, we have provided a comprehensive comparison of
overall system accuracy in TABLE 11. Yamada et al. [22]
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TABLE 11. Performance comparison with state-of-the-art technologies.

Method Sensor Model Dataset Dataset Type Accuracy
Yamada et al. [22] Microsoft Kinect CNN+LSTM PCG [22] Depth images 0.718
Jin et al. [64] PrimeSense IResNet100 UMIST [65] RGB-D images 0.780
Jin et al. [64] PrimeSense IResNet34 UMIST [65] RGB-D images 0.802
Ours 3D+RGB IP67 Kit YOLOVS Own dataset Depth images 0.807

conducted an in-depth experiment on LiDAR-based gait
analysis. Similarly, Jin et al. [64] employed a depth plus
generative adversarial network approach to generate pseudo
RGB-D images for identifying individuals. Because other
state-of-the-art methods use depth images without occlusion,
we compare their accuracy with the result of our recon-
struction experiments. The result shows that Yamada et al.
[22] used a Kinect sensor and a CNN+LSTM model on
the point cloud gait (PCG) dataset [22], which is created
by them, to achieve an accuracy of 0.718. Jin et al. [64]
conducted two studies using the PrimeSense sensor with
different IResNet models, achieving accuracies of 0.78 and
0.802 on the UMIST dataset [65], which is a face database
consisting of 564 images of 20 individuals. Our method,
employing a 3D+RGB IP67 kit and the YOLOv5 model on
our own dataset, achieved the highest accuracy of 0.807.

These results demonstrate that our proposed model signif-
icantly enhances the identification and detection accuracy,
especially for back seat passengers who were initially
occluded by front seat individuals.

In the present study, we have primarily simulated scenarios
within a private car environment, and it remains to be seen
whether our findings would be replicated in actual private
car settings. Additionally, the dataset used and the number
of participants involved in our experiment are somewhat
limited. The dataset we employed is relatively small and
not evenly distributed, potentially impacting the robustness
and reliability of our results. For future research, it is
essential to expand the scope of data collection, ensuring a
more comprehensive and diverse dataset. This would include
involving a greater number of participants from different
backgrounds to enhance the generalizability of our findings.
Furthermore, conducting extensive experiments in real-world
settings, particularly in actual private cars, will be crucial
to validate and refine the effectiveness of our model. Such
efforts are expected to provide more concrete insights and
potentially lead to more robust and adaptable solutions for
the challenges identified in our current research.

VI. ABLATION EXPERIMENT

To validate the effectiveness of our proposed method,
we conducted ablation experiments on RGB datasets. These
experiments were set up under the same conditions as
described in Section IV. A. We established different lighting
scenarios, as depicted in Figure 19 and Figure 20, to observe
the differential outcomes yielded by our method in each dis-
tinct lighting environment. The result is shown in TABLE 12
and TABLE 13.
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FIGURE 19. Experiments in a lit environment.

FIGURE 20. Experiments in a dark environment.

TABLE 12. Results of people identification in RGB images in a lit
environment.

Class | Valid | Instances F1 mAP50 | mAP50-95
All 400 1597 0.937 0.941 0.782
A 400 400 0.839 0.846 0.712
B 400 399 0.990 0.995 0.828
C 400 399 0.940 0.936 0.786
D 400 399 0.979 0.99 0.804

TABLE 13. Results of people identification in RGB images in a dark
environment.

Class | Valid | Instances F1 mAP50 | mAP50-95
All 400 1597 0.347 0.349 0.248
A 400 400 0.343 0.354 0.158
B 400 399 0.350 0.358 0.291
C 400 399 0.336 0.331 0.259
D 400 399 0.360 0.350 0.285

According to TABLE 13 and TABLE 14, the identification
results are good in a well-lit environment. The overall F1
score is 0.937, the overall mAPS50 value is 0.941, and
the overall mAP50-95 value is 0.596. On the contrary,
in a dark environment, the identification results are not
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TABLE 14. Comparison of the results in RGB images in a different
environment and in depth images.

[ Class | Instances [ F1 | mAP50 [ mAP50-95 |
RGB images in a lit environment

[Overall | 1597 0937 ] 0941 [ 0782 |
RGB images in a dark environment
[ Overall | 1597 0347 [ 0349 [ 0248 |
Depth images
[Overall | 1671 [ 0.665 [ 0753 [ 0.626 |

great. The overall F1 score is 0.347, the overall mAP50
value is 0.349, and the overall mAP50-95 value is 0.248.
By comparing the training outcomes using RGB images
and 3D LiDAR experiment, the results of RGB images in
a lit environment perform better than the training outcomes
of depth images. However, after image reconstruction, the
results of depth images are much closer to the RGB outcomes
in a lit environment, the overall results of the comparison
are shown in TABLE 14. The results from depth images,
demonstrate superior performance in dark environments. This
indicates that our proposed method effectively addresses
the issue of diminished detection effectiveness in a dark
environment.

VIi. CONCLUSION

In this paper, we showed the capabilities of the YOLOvVS
model in detecting and identifying individuals within private
car scenarios, using 3D LiDAR images. Traditionally, the
utilization of 3D LiDAR often grappled with challenges,
primarily its limited efficacy in gleaning comprehensive
information about rear-seat passengers. The inherent design
of vehicles, combined with the nature of the technology,
rendered certain portions of these passengers obscured,
thus presenting a clear challenge in achieving thorough
recognition and identification.

To address this limitation, we integrated generative
image inpainting technology into our methodology. This
fusion of innovative reconstruction techniques with advanced
detection models led to a significant enhancement in our
results. Notably, metrics such as the F1 score, mAP50, and
mAP50-95 values witnessed substantial improvements post-
reconstruction, underscoring the transformative potential of
combining these technologies for optimized people identifi-
cation within private cars.
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