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ABSTRACT The concept of Prosumer has enabled consumers to actively participate in Peer-to-Peer
(P2P) energy trading, particularly as Renewable Energy Source (RES)s and Electric Vehicle (EV)s have
become more accessible and cost-effective. In addition to the P2P energy trading, prosumers benefit from
the relatively high energy capacity of EVs through the integration of Vehicle-to-X (V2X) technologies,
such as Vehicle-to-Home (V2H), Vehicle-to-Load (V2L), and Vehicle-to-Grid (V2G). Optimization of
an Energy Management System (EMS) is required to allocate the required energy efficiently within the
cluster, due to the complex pricing and energy exchange mechanism of P2P energy trading and multiple
EVs with V2X technologies. In this paper, Deep Reinforcement Learning (DRL) based EMS optimization
method is proposed to optimize the pricing and energy exchanging mechanisms of the P2P energy trading
without affecting the comfort of prosumers. The proposed EMS is applied to a small-scale cluster-based
environment, including multiple (6) prosumers, P2P energy trading with novel hybrid pricing and energy
exchanging mechanisms, and V2X technologies (V2H, V2L, and V2G) to reduce the overall energy costs
and increase the Self-Sufficiency Ratio (SSR)s. Multi Double Deep Q-Network (DDQN) agents based
DRL algorithm is implemented and the environment is formulated as a Markov Decision Process (MDP)
to optimize the decision-making process. Numerical results show that the proposed EMS reduces the overall
energy costs by 19.18%, increases the SSRs by 9.39%, and achieves an overall 65.87% SSR. Additionally,
numerical results indicates that model-free DRL, such as DDQN agent based Deep Q-Network (DQN)
Reinforcement Learning (RL) algorithm, promise to eliminate the energy management complexities with
multiple uncertainties.

INDEX TERMS Energy management system, peer-to-peer energy trading, vehicle-to-home, multi-agent
reinforcement learning, deep reinforcement learning, smart grids.
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I. INTRODUCTION
Optimizing energy production and consumption, resource
allocation, and reducing energy costs require the implementa-
tion of smart energy management strategies. Advancements
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in consumer electronic, changes in electronic device usage
habits, increased industrialization, and accelerated produc-
tion of EV have caused excessive energy consumption
worldwide [1]. RESs are sustainable and clean energy sources
to meet the energy demands, preventing adverse effects of
climate change [2], [3]. Applications of Energy Storage
System (ESS)s have acquired significant importance on
optimizing the utilization of RESs [4]. The combination of
multiple residents in a residential area, ESSs, RESs, EVs
constitute a localized Microgrid (MG) with on/off-grid and
autonomous operation capabilities [5], [6], [7]. The intermit-
tent energy production profiles of RESs and combination of
multiple components cause energymanagement complexities
in MGs [8], [9], [10], [11]. Therefore, the implementation
of smart energy management architectures are required to
ensure efficient utilization of energy in MGs. Consequently,
various smart energy management architectures, such as
Home Energy Management System (HEMS)s, have been
proposed in literature to enhance the operation of MG.

Due to the energy management complexities and inter-
mittent energy production profiles of RESs, HEMSs are
of great importance in energy management architectures.
Energy cost reduction, flow optimization, enhancement in
the overall self-sufficiency, peak shaving, and appliance
scheduling are the primary objectives of HEMSs [12], [13].
The conventional HEMSs include shiftable and non-shiftable
loads, EVs, RESs, smart meters, Internet of Things (IoT)
devices, communication technologies, and bi-directional
energy and data exchange capabilities with the electric
grid [12], [13], [14]. The HEMS control strategies include
long-term benefits based Demand Side Management (DSM)
and short-term benefits based Demand Response (DR). DSM
strategies improve consumption behaviors of consumers to
reduce energy costs in the long term, encouraging consumers
to use energy during the off-peak times instead of peak
times. Opposite to DSM, DR strategies include short-term
and real-term changes in response to price signals and needs
of grid reliability. DSM and DR strategies include applica-
tions of peak-shaving, appliance scheduling, consumption
planning and EV charging planning based on different
pricing schemes, including Critical Peak Pricing (CPP), Day-
Ahead Pricing (DAP), Time-of-Use (TOU), and Real Time
Pricing (RTP) [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25].

Several optimization methods, based on different algorith-
mic approaches and objective functions, have been proposed
to improve the process of decision making in HEMSs.
Objective functions have been intensely focused on reducing
energy costs and optimizing the energy flow. The literature
review indicates that proposedHEMSs include 2 fundamental
optimization approaches: rule-based and learning based.
Rule-based optimization approaches are based on pre-
defined rules, attempting to achieve an optimized solution
to a mathematical problem [26]. Rule-based optimization
approaches include Action Dependent Heuristic Dynamic

Programming (ADHDP) [27], [38], [39], static and dynamic
rule-based approaches [28], [29], [30], [31], Particle Swarm
Optimization (PSO) [35], [36], [37], and Fuzzy Logic [32],
[33]. The primary objectives of rule-based optimization
approaches are minimizing the energy costs, reducing energy
consumption from the electric grid and emission, optimizing
the energy consumption and flow, and maximizing the com-
forts of consumers [27], [28], [29], [30], [31], [32], [33], [35],
[36], [37], [38]. Despite the easy-to-apply feature of rule-
based approaches, learning-based optimization approaches
are more suitable to solve difficult optimization problems
in complex environment with many uncertainties. Therefore,
Machine Learning (ML) based optimization methods have
been widely investigated in the literature. RL is a sub-branch
of ML techniques based on the maximization of an objective
function through the interaction with the environment [34].
In addition to the conventional RL algorithm, DRL enhances
the advantages of RL algorithms by involving Deep Neural
Network (DNN) architectures during the learning. Especially,
with the development of the first DQN algorithm using
DNN architectures to find the optimal solution [105],
DRL algorithms have rapidly gained importance in various
application fields, including smart energy management and
many others.

DRL algorithms aim to enhance the performance of
the conventional RL algorithms by combining the Deep
Learning (DL) and RL based optimization methods. DRL
algorithms focus on evaluating the Q-function, although
conventional RL algorithms evaluate the Q-table instead.
Evaluating the Q-table could cause troubles with large-
scale data. Therefore, DRL algorithms evaluate the optimal
policy through adjusting the weights DNN architecture with
training [128]. In general, DRL algorithms perform relatively
better than conventional RL algorithms (without DNN) in
complex environment with large-scale of information [106].
DRL algorithms differ from conventional RL algorithms in
terms of evaluating the optimal policy. The optimization
approach of DRL algorithms includes value-based, policy-
based, model-based, and hierarchical-based optimization
approaches [107]. Themost common used algorithms ofDRL
include DQN and DDQN to find the optimal policy via online
and target networks efficiently [108], Deep Deterministic
Policy Gradient (DDPG) that uses actor-critic architecture
[109], Proximal Policy Optimization (PPO) that evaluate the
optimal policy via the combination of policy-based and value-
based methods [110] and etc [107]. The application areas of
DRL algorithms include task offloading, resource allocation
and scheduling precisely in wireless, mobile networks and
wireless power transfer [108], [111], [112], [113], financial
and advertisement areas such as detecting digital advertising
frauds, money phishing attacks, credit card frauds, and
decision making in investments [114], [115], [116], [117],
supply chain management systems [118], [119], autonomous
vehicle technologies for high-speed path following, suspect
pursuits, decision making in complex traffic environments,

31552 VOLUME 12, 2024



M. Yavuz, Ö. C. Kivanç: Optimization of a Cluster-Based EMS Using DRL Without Affecting Prosumer Comfort

and lane changing in emergency situation [120], [121],
[122], [123], and smart energy management architectures for
different types of electric vehicles, grid controls, and P2P
energy trading mechanisms [124], [125], [126], [127].
Various RL algorithms have been implemented in HEMSs,

including value-based, policy-based, and model-based algo-
rithms. Due to complexity of environmental design in model-
based algorithms, value-based and policy-based algorithms
are preferred to simulate model-free environments, focusing
on the algorithmic evaluation rater than the designing phase.
In the literature, the implementation of RL algorithms
have been focused on value-based and policy-based DRL
algorithms with single-agent environments, using DNN
to enhance and accelerate the optimization process [40].
Optimization objectives of RL algorithms include reducing
the energy costs, optimizing the energy consumption and
flow, optimizing the charging/discharging of ESSs, DSM and
DR, and scheduling the charging of EVs [41], [42].
The literature review reveals a significant gap in

RL-based energy management systems with multiple pro-
sumers, covering the implementations of P2P energy trading
and V2X (V2H, V2L, and V2G) technologies. The majority
of the literature are composed of DSM and DR energy
management architecture, focusing on the optimization of
energy consumption. However, such architectures affect the
comfort of prosumers by scheduling the use of appliances
and forcing behavioral changes in the daily life activities.
To overcome the mentioned issues and fulfill the literature
gap, in this paper, optimization of a cluster-based EMS
with DDQN agents-based DQN RL algorithm is proposed.
Throughout this paper, a cluster-based refers to a relatively
small-scale environment with less than 10 prosumers. The
proposed cluster-based EMS includes 6 prosumers, 6 ESSs,
3 EVs, and solar panels of each prosumers with equal energy
capacity sizes. P2P energy trading and V2X (V2H, V2L,
and V2G) technologies are implemented in the proposed
EMS to reduce the energy costs and improve the overall
SSRs without affecting the comfort of prosumers. To not
affect or reduce the comfort of prosumers, conventional
DSM and DR energy management architectures are not
implemented in the proposed EMS. Instead, energy cost
reduction and improvement on the SSRs are achieved via the
collaboration of P2P energy trading and V2X technologies
with relatively high energy capacities of EVs. In the proposed
EMS, prosumers benefit from EVs by meeting the required
self energy loads and supplying energy to other prosumers via
V2X technologies and P2P energy trading implementations.
Sellers profit from the energy transactions with profits and
buyers profit from the energy transactions with lower energy
prices than the electric grid that has a TOU energy pricing
scheme with 3 different time zones and a constant Feed-
in-Tariff (FiT) price. The main contributions of this paper
are:

1) investigating the effects of the collaboration of P2P
energy trading and V2X technologies in a local
and cluster-based environment that forms a relatively

small-scale network by comparing the proposed EMS
with 4 different cases,

2) implementing a cluster-wise scalable EMS to reduce
the overall energy costs and improve the SSRs without
affecting the comfort of consumers and without
applying DSM and DR energy management strategies,

3) proposing a novel hybrid P2P energy trading mecha-
nism that prosumers benefit equally.

The remainder of this paper is organized as follows.
The current literature and state-of-the-art on EMS with
RL algorithms, V2X technologies, and P2P energy trading
concepts are reviewed in Section II. The design of the
proposed multi-agent EMS and the MDP formulation are
explained in Section III. Multi DDQN agent-based RL
algorithm and the training parameters are explained in
Section IV. In Section V, the simulations of the proposed
system are performed, and the obtained results are analyzed.
Finally, the conclusions and future works are discussed in
Section VI.

II. THE CURRENT STATE-OF-THE-ART
A. REINFORCEMENT LEARNING BASED ENERGY
MANAGEMENT SYSTEMS
RL algorithms have been trending solution approaches to
optimization problems with simple to complex environ-
ments. Various algorithms, including Q-Learning, DQN,
DDPG, PPO, SARSA, Soft Actor-Critic (SAC), Advantage
Actor-Critic (A2C), and Twin Delayed Deep Deterministic
(TD3), have been implemented in EMSs to meet different
requirements. The Q-Learning algorithm is implemented in
model-free environments, requiring discrete action space.
Sun et al. proposed an implementation of a multi-objective-
basedQ-learning algorithm tominimize operational costs and
pollutant emissions, accelerating the computational process
via eligibility trace theory [43]. Dayani et al. implemented a
real-time and fuzzy controller based Q-learning algorithm to
minimize operational costs and balance energy consumption
fluctuations, predicting the future energy consumption [44].
Perera et al. developed a Python program to maximize
the utilization of RES and minimize the energy drawn
from the grid, forecasting RES energy generation through
Artificial Neural Network (ANN) [45]. Chen et al. proposed
a preference-based multi-objective RL model to minimize
operational costs and optimize appliance usage schedules,
managing DR and achieved 8.44% energy cost reduction
[46]. Hu et al. approached the energy management problems
distinctly, proposing a Q-Learning method to optimize the
power distribution scheme and, therefore, maximize social
welfare [47]. Contrary to single-agent implementations,
Lai et al. proposed a multi-agent Q-Learning algorithm to
optimize appliance usage schedules, assigning individual
agents to each appliance. Lai et al. compared outcomes of
the proposed method with 4 seasons and reduced energy
costs by 9.68% in average [48]. Benjamin et al. applied
a Q-Learning algorithm to shift 8 appliances usage from
peak hours to off-peak hours, thus reducing operational
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costs by approximately 38% [49]. Similarly, Rostmnezhad
et al. proposed an implementation of a Q-Learning algorithm
to optimize the charging/discharging process of Thermal
Energy Storage System (TESS) and Battery Energy Storage
System (BESS), reducing operational costs by approximately
42% [50]. Moreover, Shouryadhar et al. proposed an
enhanced SARSA algorithm to maximize utilization of RES
and minimize fossil fuel energy consumption [53]. Xu and
et al. proposed a multi-agent Q-Learning HEMS, scheduling
appliances and EVs to minimize energy costs approximately
by 44.53% for short-term period [85]. An illustration of the
implementation of conventional HEMS with shiftable, non-
shiftable, and controllable loads can be seen in Fig. 1.
Similar to the Q-Learning algorithm, the DQN algorithm is

implemented in model-free environments with discrete action
spaces, estimating the optimal Q-values throughDNN instead
of Q-tables. Hau et al. implemented energy trading concept
to a MG using DQN algorithm to minimize operational costs
and risks, considering contingency reserves [51]. Xu et al.
proposed a system model with DQN algorithm to reduce
operational costs by approximately 34%, implementing
internal pricing mechanism for residential users [52]. Hong
and Lee reduced operational costs around 19% using DQN
algorithm and short-horizon forecasts to satisfy energy
demands of residential users during energy shortages [54].
DDPG, PPO, SAC, and A2C algorithms are implemented

in model-free environments with discrete or continuous
action spaces. Wang et al. designed Stackelberg Game theory
based DDPG algorithm to maximize energy selling revenue
and minimize energy purchasing [55]. Liu et al. approached
energy management problems in MG through physical side
and proposed DDPG algorithm to optimize AC power
flow in stochastic dynamics [56]. Li et al. proposed PPO
algorithm to optimize appliance usage schedules, therefore,
to minimize operational costs [57]. Weiss et al. proposed
of EV implementation into Smart Home (SH) using PPO
algorithm to minimize energy costs while satisfying system’s
constraints [58]. Addition to EV implementations, Tchir
et al. implemented V2X technologies with PPO algorithm
to minimize operational costs and ensure continuous energy
supply [59]. To optimize energy management of multiple
residential users, Lee et al. proposed A2C based Federated
Reinforcement Learning (FRL) algorithm to be used in
multi-agent environment [60]. Moreover, Kahraman et al.
studied a comprehensive algorithm comparison using DQN,
DDPG and TD3, achieving similar outcomes with different
algorithms for short-term (3 days) period [61].

B. VEHICLE-TO-X TECHNOLOGIES
The rapid development of vehicular technologies has facili-
tated EVs to participate in MG operations. Advancements in
power electronic applications and bi-directional EV Charger
technologies have enabled the emergence of various V2X
technologies, including V2H, V2L, and V2G technologies.

The V2X (V2H, V2L, and V2G) technologies deliver
various features to residential users and the electric grid. V2H

technologies provide energy during the energy outage of the
electric grid and consequently provide uninterrupted energy
experiences and support the energy production of RESs. On
the other hand, V2L technologies provide energy directly
to the interconnected loads through bi-directional chargers,
therefore providing uninterrupted energy experiences with
sensitive loads requiring continuity. In addition to internal
usage, V2G technologies support and balance the electric
grid through energy-selling processes [62]. An illustration
of the V2X (V2H, V2L, V2G) applications can be seen
in Fig. 2.

The application of V2X technologies has several potential
advantages to consumers and producers. In V2G technolo-
gies, using the battery of EVs as Distributed Energy Resource
(DER)s increases the stability of the electric grid by balancing
the voltages in the electric grid. Moreover, V2H technologies
reduce the energy costs of SHs by providing cheaper energy
during peak hours. Implementations of V2H and V2L
technologies could protect sensitive electronic devices during
energy outages in the electric grid by providing uninterrupted
energy [63]. Additionally, V2X technologies reduce pollutant
emissions by charging during the daytime and discharging
during the evening time and shorten the Return on Investment
(ROI) periods of EVs [64]. Besides various advantages, the
application of V2X technologies has technical, economic,
and social challenges, including accelerating the degradation
of EVs’ batteries, lack of EV compatibility with V2X
technologies, expensive production of compatible chargers,
regulation issues, extended charging times and range anxiety
of EV owners [64].

Although the application interest of the research includes
solely the energy distribution applications (V2G, V2H,
and V2L), in addition to energy distribution applications,
different types of V2X technologies, such as Vehicle-
to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and
Vehicle-to-Pedestrian (V2P) are investigated intensely in the
literature recently. The internet connectivity and wireless
communication technologies enable the concept of Internet
of Vehicles (IoV) with a wide range of V2X applications.
In general, IoV concept includes three virtual layers, namely
cloud, infrastructure, and vehicular layers [142]. On contrary,
the fundamental components of IoV environment consists
of on board units for wireless communication, road side
units to connect all the vehicles around the neighborhood,
base stations to enhance the overall performance of wireless
communication, and trust authority server that secure the
connection and functionality of connected vehicles [143].
Besides the energy applications of V2V technologies, EVs
could form a vehicular environment (IoV) with connected
vehicles through wireless communication methods. In the
vehicular environment, vehicles communicate to each other
[129] to perform some autonomous tasks, including lateral
and longitudinal vehicle following [130], lane changing
in noisy environment as tunnel [131], and coordinated
brake control for collision avoidance [132]. On the other
hand, V2I technologies involve the information exchange
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FIGURE 1. The implementation of Reinforcement Learning (RL) algorithms in conventional Home Energy Management Systems (HEMSs) with shiftable,
non-shiftable, and controllable loads.

FIGURE 2. The application of Vehicle-to-Grid (V2G), Vehicle-to-Home
(V2H), and Vehicle-to-Load (V2L) technologies in Smart Homes (SHs) and
Microgrids (MGs).

between vehicles and roadside infrastructure. The roadside
infrastructures communicate with vehicles include traffic
lights, road signs, and centralized traffic management
systems. Vehicle platooning concept have remarkable
significance to achieve road safety and high efficiency
[133]. The application of V2I technologies include safety
and mobility applications, including collision avoidance,
collision detection, traffic light detection, toll and fine
collection, and smart parking [134], [135], [136], [137].
Similar to V2I, V2P applications are of great importance for
efficient traffic management and pedestrian safety. Efficient
traffic management could be achieved via V2I applications
and waiting times of vehicles and pedestrians could be
reduced mutually by implementing cooperative management
structures in strategic places as intersections [138], [139].

Pedestrian safety could be achieved via V2I applications by
collision avoidance systems that based on path prediction of
pedestrians [140], [141].
V2X technologies (V2H, V2L, and V2G) have a limited

number of HEMS applications in the current literature. Rule-
based energy management approaches of V2X technology
integration into HEMSs have constituted the vast major-
ity of the literature. Roche et al. proposed a rule-based
energy management approach, including V2H technology,
to improve the resilience of HEMSs during energy outages,
considering the degradation of batteries in EVs [65]. Rehman
et al. approached V2G technologies on the technical side and
developed a MATLAB model to simulate V2G technology
in terms of load and frequency management in Smart Grid
(SG)s [66]. Nowadays, charging costs of EVs have become an
important issue. To overcome the stated issue and minimize
the charging cost of EVs, Turker et al. proposed a novel
V2G algorithm called Optimal Logical Control (OLC) [67].
Hashim et al. implemented a V2G scheduling algorithm in a
commercial and residential area to reduce grid load variance
and stabilize the electric grid operations by scheduling the
charging/discharging process of grid-connected EVs [68].
Hemmati et al. implemented V2H and V2G technologies
to improve the utilization and uncertainties of RESs and
minimize the daily energy cost of residential users, [69].
In terms of HEMSs cost optimization, Mohamed et al. and
Einolander et al. proposed the integration of V2G and V2H
technologies into SGs to optimize the energy costs, using
different optimization techniques [70], [71].

C. PEER-TO-PEER ENERGY TRADING CONCEPT
Due to the increase in energy consumption, remarkable
proliferation in DERs, and facilitation of access to RESs,
the P2P energy trading concept has become the prior
interest of energy trading applications. The typical P2P
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energy trading concept involves the sharing of energy
resources among the participants, considered prosumers,
in an energy network [72]. P2P energy trading concepts
require an energy market to regulate the process, control
the dynamics of prosumers, and monitor energy transactions
to ensure reliable and efficient energy trading. The design
of energy market architectures includes community-based
(distributed), centralized, and decentralized energy market
architectures [73]. The implementation of P2P energy trad-
ing concepts provides several advantages, including peak-
shaving, improving the electric grid stability, minimizing
operational costs and equipment installations, and increasing
the reliability of the electric grid during energy outages [72].
However, besides various advantages, the implementation
of P2P energy trading concepts has several challenges,
including real-time data acquisition, communication issues,
uncertainties of prosumers’ dynamics, balancing the selling
and purchasing energy amounts, securing transactions, and
achieving the optimal pricing mechanism [72], [72], [73]. An
illustration of the implementation of P2P energy trading can
be seen in Fig. 3.

FIGURE 3. The implementation of Peer-to-Peer (P2P) Energy Trading
concept with Multiple Prosumers (Consumers & Producers) in a Microgrid
(MG) with Smart Homes (SHs).

In the literature, the vast majority of the research on
P2P energy trading concepts has focused on developing
pricing mechanisms, block-chain applications in energy
transactions, and the implementation of P2P energy trading
in HEMSs. Developing pricing mechanisms for P2P energy
trading concepts has significant importance in achieving
optimal energy transactions among prosumers. Anoh et al.

proposed a game-theoretic approach based on Stackelberg
to achieve an optimal pricing mechanism and maximize
consumers’ and producers’ benefits [74]. Meinke et al.
proposed an internal pricing mechanism considering the
supply-demand ratio to maximize the economic benefits of
prosumers [75]. Trivedi et al. proposed a comprehensive
review of optimal pricing mechanisms using cooperative
and non-cooperative game-theoretic approaches, including
Nash Equilibrium, Nash Bargain, Stackelberg, and Shapley
Value [76]. Schiera et al. investigated the different P2P
energy trading market strategies and pricing mechanisms to
evaluate the different effects of proposed P2P energy trading
concepts [77]. To optimize the energy transactions during
P2P, ensure data reliability, and maximize prosumers profits,
Sarapan et al. proposed a Block-chain-based methodology,
considering on-grid and off-grid situations with Islanded MG
architecture [78].

Moreover, Zhu et al. implemented a P2P energy trading
concept based on a community-based energy market and
Lyapunov-based equations with a double auction mechanism
to reduce energy costs and maximize the utilization of RESs
[79]. Incentives have remarkable importance in developing
pricing mechanisms of P2P energy trading concepts. To
address the importance of an incentive-based pricing mecha-
nism, Li et al. and Pankiraj et al. proposed an incentive-based
pricing mechanism using linear programming-based opti-
mization and rule-based optimization to maximize con-
sumers’ and producers’ benefits equally [80], [81]. Paudel
et al. proposed a novel Hierarchical P2P energy trading
concept in MG, including multiple prosumers to improve the
efficiency of the energy trading process and reduce energy
costs [82]. To realize P2P energy trading with real-time
data and equipment, Hayes et al. constructed an open-source
laboratory to fulfill the literature gap in hardware and
software implementation [83].

The application of RL algorithms in P2P energy trading
have relatively insufficient researches in the literature.
Various RL algorithms have been applied to P2P energy
trading applications to optimize energy trading process
and pricing mechanisms. Similar applications with slight
differences have been proposed in the literature. Zhou et al.
proposed a novel pricing mechanism based on demand and
supply ratio to actively encourage prosumers to participate
in P2P energy trading. Zhou et al. investigated the proposed
method with different case studies, considering the number
of smart users in the environment, and reduced energy
costs by 25% with 2 smart users involved [86]. Nunna
et al. combined multiple (8) MGs as a distribution network,
and investigated the effect of P2P energy trading in such
network, forecasting the power mismatches across the MGs.
Nunna et al. achieved approximately 60$/month profits in
maximum [87]. Chen et al. investigated P2P energy trading
concept within an environment that include the combination
of residential, commercial, and industrial multi-energy MGs
with energy conversion among different energy forms.
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Chen et al. reduced average hourly costs by 18%, 27%, and
23% in residential, commercial, and industrial microgrids,
respectively, using multi-agent TD3 algorithm [88]. Sadeghi
and Erol-Kantarci investigated the effects of P2P energy
trading with RL algorithm in terms of cost minimization with
respect to the number of MGs involved. Sadeghi and Erol-
Kantarci concluded that increase in the number of MGs in the
environment reduces the average energy costs significantly
[89]. Ye et al. built a large-scale model that includes
300 residents, V2X technologies, appliance scheduling, and
proposing a novel P2P energy trading mechanism [90].
Similar to the previous paper, Sanayha et al. proposed
a model-based multi-agent A3C3 algorithm for a cluster-
wise MG with 300 residents. Sanayha et al. clustered the
residents with k-means (k = [2, 10]) clustering algorithm
according to their energy trading behaviors to reduce energy
costs by 17% in total [84]. Wu et al. proposed a novel
improve mid-market rate P2P energy trading mechanism in
a multi-agent environment (multiple MGs) to increase P2P
energy trading profits by 25%, implementing DR strategy
to schedule appliance usage while maximizing the comforts
of prosumers [91]. A similar application example of the
proposed multi-agent environment can be seen in Fig. 4.

FIGURE 4. Application example of the proposed multi-agent environment
with p2p energy trading and V2X implementations, using reinforcement
learning algorithm.

III. SYSTEM MODELS AND PROBLEM FORMULATION
Typically, HEMSs include an electric grid to support
prosumers and RESs during the limited energy production
periods, bi-directional smart meters to monitor energy
consumption and production, RESs, battery-based ESSs
to store excessive energy production, EVs, controllable,
shiftable and non-shiftable loads to apply DR and DSM
energy management strategies (see Fig. 1).

The proposed EMS consists of 6 physically and virtually
connected homes with energy and information exchange
capabilities in decentralized manners within the cluster.
Individually, homes, considered as prosumers, in the clus-
ter include battery-based ESS, solar panel based RESs,
implementation of V2X (V2H, V2L, and V2G) technologies
through EVs with bi-directional chargers, implementation of

the P2P energy trading, and system constraints to prevent
energy and information exchange violations. Additionally,
an electric grid and smart meter are included to improve
the reliability of the overall system during energy shortages
and monitor the energy consumption and production of pro-
sumers. The illustration and block diagram of the proposed
EMS can be seen in Fig. 5. To increase the comfort of
prosumers, the proposed EMS does not include DR and DSM
energy management strategies. Therefore, the proposed EMS
investigates the effects of V2X and P2P implementations on
reducing energy costs and improving the overall SSR without
affecting the comfort of prosumers.

A. ENERGY MANAGEMENT SYSTEM MODEL
1) ELECTRIC GRID (UTILITY)
To supply energy to prosumers during insufficient energy
generation inDERs and insufficient energy transaction in P2P
energy trading, an electric grid is implemented. The electric
grid is considered as a backup energy source to prevent
energy failure situations and maximize satisfaction rates of
prosumers. TOU energy prices are adopted as the pricing
scheme and the pricing policies can be seen in Fig. 6. Energy
buying costs are expressed as follows [94], [95]:

Cn
t = Engrid,tγ

buying
t (1)

where, Cn
t represents the energy cost of the nth prosumer.

Engrid,t and γ
buying
t are bought energy from the grid of

nth prosumer in kWh and energy buying price with TOU
pricing scheme, respectively. Prosumers can sell excessive
energy back to the grid. Energy selling profits are expressed
as follows [94], [95]:

Prnt = Enselling,tγ
selling
t (2)

where, Prnt represents the profit of the n the prosumer.
Enselling,t and γ

selling
t are sold energy to the grid in kWh

and energy selling price with TOU pricing scheme [84],
respectively. The primary objectives of the electric grid are
to supply energy to the prosumers during insufficient energy
generation in DERs and insufficient energy transactions in
P2P energy trading. The second objective of the electric grid
is to charge the EVs, if required.

2) ENERGY STORAGE SYSTEM (ESS)
ESSs store the excessive energy generated in RESs and sup-
ply energy to the prosumer during energy requirements. The
charging and discharging dynamics of ESSs are expressed as
follows [46], [61], [94], [95]:

EnESS,t+1 =


EnESS,t + ηnESS,chargeP

n
ESS,t1t , PnESS,t > 0

EnESS,t +
PnESS,t1t

ηnESS,discharge
, PnESS,t ≤ 0

(3)

where, EnESS,t+1 and E
n
ESS,t represent the current and previous

energy in the nth ESS in kWh, respectively. PnESS,t is the
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FIGURE 5. The proposed cluster-based Energy Management System (EMS), including multiple (6) prosumers, battery-based ESSs, EVs with V2X
technologies, and P2P energy trading mechanism.

FIGURE 6. Time of Use (TOU) energy pricing scheme, consisting of buying
(3 different time zone) and selling prices (a constant feed-in-tariff),
respectively.

input power of the nth ESS in kW. 1t represents the time
step at time t in Tsimulation. ηnESS,charge and ηnESS,discharge
represent the charging and discharging efficiency of the
nth ESS, respectively. The input power, PnESS,t , determines
the operation mode of ESS: charging mode or discharging
mode. The State of Charge (SoC) of each ESS, SoCn

ESS,t+1,
is expressed as follows [46], [61], [94], [95]:

SoCn
ESS,t+1 =

EnESS,t+1

EnESS,capacity
(4)

where SoCn
ESS,t+1 represents the current SoC of the nth ESS.

EnESS,t+1 and EnESS,capacity are the current energy and total
energy capacity of the nth ESS in kWh, respectively. The
primary objective of ESSs is to store excessive energy
generated in RESs and supply energy to the owner to meet
required energy loads. The secondary objective is to supply
energy to the other prosumers via P2P energy trading.

3) RENEWABLE ENERGY SOURCE (RES)
To simulate the dynamics of DERs, solar panel based RESs
are implemented in the proposed EMS. Designed DERs
are considered as a centralized unit, and it is assumed
that prosumers benefit from the generated energy equally.
Therefore, the amount of generated solar energy is divided
6 equal parts for each prosumer. The dynamics of the
implemented DERs are uncertain, and generated energy is
expressed as follows:

Esolar,t = Psolar,t1t (5a)

Psolar,min ≤ Psolar,t ≤ Psolar,max (5b)

Esolar,min ≤ Esolar,t ≤ Esolar,max (5c)
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Ensolar,t =
Esolar,t

6
(5d)

where, Psolar,min and Esolar,min are the minimum power and
energy generation capacity of DERs. Similarly,Psolar,max and
Esolar,max are the maximum power and energy generation
capacity of DERs. Psolar,t and Esolar,t represent the power
and energy generation at time step t . Ensolar,t represents the
amount of generated solar energy per prosumer. The primary
objective of DERs is to supply energy to the owner tomeet the
required energy loads. The remaining energy can be stored
in ESSs for future energy requirements and supplied to the
cluster via P2P energy trading.

4) ELECTRIC VEHICLE (EV) AND VEHICLE-TO-X
IMPLEMENTATION
Similar to ESSs, EVs are implemented in the proposed
EMS to simulate the dynamics of EVs. Additionally, EVs
have V2X (V2H, V2L, and V2G) capabilities to supply
energy to home during energy insufficiency (V2H), directly
to the connected loads (V2L), and the electric grid (V2G)
to improve the operations of the electric grid. The charging
and discharging dynamics of EVs are expressed as follows
[69], [95]:

EnEV ,t+1 =


EnEV ,t + ηnEV ,chargeP

n
EV ,t1t , PnEV ,t > 0

EnEV ,t +
PnEV ,t1t

ηnEV ,discharge
, PnEV ,t ≤ 0

(6)

where EnEV ,t and E
n
EV ,t+1 represent the current and previous

energy in the nth EV in kWh, respectively. PnEV ,t is the
input power of the nth EV in kW. ηnEV ,charge and ηnEV ,discharge
represent the charging and discharging efficiency of the
nth EV, respectively. The input power PnEV ,t determines
the operation mode of EV: charging mode or discharg-
ing mode. Discharging mode of EVs are used in V2X
operations. The SoC of EVs, SoCn

EV ,t+1, are expressed as
follows [69], [95]:

SoCn
EV ,t+1 =

EnEV ,t+1

EnEV ,capacity
(7)

where, SoCn
EV ,t+1 represents the current SoC of the nth EV.

EnEV ,t+1 and EnEV ,capacity are the current energy and total
energy capacity of the nth EV in kWh, respectively. In
addition to charging operations, EVs supply energy to the
owner and other prosumers via V2X and P2P implemen-
tations. V2H, V2L, and V2G equations are expressed as
follows:

EnV2H ,t = EnEVavailable,tC
n
V2H ,t (8a)

EnV2L,t = EnEVavailable,tC
n
V2L,t (8b)

EnV2G,t = EnEVavailable,tC
n
V2G,t (8c)

EnV2X ,t = EnV2H ,t + EnV2L,t + EnV2G,t (8d)

where, EnV2H ,t , E
n
V2L,t , and E

n
V2G,t represent the computed

energies for V2H, V2L, and V2G operations in kWh,
respectively. EnEVavailable,t is the available energy capacity of
the nth EV in kWh and is expressed as follows:

EnEVavailable,t = EnEV ,capacity,tSoC
n
EV ,t (9)

Cn
V2H ,t , C

n
V2L,t , and Cn

V2G,t represent the multiplication
coefficients of V2H, V2L, andV2G operations that determine
the amount of available energy to be used in V2X operations.
EnV2X ,t is the total energy amount for V2X operations in kWh
at time step t . Subsequently, the ultimate SoCs of EVs are
expressed as follows:

SoCn
EV ,t+1 =

EnEV ,t+1

EnEV ,capacity
−

EnV2X ,t

EnEV ,capacity
(10)

The connection status of EVs to the cluster could be
connected (Binary 1) and not connected (Binary 0). EVs
consume energy for transportation purposes while not
connected to the cluster. When EVs arrive to home and
are connected to the cluster, SoCs of EVs are calculated to
simulate the dynamics of driving cycles. The calculation of
SoC on the arrival is expressed as follows:

SoCn
EV ,t+1 =

EnEV ,t−1

EnEV ,capacity
−

Endriving,t
EnEV ,capacity

(11)

where, Endriving,t represents the energy consumption of the
nth EV during the driving cycles. EnEV ,t−1 represents the
available energy capacity of the nth EV at time t − 1, when
EV leaves home.

5) PEER-TO-PEER (P2P) ENERGY TRADING
IMPLEMENTATION
A novel incentive-based hybrid P2P energy trading and
pricing mechanism is proposed to be used in the proposed
EMS and to simulate the dynamics of P2P energy trading. The
proposed P2P energy trading and pricing mechanism allows
prosumers to participate in the energy exchange process with
equal benefits. The energy trading and pricing flow of the
proposed P2P energy trading mechanism is as follows:

1) Required buying energy of the buyers are calculated
and reported to the mechanism.

2) Desired selling energy of the sellers are calculated with
action signals of RL algorithm and reported to the
mechanism.

3) Energy prices of the sellers are calculated with action
signals of RL algorithm and reported to themechanism.
The maximum energy price of sellers are limited to the
energy price of the electric grid. Therefore, the buyers
are always encouraged to buy energy from other peers.

4) All sellers are sorted from lowest to highest energy
prices. Seller with the lowest energy price get the
priority to sell its desired amount of energy.

5) The amount of energy that seller desire to sell is
distributed equally among the all buyers.

6) Energy trading continues until there is no more energy
left to sell or buy in the mechanism.
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7) After energy trading is completed, energy profits of the
sellers and energy costs of the buyers are calculated
with energy trading transactions.

Consequently, all buyers benefit equally from the amount
of energy sold in the mechanism. Prioritizing the seller rank
from lowest to highest energy prices and determining the
amount of energy to be sold in the proposed P2P energy
trading mechanism require non-cooperative optimization
approach inside the cluster to maximize the profits of the
sellers and cooperative optimization approach outside the
cluster to minimize the energy bought from the electric grid.
Algorithm of the proposed P2P energy trading can be seen in
the Algorithm 1. Additionally, the simplified process flow of
the proposed P2P energy trading mechanism can be seen in
Fig. 7.

Algorithm 1 Peer-to-Peer (P2P) Energy Trading

Input:Enselling,t , E
n
buying,t , γ

n,P2P
t

Output:Energy trading transactions
1: if

∑
Enselling,t > 0and

∑
Enbuying,t > 0 then

2: Sort the sellers from the lowest γ n,P2Pt to the
highest γ n,P2Pt

3: for seller in sellers do
4: while Esellerselling,t > 0 do

5: Esellerselling∗,t =
Esellerselling,t
countbuyers

6: for buyer in buyers do
7: Esellersold,t = min(Esellerselling∗,t ,E

buyer
buying,t )

8: Ebuyerbought,t = Esellersold,t

9: Ebuyerbuying,t = Ebuyerbuying,t − Ebuyerbought,t
10: Calculate the energy cost and profit:
11: Cbuyer

p2p,t = Ebuyerbought,tγ
seller,P2P
t

12: Prsellerp2p,t = Esellersold,tγ
seller,P2P
t

13: end for
14: Esellerselling,t = Esellerselling,t − Esellersold,t
15: end while
16: end for
17: Compute the Energy trading transactions
18: end if

6) CLUSTER MODEL AND SYSTEM CONSTRAINTS
The proposed EMS is composed of 6 integrated homes
to build a cluster-based EMS environment. All individual
homes are composed of ESS, EV (if applicable) with V2X
technologies, DER, and the implementation of P2P energy
trading. To eliminate the design complexities, the process
flows of each home in the proposed EMS are divided into
3 subsequent steps, namely Before Energy Trading step, P2P
Energy Trading step, and After Energy Trading step as seen
in Fig. 8.

Initially, in the Before Energy Trading step, the net energy
of prosumers are calculated with required energy loads and
generated solar energy. Insufficient energies are met through

FIGURE 7. The simplified process flow of the proposed hybrid P2P energy
trading and exchanging mechanism.

FIGURE 8. The process flow of each home in the proposed EMS: Before
Energy Trading (BET), Energy Trading (ET), and After Energy Trading (AET),
respectively.

stored energy in ESSs and EVs. It is assumed that EVs
are charged, if required, during off-peak hours between
03:00 AM and 06:00 AM. In case of energy surplus, ESSs
are charged with the excessive energy.

Ennet,t = Enload,t − Ensolar,t (12)

Ennet,t =

{
Ennet,t − (Eness,t + Env2x,t ) Ennet,t > 0
Ennet,t − Eness,t , Ennet,t ≤ 0

(13)

where, Ennet,t represents the net energy of the nth prosumer.
If the net energy Ennet,t is greater than 0, the net energy is
meet from the available energies in ESSs and EVs. In case
of insufficient energy supply from ESSs and EVs, remaining
energy are met from other peers through P2P energy trading
and from the electric grid. Contrarily, if the net energyEnnet,t is
less than or equal to 0, ESSs are charged with the net energy.
In case of excessive energy after ESS charging process,
remaining energy are sold to other peers through P2P energy
trading and to the electric grid.

In the P2P Energy Trading step, amounts of energy to
be bought and sold are calculated and energy exchanges
are computed via proposed P2P energy trading mechanism.
The amounts of energy to be sold in P2P energy trading are
calculated as follows:

Eness,p2p,t = Eness,available,tC
n
ess,tAS

n
ess,t (14a)

Enev,p2p,t = Enev,available,tC
n
ev,tAS

n
ev,t (14b)
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Enselling,t = Eness,p2p,t + Enev,p2p,t + Ennet,t (14c)

where, Eness,available,t and Enev,available,t are available energy
in ESSs and EVs of the nth prosumer, respectively. Cn

ess,t
and Cn

ev,t represent the multiplication coefficients of ESSs
and EVs, respectively. ASness,t and ASnev,t are binary action
signals of ESSs and EVs, respectively. The multiplication
coefficients and binary action signals are the optimized action
outcomes of the DQN RL algorithm. The energy price of the
nth seller is expressed as follows:

γ
p2p,selling
t = γ

buying
t Cn

P2P,t (15)

where, γ
p2p,selling
t represents the calculated P2P energy

trading price of the nth seller. γ
buying
t is the energy price of

the electric grid. Cn
P2P,t is the multiplication coefficient of

energy price. The multiplication coefficient of energy price
is the optimized action outcome of the DQN RL algorithm.

After the P2P energy trading step, in the After Energy
Trading step, in case of energy insufficiency, the required
energy loads are supplied from the electric grid. In the
opposite case, the amounts of excessive energy are supplied
to the electric grid. The amount of energy supplied from and
to the electric grid are expressed as follows:

Engrid,buying,t = Ennet,t − Enp2p,bought,t (16a)

Engrid,selling,t = Ennet,t − Enp2p,sold,t (16b)

where, Enp2p,bought,t and E
n
p2p,sold,t are the amount of energy

bought and sold via P2P energy trading, respectively.
Engrid,buying,t and E

n
grid,selling,t represent the amount of energy

bought from and sold to the electric grid. Energy costs
and profits of the electric grid transactions are expressed as
follows.

Cn
grid,t = Engrid,buying,tγ

buying
t (17a)

Prngrid,t = Engrid,selling,tγ
selling
t (17b)

Therefore, the overall energy costs and profits of each
prosumer are expressed as follows:

Cn
total,t = Cn

grid,t + Cn
p2p,t + Cn

ev,charging,t (18a)

Prntotal,t = Prngrid,t + Prnp2p,t (18b)

where, Cn
total,t , C

n
grid,t , C

n
p2p,t , and C

n
ev,charging,t are the total

energy costs, energy costs of the electric grid, energy costs
of P2P energy trading, and energy costs of EV charging,
respectively. Prntotal,t , Pr

n
grid,t , and Prnp2p,t are total energy

profits, energy profits of the electric grid, and energy profits
of P2P energy trading, respectively.

Several system constraints are applied to ensure the
stability of the proposed EMS. The ESSs should satisfy the
following constraints [46], [61], [94], [95]:

0 < Eness,t ≤ Emaxess (19a)

SoCmin
ess < SoCn

ess,t ≤ SoCmax
ess (19b)

Pminess < Pness,t ≤ Pmaxess (19c)

where, Emaxess,t is the maximum energy capacity of ESS of
the nth prosumer in kWh. SoCmin

ess and SoCmax
ess are minimum

and maximum SoC values of the nth prosumer, respectively.
Pminess and Pmaxess minimum and maximum powers of the
nth prosumer in kW , respectively. Similar to ESSs, EVs have
several constraints to satisfy as follows [69], [95]:

0 < Enev,t ≤ Emaxev (20a)

SoCmin
ev < SoCn

ev,t ≤ SoCmax
ev (20b)

0 < Pnev,t ≤ Pmaxev (20c)

0 < Env2x,t ≤ Emaxv2x (20d)

where, Emaxev represents the maximum energy capacity of
EV of the nth prosumer in kWh. SoCmin

ev and SoCmax
ev are

minimum and maximum SoC values of the nth prosumer,
respectively. Pmaxev and Emaxv2x represent the maximum charging
power in kW and the maximum V2X discharging energy in
kWh, respectively. To prevent energy exchange violations in
V2X and P2P energy trading, following constraints should be
satisfied:

Enbuying,tE
n
selling,t = 0 (21a)

Enev,charging,tE
n
ev,available,t = 0 (21b)

FIGURE 9. The process flow of each home in the proposed EMS and the
interaction with other homes.

As seen in the Fig. 9, the functionality of overall
environment starts with the net energy calculation. The net
energy calculation happens via the produced energy in the
solar panels and the required energy by the prosumers.
Regarding the amount of net energy, charging/discharging
occurs in the ESS devices and EV via V2L and V2H. In
this scenario, EVs act in the same way as ESS devices.
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Afterwards, prosumers declare the statuses to participate the
P2P energy trading as buyer or seller.

1) Buyer: Declare the amount of energy to purchase.
2) Seller: Declare the amount of energy to sell and the

energy price. The amount of energy to sell is the
combination of surplus energy (Enload,t − Ensolar,t ≤ 0),
energy stored in the batteries of ESS and EV.

After the P2P energy trading, prosumers buy energy from the
grid, in case of energy shortage. Furthermore, prosumers can
sell energy back to the grid, in case of energy surplus.

Similar to ESS, when connected to the charger, EVs
can supply energy to the owner and other prosumers via
V2L and V2H. A balanced approach that integrates both
V2X technologies and P2P energy trading offers the most
comprehensive optimization solution. Thus, prosumers can
leverage the strengths of each component by using the
relatively high capacity batteries of EVs in the P2P energy
trading via V2X technologies. Additionally, prosumers with
EV can leverage the potential profits with TOU pricing
scheme, by selling the stored energy to other prosumers
via P2P energy trading during the daytime (higher prices)
and storing energy during the night-time (cheaper prices).
However, amount of energy that a prosumer can sell via V2X
technologies during P2P energy trading is strictly limited
to prevent the discharge EVs beyond the certain limits
and increase the satisfaction of prosumers. Throughout the
project, it is assumed that P2P energy trading mechanism
ensure the privacy and security during data exchange between
vehicles and prosumers. Also, it is assumed that P2P
energy trading mechanism ensure the compatibilities, such
as communication protocols, standardized interfaces and
reliable infrastructure, among all the components in the
environments to achieve a seamless integration between V2X
technologies and P2P energy trading.

B. MARKOV DECISION PROCESS FORMULATION
The proposed EMS is formulated as MDP tuples to train
and simulate DDQN-based multi-agent environment with
DRL algorithm. MDP tuples include state spaces (Sn), action
spaces (An), state transition probability matrices (Pn), reward
functions (Rn), and discount factors (γ n). A typical MDP
tuple structure can be seen in Fig. 10.

FIGURE 10. Typical Markov Decision Process (MDP) tuple: State, Action,
Reward, and Next State.

State spaces (Sn) include the observed information from
the environment. Prosumers have identical state space (Sn)

design and are as follows:

Snt = {Enload,t ,E
n
solar,t , SoC

n
ESS,t−1, SoC

n
EV ,t−1, S

n
EV ,t ,

γ
buying
t , γ

selling
t } (22)

where, Enload,t ∈ [0, ∞) and Ensolar,t ∈ [0, ∞) are required
energy loads and generated solar energies, respectively.
SoCn

ESS,t−1 ∈ [0, 1] and SoCn
EV ,t−1 ∈ [0, 1] represent the

previous SoCs of ESSs and EVs at time step t − 1. SnEV ,t ⊂

{0, 1} are the status signals of EVs, indicating the connection
status of EVs with the cluster. γ buyingt and γ

selling
t are energy

buying and selling prices of the grid, respectively.
Action spaces (An) include the available set of actions of

the observed state (Sn). Prosumers have identical action space
(An) design and are as follows:

Ant = {ASnESS,t ,C
n
ESS,t ,AS

n
EV ,t ,C

n
EV ,t ,C

n
P2P,t } (23)

where, ASnESS,t ⊂ {0, 1} and ASnEV ,t ⊂ {0, 1} are binary
indication signals of P2P energy trading participation of ESSs
and EVs of each prosumer, respectively. Prosumers decide
to supply energy to other peers via P2P with ASnESS,t and
ASnEV ,t binary signals. C

n
ESS,t ∈ [0.2, 1] and Cn

ESS,t ∈ [0.2, 1]
are multiplication coefficients that calculate the amounts
of energy to be sold out of the available energy in P2P
energy trading. Cn

P2P,t ∈ [0.6, 0.95] represents the price
multiplication coefficients that calculate the P2P energy
trading prices based on the current electric grid prices.
Subsequently, action spaces (A) of each prosumer include
2592 possible discrete action combinations.

State transition probability matrices (Pn) computes the
probabilities of the next states (sn

′

) through the current states
(sn) and the executed actions (an).

Pna = Pr(snt+1 = s′|snt = S, ant = A) (24)

Reward functions (Rn) calculate the received immediate
rewards through the transition from the state snt to the next
state snt+1 due to the executed action ant . Prosumers have
identical reward functions and are expressed as follows:

Rnt = 0.7(
6∑

n=1

Rncost,t + Rncost,t ) + 0.3Rngrid,t

(25a)

Rncost,t = Cn,normalized
total,t − Prn,normalizedtotal,t (25b)

Rngrid,t =

6∑
n=1

En,normalizedgrid,t + En,normalizedgrid,t (25c)

Cn,normalized
total,t =

Cn
total,t − minCn

total,t

maxCn
total,t − Cn

total,t
(25d)

Prn,normalizedtotal,t =
Prntotal,t − minPrntotal,t
maxPrntotal,t − Prntotal,t

(25e)

En,normalizedgrid,t =
Entotal,t − minEntotal,t
maxEntotal,t − Entotal,t

(25f)

where, Cn,normalized
total,t , Prn,normalizedtotal,t , and En,normalizedtotal,t are the

normalized values of the total energy costs, total energy
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profits, and total bought energy from the grid, respectively.
Initial part of the reward functions (Rn) computes the
penalties of the total energy costs, whereas the last part
computes the penalties of the bought energy from the grid.
In the reward functions (Rn), 0.7 and 0.3 represent the weight
coefficient to emphasize the importance of each penalty part.
Consequently, the primary objective of the proposed EMS is
to minimize the total energy costs. The secondary objective
is to minimize the cumulative bought energy from the grid,
encouraging prosumers to participate in P2P energy trading.
Discount factors (γ n = 0.965) are applied to calculate the
expected future reward of each prosumer.

IV. DOUBLE DEEP Q-NETWORK BASED DEEP
REINFORCEMENT LEARNING APPROACH
DDQN agent-based DRL algorithm is a model-free, online,
and off-policy optimization method. DDQN agents are value-
based RL agent that train the critic networks to estimate
the discounted expected cumulative long-term rewards. The
fundamental objective of RL algorithms is to maximize the
expected cumulative long-term reward. Besides maximizing
the expected cumulative long-term reward, careful design
considerations are required to achieve a stable training
process. Stability in the training process refers to a point,
where relatively low fluctuations occur in the produced
value function estimations [101]. During the training phase,
stability measures could be monitored by tracking the mean
squared error between the critic and target critic, tracking
the behavior of the value function estimates by analyzing
the learning curves or terminating the training phase with
predefined rules (e.g. episode count and reward threshold).
One criteria that assists to achieve stability and boost
performance is to balancing exploration and exploitation
[102]. Gathering information about the environment through
exploration and maximizing the reward with the best action
possible are crucial to help DRL algorithms to converge
within the desired training ranges. Various RL algorithms
employ different strategies to balance exploration and
exploitation, such as epsilon-greedy [96], softmax explo-
ration [97], Upper Confidence Bound (UCB) and Thompson
sampling [98]. Such strategies aim to systematically trade off
between exploration and exploitation based on the agent’s
current knowledge and the uncertainty in its estimates of
action values. To overcome the exploration and exploitation
dilemma and balance the learning process, Epsilon-Greedy
method is implemented in the learning phase. Epsilon-Greedy
method balance the learning process with a probability
constant ϵ, by increasing the exploitation probability and
decreasing the exploration probability over the episodes
[96]. Therefore, Epsilon-Greedy method aims to increase
the convergence rate and speed [103]. However, it should
be noted that several potential problems could occur during
Epsilon-Greedy exploration and exploitation method, such
as limited exploration, exploitation-exploration trade-off,

greedy selection bias and sensitivity to hyper-parameters.
To overcome such potential problems, adjusting the proper
ϵ value is of great importance to ensure a stable training.
A typical DDQN agent-based DRL, including DNN, can be
seen in Fig. 11.

FIGURE 11. DDQN agent-based Deep Reinforcement Learning algorithm
flow chart, using deep neural network architecture to estimate the
optimal policy.

The expected cumulative long-term rewards of each agent
with discount factors applied are as follows [92], [93]:

En
=

Tsimulation∑
t=1

γ nr(snt , a
n
t ) (26)

Therefore, state-value functions (V n), based on the expected
cumulative long-term rewards by following a policy (π),
of each agent are expressed as follows [92], [93]:

V π,n(snt ) = En

[Tsimulation∑
t=1

γ nrnt |s
n
t = Sn, πn

]
(27)

The optimum expected state-value functions (V ∗,n) of each
agent are expressed as follows [92], [93]:

V ∗,n(snt ) = maxV π,n(snt ) (28)

Similar to state-value functions (V n), action-value functions
(Qn) of each agent are calculated with En, considering the
executed actions ant and following policies πn, and are
expressed as follows [92], [93]:

Qπ,n(snt , a
n
t ) = En

[Tsimulation∑
t=1

γ nrnt |s
n
t = Sn, ant = An, πn

]
(29)

The optimum action-value functions (Q∗,n), in the given
states snt , actions a

n
t , and policies πn, of each agent are

expressed as follows [92], [93]:

Q∗,n(snt , a
n
t ) = maxQπ,n(snt , a

n
t ) (30)

DDQN agents include two critic networks with two separate
action-value functions (Qn): Critics Qn(Sn,An; φn) and
Target Critics Qnt (S

n,An; φnt ). Critics Q
n(Sn,An; φn) store

the estimates of the expected cumulative rewards of each

VOLUME 12, 2024 31563



M. Yavuz, Ö. C. Kivanç: Optimization of a Cluster-Based EMS Using DRL Without Affecting Prosumer Comfort

agent. Conversely, Target Critics Qnt (S
n,An; φnt ) are updated

periodically to enhance the overall performance and stability
of the optimization process. Update processes of Target
Critics Qnt (S

n,An; φnt ) through Critics Qn(Sn,An; φn) are
expressed as follows [92], [93]:

Q∗,n(snt , a
n
t ) = rnt + γ nQnt (s

n
t+1,maxQn(Sn,An; φn); φnt )

(31a)

φnt = τ nφn + (1 − τ n)φnt (31b)

where, φn and φnt are the network parameters of critics and
target critics, respectively. τ n represents the smoothing factor
of each network. The network losses of each network are
calculated as follows [92], [93]:

Ln =
1
2M

M∑
t=1

(rnt − Qn(Sn,An; φn))2 (32)

where, Ln and M represent the network losses of each
network and the number of sampled experiences from the
stored experiences, respectively. Loss functions are of great
importance to improve the overall performance and stability
of the learning phase. Adam optimizer is one of the most
commonly used optimization method during the training of
DNNs [104]. Therefore, Adam optimizer is used to train the
critic approximator that updates the parameters of online and
target networks. The convergence analysis of DRL algorithms
refer to finding of an optimal policy over time and directly
related to losses of the online and target networks. The
convergence criterion of DRL algorithm is expressed as
follows:

lim
t→inf

Qπ,n(snt , a
n
t ) = Q∗,n(snt , a

n
t ) (33)

where, theQ value of target network equals to the optimumQ
value that maximizes the reward function when following the
policy π . Environment experiences are stored in Prioritized
Experience Replay (PER) buffers to improve and accelerate
the learning process. Epsilon-greedy methods and update
processes, using decay rates, of each agent are expressed as
follows [92], [93]:

ϵnt = ϵnt (1 − αndecay,t ) (34)

where, ϵnt and αndecay,t represent the probability thresholds
of epsilon-greedy method and decay rates of each agent,
respectively. Multi DDQN agent based DRL algorithm is
explained in the Algorithm 2.
In the proposed EMS environment, all agents share

identical agent and training options and are described in
Table 1.

Estimation of the critic networks, Qnt (S
n,An; φnt ), are

achieved through DNN. Architectural design of each DNN
has similar network parameters and are summarized in
Table 2.
Input layer and output layer of the DNN architecture

represent the number of states and possible discrete action
combinations of each agent, respectively. Four different

Algorithm 2 Multi DDQN Agent Based DRL
Optimization Algorithm
Initialize:Qn, Qnt , φ

n
t , τ

n, PER buffer Dn

1: for each agent (n) do
2: for each episode (t) do
3: for each environment step do
4: Observe state snt and choose ant ∼ φn(snt , a

n
t )

using epsilon-greedy with probability ϵnt
5: Execute ant and observe the next states snt+1

and rewards rnt
6: Store (snt , a

n
t , r

n
t , s

n
t+1) in the experience buffer

Dn

7: end for
8: for each update step do
9: Sample ent =(snt , a

n
t , r

n
t , s

n
t+1) ∼ Dn

10: Compute target critic (Qnt ) value: Q
∗,n(snt ,

ant ) = rnt + γ nQnt (s
n
t+1,maxQn(Sn,An;

φn); φnt )
11: Compute network losses (Ln):

Ln =
1
2M

∑M
t=1 (r

n
t − Qn(Sn,An; φn))2

12: Update target critic (Qnt ) parameters:
φnt = τ nφn + (1 − τ n)φnt

13: Update Epsilon-Greedy threshold (ϵn):
ϵnt = ϵnt (1 − αndecay,t )

14: end for
15: end for
16: end for

TABLE 1. Agent and training options of each DDQN agent. All agents
have identical agent and training options.

hidden layers are combined and implemented in the DNN
architecture with different numbers of nodes and Rectified
Linear Unit (ReLu) activation functions. The illustration of
the DNN architecture can be seen in Fig. 12.

Multi-layer perceptron structure is the keystone foundation
of the overall structure of a DDQN based DRL optimization
algorithm which includes multiple neural networks. There-
fore, the computational complexity of a DRL algorithm relies
on the action selection through optimum policies with neural
networks. Generally, complexity analysis in multi-agent
systems is performed as agent-wise and network-wise [99].
Although complexity analysis of agent-wise and network-
wise are almost exactly the same, the only difference occurs
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TABLE 2. Summary table of DNN architecture and network parameters.
Due to the identical action/state space designs, each agent have identical
DNN architecture and network parameters.

FIGURE 12. The architecture design of DNNs, including 7 input layers
(states), 4 hidden layers (3200, 1600, 400, and 200 nodes), 2592 output
layers (possible discrete action combinations).

on the number of agents involved. In the simplest form,
the complexity analysis of DDQN-based DRL algorithm
is composed of the complexity analysis of feed-forward
pass in multi-layer perceptron structure mostly during the
exploitation (with trained network) that forms the online and
target networks [100].

The complexity analysis of agent-wise feed-forward ANN
consists of input layer (with 7 nodes), 4 hidden layer with
rectified linear unit activation function and different node size
(3200, 1600, 400, and 200 nodes respectively) and output
layer (with 2592 nodes). Therefore, the complexity of the
input layer, hidden layers, and output layer are expressed as
follows [99], [100]:

Cagent
input = O(S × Ui) (35a)

Cagent
hidden = O(n× Ui × Uj) (35b)

Cagent
output = O(A× Uj) (35c)

where, S and A represent the number of states and actions,
respectively. In the ANN structure, n,Ui, andUj represent the
number of hidden layers, neurons (node size) at the inputs and
outputs, respectively. Consequently, the overall complexity of
the DRL algorithm is expressed as follows [99], [100]:

Cagent
DRL = Cagent

input + Cagent
hidden + Cagent

output (36)

The complexity analysis of network-wise feed-forward
ANN shares the similar equations with agent-wise, except the
number of agents involved in the environment. Therefore, the

TABLE 3. Time of Use (TOU) energy pricing scheme, consisting of 3 time
zones, namely mid-peak, on-peak, and off-peak. The electric grid buys
energy with Feed-in-Tariff (FiT) prices.

complexity of the input layer, hidden layers, and output layer
are expressed as follows [99]:

Cnetwork
input = O(I × S × Ui) (37a)

Cnetwork
hidden = O(I × n× Ui × Uj) (37b)

Cnetwork
output = O(I × A× Uj) (37c)

where, I represents the number of agents involved in the
environment. Consequently, the overall complexity of the
DRL algorithm is expressed as follows [99]:

Cnetwork
DRL = Cnetwork

input + Cnetwork
hidden + Cnetwork

output (38)

It should be noted that each agent in the environment have
the same ANN architecture for online and target networks.

V. SIMULATION RESULTS AND ANALYSIS
In total, 8760 data are collected through online-available
datasets with sampling time T ns = 60 minutes. Consequently,
the resolution of the proposed EMS is Tresolution=1 hour.
240 data (10 days) are selected randomly from the collected
dataset (Tsimulation). Collected data include required energy
loads (Enload in kWh), solar energy generation (E

n
solar in kWh),

status signals of EVs (SnEV ⊂ {0, 1}), and energy consumption
of EVs during the driving cycles (Endriving in kWh). Arrival and
departure times of EVs are assigned randomly. However, due
to training complexities, it is assumed that EVs are charged
during the off-peak hours, between 03:00 AM and 06:00
AM, if necessary. Adapted TOU pricing scheme consists
of 3 time zones, namely mid-peak, on-peak, and off-peak.
FiT pricing scheme is adapted for energy selling transactions
from prosumers to the grid. Adapted FiT consists of a
constant value throughout the day. The electric price of the
electric grid can be seen in Table 3. ESS of each prosumer
include 7 parameters and prosumers have identical simu-
lation parameters. Total energy capacities of ESSs (EnESS )
are designed as 28.8 kWh/cluster and 4.8 kWh/prosumer.
Maximum (SoCn

ESS,max) andminimum (SoCn
ESS,min) SoCs are

set to 1.0 and 0.1, respectively. Charging (ηnESS,charge) and
discharging (ηnESS,discharge) efficiencies are set to 0.95 and
0.95, respectively. Maximum charging powers (PnESS,max)
are 30 kW/cluster and 5 kW/prosumer. Similarly, maxi-
mum discharging powers (PnESS,min) are 12 kW/cluster and
2 kW/prosumer. The simulation parameters of ESSs can be
seen in Table 4.

VOLUME 12, 2024 31565



M. Yavuz, Ö. C. Kivanç: Optimization of a Cluster-Based EMS Using DRL Without Affecting Prosumer Comfort

TABLE 4. Simulation parameters of Energy Storage Systems (ESSs). Each
prosumer have a same size of ESS and identical parameters.

Similar to ESSs, EV of each prosumer include 7 param-
eters. The difference is that EVs have distinct parameters.
The proposed EMS includes 3 EVs, owned by Prosumer 1,
Prosumer 2, and Prosumer 4. Prosumers 3, 5, and 6 do not
have EVs. Total energy capacities (EnEV ) are designed as
28 kWh, 26.3 kWh, and 37.3 kWh, respectively. Maximum
SoCs (SoCn

EV ,max) are set to 0.7, 0.65, and 0.68, respectively.
Minimum SoCs (SoCn

EV ,min) are set to 0.25, 0.25, and
0.30, respectively. Charging (ηnEV ,charge) and discharging
(ηnEV ,discharge) efficiencies are 0.95 and 0.92, respectively.
Maximum discharging powers (PnEV ,max) are 3 kW, 2.3 kW,
and 2 kW, respectively. Level 2 AC charging infrastructure is
adopted and charging powers (PnEV ,charge) are 11 kW, 7.4 kW,
and 7.4 kW, respectively. The simulation parameters of EVs
can be seen in Table 5.

TABLE 5. Simulation parameters of Electric Vehicles (EVs). EVs are owned
by Prosumers 1, 2, and 4.

A. EVALUATION PHASE
In total, prosumers require 809.04 kWh/cluster (10
days) of energy loads. On average, prosumers require
134.84 kWh/prosumer (10 days) of energy loads. Daily
average energy requirements are 13.48 kWh/prosumer.
However, prosumers have distinct load requirement profiles
(see in Fig. 13) to further improve the efficiency of learning
phase. The descriptive statistical values of the energy load
requirements for each prosumer can be seen in Table 6.

It is assumed that solar panels are designed in a centralized
architecture and prosumers benefit from the generated solar
energy equally (see in Fig. 14). In total, solar panels generate
559.44 kWh/cluster (10 days) of energy. Per prosumer, solar
panels generate 93.24 kWh/prosumer (10 days). Daily solar
energy generations per prosumer are 9.32 kWh/prosumer.

TABLE 6. Energy load requirements of prosumers, explaining the total,
daily, maximum, minimum, average, and standard deviation of the
required energy.

Therefore, the generated solar energy can solely meet the
required energy by 65.65%, 66.96%, 83%, 102.13%, 64.54%,
and 51.89% of each prosumer, respectively. However,
due to the intermittent energy generation profile of solar
panels, excessive energies are stored in ESSs for future
energy requirements and P2P energy trading. The descriptive
statistical values of the generated solar energy can be seen in
Table 7.

TABLE 7. Solar energy generations, explaining the total, daily, maximum,
minimum, average, and standard deviation of the generated energy.

The proposed EMS includes 2 different input data for EVs.
The first input data includes the binary signals that represent
the connection status of each EV to the cluster at time step t .
Binary 1 represents that EVs are connected to the cluster and
0 represents that EVs are not connected. When connected to
the cluster, EVs supply energy to the owners and other peers
via V2X and P2P energy trading when required. Typically,
EVs are connected to the cluster between 06:00 AM and
08:00 PM on the weekdays. On the weekends, EVs are
generally connected to the cluster throughout the day. During
the simulation (240 hours), the total connection duration (see
in Fig. 15) to the cluster of each prosumers’ EV are 176, 188,
and 192 hours. The second input data includes daily energy
consumption signals that represent the energy consumption
of EVs for transportation purposes during the daily driving
cycles (see in Fig. 16). After each driving cycle, SoCs of each
EV are recalculated with the energy consumption signals.
In total, EVs consume 149 kWh/cluster during the driving
cycles. The total energy consumption of each prosumer,
during the simulation (10 days), are 53.37 kWh, 45.04 kWh,
and 28.18 kWh, respectively. The total connection duration
and energy consumption of each prosumer’s EV can be seen
in Table 8.
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FIGURE 13. Energy load requirements of prosumers. Prosumers have different load profiles to improve the efficiency of the proposed EMS with different
input data.

FIGURE 14. Solar energy generations per cluster and prosumer. Solar
panels are designed in a centralized architecture and generated energies
are distributed equally to prosumers.

TABLE 8. Connection duration (hours) to the cluster and energy
consumption (kWh) of EVs.

FIGURE 15. Connection status of EVs to the cluster. Status are
represented as binary signals, where 1 represent that EVs are connected
to the cluster and 0 represent that EVs are not connected to the cluster.

FIGURE 16. Daily energy consumption (for driving) of EVs that represent
the required energy for transportation purposes.

The training phase is carried out in 5000 episodes,
including 240 steps (10 days) per episode. Agents converge
to the optimal solutions (Q-Values) after approximately
1500 episodes with learning rates αnlearning = 0.001.
Training of 6 DDQN agents takes approximately 18 hours

to complete. After the training phase, the computational
process of the multi DDQN agent based DRL algorithm takes
17.18 milliseconds per step in MATLAB. Agent 4 has the
highest average reward with 186.11. Contrarily, Agent 2 has
the lowest average reward with 112.77. Average rewards of
each agent, (Rnaverage), are 156.06, 112.77, 155.43, 186.11,
137.83, and 133.06, respectively. Estimated average Q-
Values are 156.40, 119.86, 164.10, 181.33, 143.63, and
142.90, respectively. Between episode 1500 and 5000, where
steady outcomes are achieved, Mean Absolute Percentage
Errors (MAPEs) between average rewards and estimated
average Q-Values are 4.49%, 5.57%, 7.90%, 5.88%, 5.69%,
and 5.28 %, respectively. Therefore, estimated average Q-
values approach to the average rewards and verify the
accuracy (MAPEs < 10%) of the DNN architectures. The
outcomes of the learning phase for each agent can be seen
in Fig. 17.

FIGURE 17. Agent learning curves of the proposed HEMS, composed of
episode rewards, average rewards, and estimated average Q-Values.

B. CASE STUDIES
To compare the outcomes of the proposed EMS, 4 different
case studies are examined. The case studies are differentiated
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depending on the existence of V2X technologies and P2P
energy trading implementations within the cluster. The
content of the examined case studies are:

1) Case Study 1: represents the proposed EMS and
includes the collaboration of V2X technologies and
P2P energy trading implementations.

2) Case Study 2: includes the implementation of V2X
technologies without P2P energy trading.

3) Case Study 3: includes the implementation of P2P
energy trading without V2X technologies

4) Case Study 4: represents a rule-based conventional
HEMS without the implementations of V2X technolo-
gies and P2P energy trading.

TABLE 9. Comparisons of V2X and P2P energy trading implementations
in the case studies.

In case studies 1 and 3, the prosumers can supply energy
to the other prosumers via stored energy in ESSs and surplus
energy generations in RESs through P2P energy trading.
Additionally, in case study 1, Prosumers 1, 2, and 4 can
supply energy to the other prosumers via V2X technologies
through P2P energy trading. In case study 4, all prosumers
meet the self required energy loads only via stored energy in
ESS, generated solar energy, and from the grid if necessary. In
addition to stored energy in ESS and generated solar energy,
Prosumers 1, 2, and 4 can meet the self required energy loads
via V2X technologies in case study 2.

TABLE 10. The implementation of DRL algorithm in each case study.

On the other hand, the implementation of DRL algorithm
relies on the existence of P2P energy trading in the
environment. The reason for this is that the outcomes
of DRL algorithm specifies the amounts of energy to be
sold in P2P energy trading and the energy prices of each
seller. Therefore, according to Table 9, DDQN-based DRL
algorithm is implemented in various cases based on different
requirements. The implementation status of DRL algorithm
in each case can be seen in Table 10.

C. NUMERICAL RESULTS AND DISCUSSIONS
Compared to case studies 2, 3, and 4, energy costs are
the lowest in case study 1, where V2X technologies and
P2P energy trading are implemented with the proposed
EMS. In the cluster, energy costs in case study 1 are
13.19%, 16.81%, and 19.18% lower than in case studies 2,
3, and 4, respectively. Therefore, the collaboration of V2X
technologies and P2P energy trading have significant impact
(19.18%) on reducing the cumulative energy costs without
affecting the comfort of the prosumers. The energy cost
comparison of each prosumer can be seen visually in Fig. 18
and numerically in Table 11.

TABLE 11. Total energy cost comparisons in (TRY).

FIGURE 18. Case by case total energy cost comparisons of each prosumer
in (TRY).

The case studies 1 and 3 have dynamic energy pricing
schemes due to the P2P energy pricing based on the RL action
outcomes. The average energy prices of each case study
are 0.89 TRY/kWh, 1.71 TRY/kWh, 1.48 TRY/kWh, and
1.73 TRY/kWh. As seen on the average prices of case studies
1 and 3, P2P energy trading has a significant impact on reduc-
ing the average energy prices. Compared to case study 4, the
collaboration of V2X technologies and P2P energy trading
(case study 1) could reduce the average energy prices by
47.92%. P2P energy trading implementation without V2X
technologies (case study 3) could reduce the average energy
prices 14.16%. On contrary, V2X technologies without P2P
energy trading implementation (case study 2) could reduce
the average energy prices 0.46%, thus having an insignificant
impact. The average energy prices of each case can be seen
in the Fig. 19.

The SSRs are expressed as follows:

SSRn = 1 −

Tsimulation∑
t=1

Engrid,buying

Enload
(39)

where, Engrid,buying and Enload are energy bought from the
grid and the required energy loads, respectively. The average
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FIGURE 19. Average energy prices (TRY/kWh) of each case, respectively
(missing values, where energy requirements are supplied from
self-resources, are filled with mean values).

SSRs (as seen in Fig. 20), SSRavg, of each case are 65.87%,
60.01%, 56.36%, and 56.48%, respectively. Consequently,
compared to case study 4, case studies 1 and 2 indicates
that collaboration of V2X technologies and P2P energy
trading could increase SSRs 9.39% and V2X technologies
solely could increase 3.53%. However, P2P energy trading
implementation without V2X technologies (case study 3)
could decrease SSRs (-0.12%), due to the required energy
transactions and insufficient self-resources. Therefore, opti-
mization issues occur between reducing energy costs and
increasing SSR with P2P energy trading implementation
without V2X technologies.

FIGURE 20. The Self-Sufficiency Ratios (SSR) of each prosumer and case,
with and without EV charging energies are included.

As seen on the SSRs of Prosumers 1, 2, and 4, collaboration
of V2X technologies and P2P energy trading reduces the
prosumers’ SSR due to the energy transactions of EVs
through V2X technologies. However, the average SSR of
all prosumers are reduced and therefore have significant
impact in cluster-wise. The numerical comparison of SSRs
of each prosumer and case study can be seen in Table 12.
Furthermore, the cumulative energy costs of all prosumers
are reduced with the proposed EMS (collaboration of V2X
technologies and P2P energy trading). Therefore, it is
concluded that all prosumers benefit from the proposed EMS
in terms of energy costs. Prosumers with EVs benefit from
the profits of P2P energy trading via V2X technologies.
Prosumers without EVs benefit from the cheaper energy
prices that supplied from other peers through P2P energy
trading and V2X technologies. The purchased energy from
the grid can be seen in Fig. 21. Additionally, Fig. 22 and
Table 13 shows the utilization of different energy resources
for each case studies.

TABLE 12. The Self-Sufficiency Ratio (SSR) comparisons of prosumers
in (%). EV charging energies are included in the comparisons.

FIGURE 21. Energy bought from the electric grid in each case,
respectively. Compared to other case studies, the proposed EMS can
reduce the peak energy demands by approximately 4.06%.

Among the all case studies, the total required energy loads
and the total generated solar energies are same and are
809.04 kWh and 559.44 kWh, respectively. The amount of
charging and discharging energy of ESSs are similar in case
studies. However, the amount of charging and discharging
energy of EVs are different due to the V2X technologies and
P2P energy trading implementations. In case studies 1 and 2,
EVs require 304.04 kWh and 218.99 of energy for charging,
respectively. On the other hand, in case studies 3 and 4,
EVs require 153.10 kWh of energy for charging. Similar to
amount of charging energy, the amount of discharging energy
of EVs are different. In case studies 1 and 2, EVs discharge
87.65 kWh and 74.90 kWh to meet required self energy
loads. Contrarily, since case studies 3 and 4 do not have V2X
implementations, EVs discharge 0.00 kWh of energy.

In total, to meet the required energy loads of each case,
118.21 kWh, 212.17 kWh, 284.67 kWh, and 287.06 kWh of
energy are bought from the grid, respectively. With energy
required to charge EVs are added, 422.25 kWh, 431.15 kWh,
437.77 kWh, and 440.16 kWh of energy are bought from
the grid to charge EVs and meet the required energy loads.
Cumulatively, compared to case study 4, energy dependencies
on the electric grid of case studies 1, 2, and 3 are reduced
53.73 kWh/month, 27.03 kWh/month, and 7.17 kWh/month,
respectively.

During the P2P energy trading process, 100.75 kWh and
23.47 kWh of energy are exchanged between prosumers
in case studies 1 and 3, respectively. In case study 3, all
exchanged energy are supplied from stored energy in ESSs.
However, in case study 1, 21.81 kWh and 78.93 kWh of
energy are supplied from ESSs and EVs to other prosumers.
Therefore, V2X technologies have significant impact on
reducing the cumulative energy costs via P2P energy trading
implementation.
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FIGURE 22. Utilization of different energy resources to supply the required energy loads of each case and prosumer.

TABLE 13. Summarizing the energy resource utilization (kWh), energy costs (TRY), and self-sufficiency ratios (%) in each case (cumulative results).

Therefore, the proposed EMS reduces the energy costs
(by 19.18%) with the collaboration of V2X technologies and
P2P energy trading implementations without affecting the
comfort of the prosumers. Also, the proposed EMS improve
the SSR (9.39%) to further increase the grid independence
(53.73 kWh/month) in a small-scale environment, including
6 prosumers.

VI. CONCLUSION AND FUTURE WORKS
In this paper, a smart EMS, including 6 prosumers andDDQN
multi-agent environment, is proposed and optimized with
DQN algorithm to minimize the cumulative energy costs,
improve the SSR and grid independence, and optimize the
utilization of RESs and EVs through V2X (V2H, V2L, and
V2G) technologies and P2P energy trading implementations.
The proposed EMS is formulated as aMDPwith discrete state
and actions spaces, determining the participation status of
each prosumer in the P2P energy trading, energy prices, and
amount of energy to be sold in P2P energy trading. The multi-
agent environment is trained for 5000 episodes, including
240 steps (10 days) per episode. Average reward and episode
Q-values are calculated as 146.87 and 151.37, respectively.
Therefore, average MAPEs (5.80%) value shows a well-
designed DNN architecture to estimate future rewards. In
the evaluation phase, the outcomes of proposed EMS are
compared with 4 cases, differentiated on the existence of the
V2X technologies and P2P energy trading implementations.
Numerical results show that, compared to conventional rule-
based EMS, the proposed EMS reduces energy costs by
19.18% and average energy prices (TRY/kWh) by 47.92%

without affecting the comfort of prosumers. Additionally, the
proposed EMS increases SSRs by 9.39%, thus increasing the
grid independence by 53.73 kWh/month.

In future works, it is planned to implement a large-scale
environment (with more than 1000 prosumers), including
V2X technologies, P2P energy trading with cluster-based
different pricing mechanisms, DSM and DR energy manage-
ment architectures with optimized comforts of prosumers,
and categorized ESSs, EVs, and RESs with different energy
capacity size. Future works will further investigate the effects
of energy capacity sizing, different pricing mechanisms used
in P2P energy trading, and appliance scheduling on reducing
energy costs and optimizing the comfort of prosumers. It is
planned to integrate a machine learning based forecasting
model to forecast the dynamic behavior of prosumers, solar
energy generations, and required energy loads to further
improve the SSRs and the utilization of different energy
resources.
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