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ABSTRACT Compression algorithms are widely used to reduce data size and improve application
performance. Nevertheless, data compression has a computational cost which can limit its use. GPUs could
be leveraged to reduce compression time. However, existing GPU-based compression libraries expect data
to compress in GPU memory, although it is usually stored in CPU memory. Additionally, setup time
of GPUs could be a problem when compressing small data sizes. In this paper, we implement a new
GPU-based compression library. Contrary to existing ones, our library uses data located in CPU memory.
Performance results show that, for the same compression algorithms, GPUs are beneficial for larger data
sizes whereas smaller data sizes are compressed faster using CPUs. Therefore, we enhance our proposal
with Hybrid-Smash: a heterogeneous CPU-GPU compression library, which transparently uses CPU or
GPU compression depending on data size, thus improving compression for any data size.

INDEX TERMS Lossless compression, parallel computing, GPU.

I. INTRODUCTION
Compression algorithms are widely used to reduce data
size [1], [2], [3]. They also improve the performance
and efficiency of various applications that handle large
volumes of data. This is the case for data analysis, machine
learning, visualization, image processing, encryption, pattern
matching, video streaming, web browsing, cloud computing,
backup and archiving, etc.

Lossy compression algorithms such as MPEG4 or
H.264 may be used depending on the specific application
domain [4], [5], [6]. These algorithms noticeably reduce
data size at the expense of discarding information. However,
this is not a problem in areas like video streaming, for
instance, where the human eye cannot detect the missing
data. Contrary to lossy compression algorithms, lossless
compression reduces data size while making it possible to
restore the original data. Lossless compression algorithms
can be useful in archiving, for example. In this paper,
we focus on lossless compression.
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Data compression, however, also has a computational cost
that can limit its use in real-time or resource-constrained
scenarios. To address this concern, Graphics Processing
Units (GPUs) could be leveraged instead of CPUs to
compress and decompress data. Although CPU compression
algorithms have been widely studied in the past, GPU-based
compression algorithms are muchmore novel and still remain
a challenge due to the GPU model itself, which imposes
different problems compared to traditional CPU usage.

Recently, NVIDIA released the nvCOMP compression
library [7], which implements several compression algo-
rithms such as Deflate, Lz4, Zstd, or Snappy. These
compression algorithms are not new, but they were previously
available only for CPUs. Given that the nvCOMP library has
been developed by NVIDIA, the implementation of these
compression algorithms for GPUs is expected to be extremely
efficient.

Using the nvCOMP library is quite simple. The data
to compress (or decompress) must be located in the GPU
memory. The resulting data will also be stored in the
GPU memory. This simple model has some drawbacks. For
instance, although the data to compress (or decompress) must
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be in the GPU memory, the original data is usually located in
the memory of the host CPU. In a similar way, although the
nvCOMP library stores resulting data in the GPU memory,
this result is typically needed in the host CPU memory. Thus,
to use the nvCOMP library, data must be moved from CPU
memory to GPU memory and vice versa.

While moving data to and from the GPU memory is
simple, efficiently integrating the use of the nvCOMP library
with these data copies may not be trivial to implement
if one of the design goals is to hide the latency of data
copies. For example, having a low latency GPU compression
mechanism could be very appealing to take advantage of
data compression in real-time scenarios. This could be
the case for on-the-fly data compression in communication
systems, where data is transparently compressed before being
sent to the network and then decompressed on receipt,
before being delivered to the application on the receiver.
Thus, introducing a pipelined design in that GPU compres-
sion solution may help to hide compression/decompression
latency in real-time applications. Using the nvCOMP com-
pression library in a high-performance pipeline solution
is not trivial because many different options need to be
investigated.

Moreover, contrary to what happens with CPUs, an impor-
tant concern when integrating the nvCOMP library into an
efficient pipelined compression solution is that GPUs have
a much longer setup time. This could be a problem when
smaller amounts of data must be processed. Therefore, there
is also a need to investigate whenGPUs are beneficial for data
compression, and when the use of CPUs is preferred.

In this paper, we start by analyzing the nvCOMP com-
pression library and then research how to create a hybrid
CPU-GPU compression solution that completely hides the
latency of data copies between the CPU and the GPU. More
precisely, the main contributions of this paper are:
• We analyze the benefits that the nvCOMP library brings
to data compression and decompression with respect to
the usage of CPU compression. We do this by analyzing
the same compression algorithms on both the CPU
and the GPU.

• We implement a highly optimized compression solution
based on the nvCOMP library. Contrary to the nvCOMP
library, our solution uses data initially located in CPU
memory and stores the resulting data in CPU memory.
Our solution obtains results similar to the nvCOMP
library and outperforms them when the data size is large
enough. Although our solution moves data from host
to device memory before compressing and from device
to host memory after compression, these transfers are
practically hidden by kernel executions.

• As a consequence of the performance analysis of the
previous highly optimized GPU compression library,
we lay the foundations for a future version. This new
version is referred to as Hybrid-Smash, and consists
of creating a heterogeneous CPU-GPU compression
library. In this paper, we present an initial prototype of

this new version, which transparently uses CPU or GPU
compression depending on the size of the data to be
compressed. This approach reduces overall latency for
small, medium, and large datasets.

The rest of the paper is organized as follows. First,
in Section II, we present some related work on compression
libraries. Next, in Section III, we discuss our approach itera-
tively. We introduce experiments to confirm each decision we
make until we arrive at the final version. Finally, Section IV
concludes the paper.

II. RELATED WORK
This section includes the background necessary to understand
this work. First, we discuss about the different compression
algorithms, the Smash abstraction library [8], and the com-
pression libraries selected for this work. Next, we introduce
the nvCOMP library [7], which implements some relevant
lossless compression libraries.

A. LOSSLESS COMPRESSION LIBRARIES
Although lossy compression libraries obtain acceptable
results with a good compression ratio and compres-
sion/decompression speed [9], in this work we focus on
lossless compression libraries. These libraries use different
algorithms for compression. Three of the most popular
algorithms used are:
• Lempel-Ziv algorithms [10], [11]. These algorithms are
based on identifying repetitive patterns in the input data
during compression. Once these patterns are identified,
a table is created that assigns unique codes to each
pattern found and their corresponding codes replace
them in the table.

• Huffman coding [12]. This algorithm uses a coding
table based on the frequency of symbols present in
the input data. Symbols that appear more often are
assigned shorter codes, while the less frequent ones
are assigned longer codes. During compression, each
symbol is replaced by its corresponding code in the
coding table.

• Arithmetic coding [13]. This algorithm assigns a real
number in the range [0, 1) to each symbol in the
input data corresponding to its probability based on its
frequency. As the Huffman coding, a table is created
where a symbol is replaced by its probability number
in that range. Arithmetic coding is more complex than
Huffman coding but can achieve higher compression
rates.

All of these lossless compression algorithms replace
frequent code patterns using smaller ones, but there is a
big difference between Lempel-Ziv and both the Huffman
and Arithmetic coding: the latter algorithms must process
the entire input data before compressing it because their
table is based on the frequency of symbols, contrary
to the former algorithm, which can compress data as it
reads it. As the process carried out by the Huffman and
Arithmetic algorithms can be computationally expensive,
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some compression libraries, such as the Brotli compression
library [14], use a static table or create a table with just part
of the data. Notice that the table of Lempel-Ziv algorithm is
built while the compression is carried out.

There are many lossless compression libraries, each using
a different API. To avoid dealing with these differences,
in this paper we have used the Smash abstraction library [8],
[15] for CPU-based compression. It contains 41 compression
libraries, allowing users to set specific parameters for each
one in a simple way. In the experiments performed in this
paper, we focus on the results obtained by the following four
compression libraries:
• Snappy [16]. The main objective of this compression
library is not a high compression ratio, but a high
compression and decompression speed. It has been
developed by Google and is based on LZ77 [10].

• Lz4 [17]. It is also based on the LZ77 algorithm and
focuses on compression and decompressed speed.

• Zstandard (Zstd) [18]. This library is also based on LZ77
and combines a fast Finite State Entropy and Huffman
coding. It has been developed by Meta.

• A library based on Deflate [19]. This library combines
LZ77 and Huffman coding for compression.

We have used the above four compression libraries among
the 41 libraries included in the Smash abstraction library
because these four libraries are very popular and are also
implemented in the GPU compression library used in this
paper, which is described in the next section.

B. GPU LOSSLESS COMPRESSION LIBRARIES
The high performance offered byGPUsmotivates researchers
to improve compression libraries by moving the compu-
tation to these devices. Patel et al. [20] introduced some
techniques to compute different algorithms used by Bzip2
on the GPU, but their proposal was 2.78 times slower
than the CPU one. Ozsoy and Swany [21] created a
parallel version of LZSS for GPUs. This version divides
the memory into different chunks and compresses each
block independently. They showed how their GPU version
overcame the compression time of the CPU sequential
version by up to 18 times, and the CPU parallel version by
up to 3 times. Chłopkowski and Walkowiak [22] developed
a new library based on Deflate where CPU and GPU work
together to outperform CPU results. These studies explored
the possibility of increasing the number of GPUs to reduce
the time spent searching for matches. This library is more
than two times faster than the best compressor used in the
experiments. Li et al. [23] implemented a parallel version
of the C-DPCM algorithm on GPUs in order to improve the
compression time for hyperspectral images. They explored
different mechanisms in the GPU to reduce compression
times compared to previous CPU implementations, such as
using shared memory, multiple GPU streams, or multiple
GPUs.

Recently, NVIDIA [24] has joined this trend and has devel-
oped a library called nvCOMP [7]. This library is a generic

compression interface that facilitates the use of compression
libraries on high-performance GPU applications thanks to
their flexible API. The NVIDIA team has implemented eight
different CPU compression libraries on the GPU and has
included them in the nvCOMP library. That allows developers
to use the one that best suits their needs.

III. DEVELOPING AN EFFICIENT HETEROGENEOUS
COMPRESSION SOLUTION
This section presents our approach iteratively to show how
we have arrived at the final version of our heterogeneous
compression solution. We discuss all the versions created
during the development. In each iteration, we also introduce
experiments to measure the performance and justify the
decisions made. The different versions shown in this section
are the following ones:
• ‘‘Version 0 (V0)’’ (Subsection III-A): an ideal
implementation of our proposal. A direct application
of the nvCOMP library, a GPU-based compression
library. In this initial implementation, the data to be
compressed/decompressed is located in GPU memory.

• ‘‘Version 1 (V1)’’ (Subsection III-B): a naiveGPU-based
solution where data are located in the host CPUmemory.

• ‘‘Version 2 (V2)’’ (Subsection III-C): an implemen-
tation of a pipeline inside the compression and the
decompression that overcomes the previous version.

• ‘‘Version 3 (V3)’’ (Subsection III-D): an enhancement
of the previous version by leveraging several concurrent
GPU streams within the pipeline.

• ‘‘Version 4 (V4)’’ (Subsection III-F): a reduction of
compression and decompression times using multiple
GPUs in parallel.

• ‘‘Version 5 (V5)’’ (Subsection III-G): final implemen-
tation of the compression solution. It automatically
compresses and decompresses data on CPU or GPU
depending on the knowledge gained with previous
versions. We will refer to this version as ‘‘Hybrid
compression’’ or ‘‘Hybrid-Smash’’.

The performance evaluation presented in the experiments
in this section has been carried out using the compression
libraries detailed in Section II. The experiments have been
run over an AMD EPYC 7282 16-Core Processor with
NVIDIA A100 GPUs. Regarding the datasets used for the
experiments, Canterbury [25] and Silesia [26] Corpus are
typically used to evaluate compression libraries. However,
there is a growing popularity of artificial intelligence (AI)
applications, especially those that use GPUs. In addition,
we plan to apply the research presented in this paper to
remote GPU virtualization systems in the future, specifically
to rCUDA [27], [28]. These systems present a client-server
architecture and allow the applications with GPU computing
to be run on the client side by sending the information to
be processed to the server where the GPU is physically
installed. Once that information has been processed, the result
is returned to the client from the server. For these reasons,
we have decided to use an AI dataset [8]. This dataset has
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FIGURE 1. Legend for execution traces shown in Figures 2, 5, 7, 10, 11, 12, 13, 14, 19, and 20.

FIGURE 2. Illustrative execution trace for version 0 (V0). The legend is shown in Figure 1.

been created using the transfers made by rCUDA when four
AI applications are executed, so it belongs to the domain
we want to address. In addition, CPU-based compression
libraries have shown that they work well with this type of
data [29], artificially increasing the bandwidth when applied
in the communications layer.

A. VERSION 0 (V0): IDEAL GPU COMPRESSION
This initial version of our proposal is a straight-forward use
of the nvCOMP library. Basically, we have created the API
for our solution. This API will be used later in subsequent
versions. It internally prepares and makes the required calls
to the nvCOMP library.

Figure 2 presents an illustrative execution trace for this
implementation (the legend for this figure is shown in
Figure 1), so the time taken by actions is used to explain
Version 0 and is not an authentic representation. As can be
seen, the CPU thread first performs a ‘‘compression manage-
ment’’ task before compressing data. This management task
prepares the data and calls the GPU kernel. After that, the
GPU compression kernel runs asynchronously to the CPU
thread. Later, the CPU thread performs a synchronization to
detect the completion of that GPU kernel. A similar execution
flow is followed when decompressing data.

Using this Version 0, we have evaluated the performance of
GPU compression libraries, i.e. the nvCOMP library.We have
also evaluated the same compression libraries but running
on the CPU. We have compared their compression ratio and
compression/decompression speeds.

Figure 3 shows the compression ratio achieved by the
compression libraries when running on the GPU and the
CPU. Although CPU and GPU use the same compression
algorithms, the compressed data obtained is not exactly
the same. The reason is that CPU compresses the entire
bunch of data, whereas GPU splits data into batches that are
independently compressed. For that reason, the compression
ratio obtained is different, but we can observe that they follow

the same trend. Differences are more noticeable when the
Lz4 compression library is used (Figure 3b) because the
compression library is run over the CPU with a specific flag
to reduce the compression ratio and increase the compression
and decompression speed. We have used this flag because we
prioritize speed in this paper.

Figure 4 shows the speed obtained by the CPU and theGPU
compression libraries. The speed is defined in Equation 1 as
the ratio between (i) the size of the original data and (ii) the
time taken to compress the original data plus decompress the
compressed data:

Speed =
Sizeoriginal

Timecompression + Timedecompression
(1)

As we can see, for small data sizes, all CPU compression
libraries perform better than GPU ones. GPU setup time
penalizes GPU speed for these data sizes. However, as data
size increases, GPU setup time is compensated by the shorter
computing time, so GPU outperforms CPU for larger data
sizes. Specifically, the GPU starts to outperform the CPU
at 100KB using the Deflate compression library, at 1000KB
using Snappy and Zstd, and at 10MB using the Lz4.
On average, the CPU implementation of Lz4 is the fastest one.

Experiments in this section have been carried out with
data stored in device memory for the GPU compression
libraries, whereas data was stored in host memory for the
CPU ones. The reason is because CPU libraries were initially
developed to work with host memory. Note that if we want
to compare GPU and CPU libraries, having the data to
be compressed initially located in different places makes
a significant difference. This is because the time taken to
move the data is not considered, and it would be an unfair
comparison. Thus, in the next sections we compare GPU
and CPU libraries using data located in the host memory in
both cases. Notice also that typically data would be expected
to be in host CPU memory (after reading it from disk, for
instance). Therefore, GPU compression libraries should copy
data from the host CPU memory to the device GPU memory
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FIGURE 3. Comparison of the compression ratio achieved by the CPU compression library, and the GPU version V0 (ideal).

(H2D copy) prior to starting compression or decompression.
In addition, after completing the GPU kernel, the result
should be copied back from the device GPU memory to
the host CPU memory (D2H copy). NVIDIA provides
mechanisms to efficiently transfer data from host/device
to host/device, however, the nvCOMP library assumes that
data to be compressed is already in device memory. Thus,
we call ideal GPU compression to this Version 0 (V0)
because data is directly located in device memory, and no
transfers to/from host memory are done. In the next section,
we present Version 1 (V1) implementation, where we enable
the possibility of using the GPU compression libraries from
data located in host memory.

In future figures, V0 results are shown to evaluate the room
for improvement of new GPU compression implementations.
As commented, V0 are ideal results where data is located
in device memory. Thus, it will be unfair to compare them
with results where data is initially located in host memory
and transfers to/from device memory are required.

B. VERSION 1 (V1): NAIVE GPU COMPRESSION
Previous Version 0 (V0) compresses and decompresses data
located in the device GPU memory. On the contrary, this
Version 1 (V1) takes data from host CPU memory, similarly

to CPU implementations. Therefore, the performance com-
parisons in this section are fairer and closer to reality than in
the previous section.

Figure 5 shows an illustrative execution trace for V1.
Again, the time taken by actions is used to explain Version
1 and is not an authentic representation. As we can see,
in this version the CPU thread performs an asynchronous
H2D memory copy before running the GPU kernel. Once the
kernel is completed, the CPU thread performs a D2H copy.
However, notice that there is an important difference between
compression and decompression. When compressing, the
final size of the compressed data depends on the internals of
the compression algorithm. Therefore, the CPU thread must
wait (i.e. first ‘‘Synchronization’’ part shown in the trace)
until the compression kernel is completed to know this size.
At that point, it can set the asynchronous D2H copy. On the
other hand, the original size is stored in the compressed
data header and used later when decompressing. For that
reason, the final size of the decompressed data is known in
advance when decompressing. Thus, the D2H copy can be
configured immediately after configuring the decompression
GPU kernel.

Figure 6 shows a comparison of the compression and
decompression speed achieved by the CPU compression
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FIGURE 4. Comparison of the compression and decompression speed achieved by the CPU compression library and the GPU version V0 (ideal).

FIGURE 5. Illustrative execution trace for version 1 (V1). The legend is shown in Figure 1.

libraries, the previous V0 implementation, and the new V1.
As we can see, the new V1 implementation obtains worse
results than the ideal V0. That was expected because V1
transfers all data from host to device memory before running
kernels, and from device to host memory after kernels are
completed. Despite that, the V1 implementation of Deflate,
Zstd, and Snappy still outperforms CPU for datasets larger
than 250KB, 1000KB, and 5MB, respectively. In the case of
Lz4, V1 achieves similar performance for 25MB datasets.
Snappy and Lz4 are known to be fast. For this reason, V1
is less beneficial in those cases.

C. VERSION 2 (V2): GPU COMPRESSION PIPELINE
The V1 implementation has a naive behavior: (i) it copies the
data to compress/decompress from the host memory to the
device memory, (ii) compresses (or decompresses) it using

that device memory, and (iii) copies the result back from
the device memory to the host memory. However, GPUs
are powerful devices that allow data transfers to overlap
with kernel executions. Therefore, it is possible to follow a
pipelined approach: (i) copy data from host CPU memory
to device GPU memory, (ii) at the same time run the kernel
in the GPU for compressing (or decompressing) data, and
(iii) in parallel, copy back compressed data from device GPU
memory to host CPU memory. With such an approach, data
copies may be hidden by kernel executions. Notice, however,
that implementing this idea increases overall complexity.

1) MOVING FROM A NAIVE TO A PIPELINED
IMPLEMENTATION
Figure 7 shows the iterations followed to go from the naive
V1 to the pipelined V2 implementation. It shows illustrative
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FIGURE 6. Comparison of compression and decompression speed achieved by the CPU compression library, and the GPU versions V0 (ideal) and V1
(naive).

execution traces where the time taken by actions is used
to explain the different versions and is not an authentic
representation. At the top of the figure, we show V1 again
for completeness. Next, we show an improved version of
V1 (‘‘Improved Version 1’’). This version splits the data to
compress/decompress into chunks. Then, the CPU thread
schedules one H2D copy per chunk. Next, the CPU thread
launches one GPU compression kernel per chunk. Notice
that the compression kernels are executed sequentially after
the H2D copies end. After each kernel completion, the CPU
thread configures the D2H copy of the compressed chunk.
Again, as the D2H data copies are scheduled on the GPU
stream after launching all the kernels, D2H data copies will
not begin until the last kernel is completed. Thus, data copies
and kernel executions do not overlap yet.

As commented, remember that the size of the compressed
chunk is only known once the kernel finishes. So, the
CPU thread synchronizes each kernel before calling its
specific D2H copy. Furthermore, at the end of the process,
the resulting compressed data must include all compressed
chunks properly ordered. As a result, if the compressed data
is stored in a single contiguous host memory region (which is
the usual case), it is not possible to know the exact location

of a compressed chunk until the previous chunk has been
compressed.

‘‘Early Version 2’’ in Figure 7 shows a first attempt
to overlap data copies with kernel executions. In this
implementation, two additional streams are created in the
GPU: the H2D stream and the D2H stream. These two
streams perform the H2D and D2H data copies, respectively.
However, there is still a problem: the D2H data copy cannot
be done until the kernel completes the compression because
the size of the compressed data is only known once the kernel
ends. Thus, the CPU thread has to wait for kernel completion
before proceeding with the next chunk of data to compress.
Despite using several streams in the GPU, data copies and
kernel executions do not overlap.

‘‘Version 2’’ in Figure 7 finally achieves the desired
overlap. The solution to the synchronization problem men-
tioned above has been addressed by initially launching the
compression of two chunks (this includes the associated H2D
data copies and kernel executions). Once the compression of
the first two chunks is launched by the CPU thread, it will wait
for the result of the compression of the first chunk. At that
point, the D2H data copy for that chunk is scheduled. This
data copy overlaps with the compression of the second chunk.
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FIGURE 7. Illustrative execution traces for GPU compression versions V1 (naive), V2 (pipeline) and
intermediate versions. The legend is shown in Figure 1.

Also at that very moment, the compression of the third chunk
is launched (H2D copy and kernel execution). In this way,
(1) the CPU thread will synchronize and perform the D2H
copy for chunk i− 1, (2) while chunk i is being compressed,
(3) at the same time that the H2D copy and kernel execution
for chunk i + 1 are launched. This allows us to effectively
create the pipeline and completely overlap data copies with
kernel executions. Notice that GPU streams must be properly
synchronized using GPU events to avoid race conditions.

In the case of decompression, the evolution followed
is also presented in Figure 7. Compression and decom-
pression are similar, although the latter does not need
to synchronize after kernel completions, as explained in
the previous section, because compressed data size is
known in advance. This means that the CPU thread does
not need to stop sending operations to the GPU stream
in ‘‘Improved Version 1’’. Also, given that the kernel

synchronization done by the CPU thread is not required,
‘‘Early Version 2’’ and ‘‘Version 2 (V2)’’ are actually the
same. For that reason, ‘‘Early Version 2’’ has been omitted for
decompression.

2) OPTIMAL CHUNK SIZE FOR THE PIPELINE
As commented, the V2 pipeline is based on splitting the data
to be compressed into chunks. Thus, it is necessary to select
the optimal chunk size. On the one hand, larger chunks are
transferred to the GPU slower than smaller ones. On the
other hand, kernels compress and decompress chunks using a
considerable amount of threads within the GPU. Therefore,
larger chunks could benefit more from GPU computing
power than smaller ones. Consequently, finding the best
chunk size is key to optimizing the performance of the parallel
pipeline in V2.
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FIGURE 8. Exploration to find the optimal chunk size for V2 pipeline
using a 25MB dataset.

In the experiments for finding the optimal chunk size,
we have used the 25MB dataset because it is large enough to
appreciate the differences in the performance of the pipeline.
Figure 8 shows the experiments performed to find the
optimal chunk size. The figure shows the speed of each GPU
compression library when compressing and decompressing
the dataset using V2. We have considered chunk sizes from
64KB to 32MB. As we can see, all GPU compression libraries
start with a low speedwhen using the smallest chunk size. The
speed increases as chunk size increases. Zstd, Snappy, and
Lz4 compression libraries achieve a performance peak with a
chunk of 8MB, while the Deflate achieves its best speed with
16MB. For sizes larger than those, the speed starts to decrease.
Notice that using a chunk size equal to 8MB or 16MB means
that the pipeline will only be used for data sizes larger
than these chunk sizes. Thus, for compressing data smaller
than 8MB or 16MB, the data will not be split into chunks,
and the pipeline will not be fully leveraged. Nevertheless,
it will still benefit from the space pre-allocated for chunks in
GPU memory, avoiding allocating GPU memory before each
compression/decompression and freeing it afterward.

3) PERFORMANCE OF THE V2 PIPELINED COMPRESSION
Figure 9 compares the speed of V2 with previous versions.
As we can see, regardless of the compression library used,
V2 performs better than V1 and is closer to the ideal V0.
Specifically, the V2 implementation of Snappy, Lz4, Zstd
and Deflate outperforms V1 for datasets larger than 1000KB,
1000KB, 2500KB and 2500KB respectively. Notice that this
also happens for data smaller than chunk size (16MB for
Deflate and 8MB for Snappy, Lz4, and Zstd). As explained
before, this is thanks to the space pre-allocated for chunks in
GPU memory.

When comparingV2with the CPU implementation, the V2
implementations of Snappy, Lz4, Zstd and Deflate perform
better than CPU ones for datasets larger than 1000KB,
25MB, 1000KB, and 1000KB, respectively. Again, the CPU
implementation of Lz4 is the one performing better on
average.

To conclude the analysis of V2, we have used the
NVIDIA Nsight Systems profiler [30] to get the execution

traces of Snappy V2 when compressing (Figure 10) and
decompressing (Figure 11) a 25MBdataset using a chunk size
of 8MB. As we can see, kernel executions consume almost
all the compression execution time and overlap completely
with H2D and D2H copies. This confirms that data copies
are hidden by kernel computations. We can also observe that
decompression kernels are faster than data copies. Thus, the
entire decompression process (i.e. H2Ds + kernels + D2Hs)
takes about four times less than compression.

D. VERSION 3 (V3): MULTI-STREAM GPU COMPRESSION
In V2 we divided specific tasks into three different streams to
create the parallel pipeline: (i) one stream to perform H2D
copies, (ii) another stream to execute kernels, and (iii) a
third stream to perform D2H copies. In V3, we replicate
these three streams to create multiple concurrent pipelines
to further improve the performance of V2. Thus, data to
compress or decompress is split into several pieces and each
of the pieces is managed by one of the concurrent pipelines.
However, this approach raises concerns about concurrency.
If we create several concurrent pipelines at the beginning of
the compression, all H2D copies will occur approximately at
the same time. The same will happen with kernel executions
and with D2H copies. This raises the concern about whether
several H2D (or several D2H) data copies can be performed
at the same time. Similarly, concurrent kernel execution is
another concern.

Algorithm 1 Synthetic Test to Check if There Are
Any Limitations on the Number and Kind (H2D or
D2H) of Data Copies That Can Be Overlapped Using
Multiple Streams
number_of _streams← 20;
data_size← (32 ∗ 1024 ∗ 1024); // Each stream will

copy 32MB
cuda_streams[number_of _streams];
device_memories[number_of _streams];
// Allocate pinned host memory using the

cudaHostAlloc function
host_source_memories[number_of _streams];
host_destination_memories[number_of _streams];
// Launch all the H2D copies simultaneously
for i← 1 to number_of _streams do

cudaMemcpyAsync(device_memories[i],
host_source_memories[i], data_size,
cudaMemcpyHostToDevice, streams[i]);

end
cudaDeviceSynchronize(); // Wait for completion of

all copies
// Launch all the D2H copies simultaneously
for i← 1 to number_of _streams do

cudaMemcpyAsync(host_destination_memories[i],
device_memories[i], data_size, cudaMemcpyDeviceToHost,
streams[i]);

end
cudaDeviceSynchronize(); // Wait for completion of

all copies

Regarding the concern about concurrent data copies,
we have observed in the previous section that H2D and D2H
copies can overlap. However, there may be a limitation on
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FIGURE 9. Comparison of the compression and decompression speed achieved by the CPU compression library, and the GPU versions V0 (ideal), V1
(naive) and V2 (pipeline).

FIGURE 10. Execution trace of Snappy V2 (pipeline) when compressing a 25MB dataset using a chunk size of 8MB. This trace was obtained using the
NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

FIGURE 11. Execution trace of Snappy V2 (pipeline) when decompressing a compressed 25MB dataset using a chunk size of 8MB. This trace was
obtained using the NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

the number and kind (H2D or D2H) of data copies that can
be overlapped when using multiple streams. To analyze this,
we have created the synthetic test shown in Algorithm 1.
It first creates twenty different GPU streams. Then, one asyn-
chronous H2D transfer is performed by each stream. Next, all
streams are synchronized and, finally, one asynchronous D2H
transfer is scheduled in each stream.

Figure 12 presents the execution trace of the synthetic
test obtained using the NVIDIA Nsight Systems profiler.
Although the streams work independently with different host

and device memory ranges, data copies of the same kind
(H2D or D2H) do not overlap. Therefore, replicating the data
copy streams (H2D and D2H) used in V2 to multiple streams
will not provide any improvement.

Regarding the concern about concurrent kernel execution,
in theory, current GPUs support that. Moreover, kernels
often do not take full advantage of the huge computing
power of modern GPUs. Thus, launching multiple concurrent
kernels may increase GPU utilization at the same time that
overall kernel execution time is reduced. Furthermore, in V2
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FIGURE 12. Execution trace of the synthetic test in Algorithm 1 to check if data copies overlap when using multiple streams. This trace was obtained
using the NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

FIGURE 13. Execution trace of Snappy V3 (multi-stream) when compressing a 25MB dataset, using a chunk size of 2MB and up to six concurrent kernels.
This trace was obtained using the NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

FIGURE 14. Execution trace of Snappy V3 (multi-stream) when decompressing a 25MB dataset, using a chunk size of 2MB and up to six concurrent
kernels. This trace was obtained using the NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

experiments we found that the kernel execution time for
compressing a data chunk takes longer thanmoving the chunk
from/to CPU memory to/from GPU memory. Therefore,
it seems a good approach to launch several compression (or
decompression) kernels in parallel.

To analyze the effect of executing concurrent kernels,
we have enhanced V2 implementation by creating multiple
GPU streams for launching multiple kernels. Thus, the new
parallel pipeline in ‘‘Version 3 (V3)’’ has the following
stages: (i) one stream to perform H2D copies, (ii) multiple
‘‘kernel streams’’ (streams to execute multiple kernels that
will run in parallel), and (iii) one stream to perform D2H
copies.

Figure 13 shows the execution trace of this enhanced
pipeline when executing the Snappy for compressing a 25MB
dataset, using a chunk size of 2MB. Six GPU streams
were created to launch up to 6 compression kernels in
parallel. As we can see, the compression kernels from
different streams overlap. As a result, the total kernel
execution is reduced, which also reduces overall compression
time.

Figure 14 shows a similar trace when the Snappy
library is used for decompression. Similarly to compression
kernels, decompression kernels also overlap. However, the
improvement is not as noticeable as when compressing
because kernel execution time is shorter.
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FIGURE 15. Exploration to find the optimal chunk size for V3 pipeline using a 25MB dataset and varying the number of kernel streams.

Figure 15 shows the speed achieved by GPU V3 compres-
sion libraries when varying the number of kernel streams
(streams to execute kernels that will run in parallel). The
number of streams varies from one, the darkest bar in the
figure, to eight, the lightest bar in the figure (i.e. the lighter
the color, the more kernels running concurrently). We also
use different chunk sizes to find the optimal chunk size.

Figure 15a shows the results for the Snappy compression
library. As we can see, the speed increases with the number
of streams until it converges. The highest speed is achieved
using six kernel streams and a chunk size of 2MB. When
using Lz4, see Figure 15b, the best result is obtained with five
kernel streams and a chunk size of 2MB. Zstd (Figure 15c)
gets the best performance using seven streams and a chunk
size of 2MB. Deflate (Figure 15d) achieves the highest speed
using seven streams and a chunk size of 1MB. Compared to
the optimal chunk size obtained for V2, which only used one
kernel stream, the optimal chunk size for V3 has been reduced
from 8MB to 2MB for Snappy, Lz4, and Zstd, and from 16MB
to 1MB for Deflate.
Figure 16 shows the speed results obtained using V3.

As expected, this new version overcomes previous versions
V1 and V2. In the case of Snappy, Lz4, and Zstd, the new
implementation outperforms even the ideal V0 for some data

sizes. For Deflate, V3 results are closer to the ideal V0 ones
than the results of previous versions. Even though the idea
was not to improve the results obtained by the ideal version,
V3 does it because it runs multiple concurrent kernels and
takes full advantage of the computing power of the GPU.
However, for small datasets, the CPU compression is still
faster. GPU compression is beneficial for datasets larger than
1000KB, 10MB, 1000KB, and 500KB when using Snappy,
Lz4, Zstd, and Deflate compression libraries respectively.
These results indicate that compression and decompression
must be done on the CPU or the GPU depending on (i) the
data size to compress and (ii) the compression library used.

E. COMPARING COMPRESSION AND DECOMPRESSION
SPEED OF IMPLEMENTED GPU VERSIONS
In the previous sections, we have compared the total speed of
compression libraries when compressing and decompressing
specific datasets using the GPU. In this section, we deepen
the study by analyzing how the different versions behave in
compression and decompression separately.

Figure 17 shows the compression time inmilliseconds (ms)
achieved by compression libraries using the different GPU
versions already presented. We can see in the figure that as

VOLUME 12, 2024 32717



C. Peñaranda et al.: Hybrid-Smash: A Heterogeneous CPU-GPU Compression Library

FIGURE 16. Comparison of the compression and decompression speed achieved by CPU libraries, and GPU versions V0 (ideal), V1 (naive), V2 (pipeline)
and V3 (multi-stream).

the size increases, all compression libraries present the same
behavior:

• V1 compression time becomes lower than the CPU from
5MB, 100KB, and 100KB dataset sizes using Snappy,
Zstd, and Deflate compression libraries, respectively.
However, the CPU implementation of Lz4 is faster and
V1 cannot improve it. V2 does it from 25MB dataset
sizes.

• V2 implementation gets better results using fast com-
pression libraries. This version enhances V1 compres-
sion using Snappy and Lz4 regardless of the dataset
used. For Zstd and Deflate, improvement is achieved
from 500KB and 25MB dataset sizes, respectively. The
improvement in compression is more noticeable when
the data set is large enough.

• Using Zstd and Deflate, V3 improves V2 compression
regardless of the dataset sizes. For the rest of the
libraries, the improvement is achieved from 2500KB
dataset sizes. The compression improvement achieved
by V3 seems more noticeable with slow libraries.

From these results, we conclude that by using sufficiently
large data in compression, V1 improves CPU results despite
being a simple version. Moreover, the pipeline implemented

in V2 achieves better compression results for all libraries.
V2 works better with fast compression libraries because it
overlaps copies. However, compression kernels are essential
in compression time, being the bottleneck. Thus, the slower
the kernels are, the less noticeable the improvement of
V2 is. The improved version V3 further reduces compression
time, being more notable with slow libraries. V3 overlaps
compression kernels, this is why it is more noticeable in
slow compression libraries, where kernels take a more critical
role. Finally, it should be noted that although the objective of
showing the compression time achieved by the ideal V0 was
just for reference, V3 achieves better results for some datasets
thanks to overloading the GPU. Thus, V3 overcomes the
ideal V0 with the Deflate compression library from 2500KB
dataset sizes, while it does it for the rest of the libraries from
5MB dataset sizes.

Figure 18 presents results for decompression using
the implemented GPU versions. Comparing these results
with the compression ones, we can observe similar con-
clusions. However, decompression times are faster than
compression ones, as observed in the previously presented
execution traces using the NVIDIA Nsight Systems pro-
filer. In general, decompression requires less computation
than compression. In decompression, the implemented
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FIGURE 17. Comparison of the compression time achieved by CPU libraries, and GPU versions V0 (ideal), V1 (naive), V2 (pipeline) and V3 (multi-stream).

versions behave similarly to compression except for two
exceptions:

• V3 enhances V2 for any dataset size and compression
library. In the compression stage, this only happens
when the compression library is slow enough.

• V3 does not get better results than the ideal V0. This is
because the decompression computation performed on
the GPU is considerably lower than that performed in
compression. Thus, in this case the bottleneck are the
copies made to/from the GPU (H2D and D2H) instead
of the kernel computation.

As discussed, V3 achieves better decompression results
for all dataset sizes and libraries, while compression does
not. To better understand this behavior, we analyze com-
pression and decompression traces again when using the V3
implementation (Figures 13 and 14). As we can see, in the
compression the CPU must synchronize the compression
system to store data in contiguous memory. However, this is
not necessary for the decompression because we know the
position where the data will be located. This synchronization
penalizes fast compression kernels. Therefore, it penalizes
fast compression libraries.

F. VERSION 4 (V4): MULTI-GPU COMPRESSION
Previous versions of our compression solution only use
one GPU. However, many computers in data centers today
have multiple GPUs. In this section, we introduce ‘‘Version
4 (V4)’’, an improved V3 implementation that leverages
multiple GPUs. This new version distributes the compu-
tations over all the available GPUs in the system. This
presents two main benefits. First, more computing power
is available for compression and decompression. Second,
multiple data copies (one per GPU) of the same kind
(H2D or D2H) can be performed concurrently. The latter
is very important because having multiple H2D parallel
copies means that data to compress/decompress is copied
faster to the compression/decompression kernels. The result
is also copied back faster from the computation kernels
to host memory. However, supporting multiple GPUs also
has the disadvantage of increasing complexity. Data chunks
must be distributed among the available GPUs to perform
compression in parallel. Moreover, when kernels complete
execution and the corresponding D2H memory copies finish,
the resulting compressed data (i) must be stored in host
memory, (ii) in the correct order, and (iii) in a contiguous
memory region. Thus, the CPU thread must be improved
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FIGURE 18. Comparison of the decompression time achieved by CPU libraries, and GPU versions V0 (ideal), V1 (naive), V2 (pipeline) and V3
(multi-stream).

to properly orchestrate the entire compression process,
synchronizing the work done by the various GPUs available
in the system.

Figure 19 and Figure 20 show the execution trace of
Snappy V4 when compressing and decompressing a 25MB
dataset, using a chunk size of 2MB, up to six concurrent
kernels and two GPUs. As we can see, data copies (H2D and
D2H) on different GPUs overlap. In addition, kernels running
on different GPUs also overlap. Similarly to what happened
in V3, kernels also overlap within the same GPU. Notice
that decompression kernels in Figure 20 have fewer overlaps
because the execution time of these kernels is shorter than that
of compression ones.

Figure 21 presents the speed-up achieved by the V4
implementation with respect to V3. Data is compressed and
decompressed using two GPUs and the same compression
libraries as in previous sections. The optimal number of
kernel streams and the optimal chunk size used in V4 is the
same as for V3. These values are optimal per GPU, regardless
of the number of GPUs. As we can see, in the case of Snappy,
Lz4, and Zstd, V4 overcomes V3 for datasets larger than
2MB. This makes sense because these compression libraries
use a chunk size of 2MB. Thus, multiple GPUs are used for
data sizes over that chunk size. Deflate presents a similar

behavior but for datasets larger than 1MB, which is the chunk
size used for this library. The best speed-up (up to 1.7x) is
obtained by Deflate, followed by Zstd (up to 1.5x). Snappy
and Lz4 present the lower speed-up (up to 1.2x and 1.3x,
respectively).

As we can observe, despite the increment of GPUs
from one to two, no compression library has achieved a
speed-up of two. It would be the ideal result. The best
speed-up is achieved by Deflate, 1.7x. In this version, devices
work independently. However, it also has the disadvantage
of increasing complexity, as explained previously. Once
compression kernels finish, results must be transferred to host
memory in the correct order and in a contiguous memory
region. These synchronization points increase the complexity
of multi-GPU compression. This is more noticeable when
using fast compression libraries, such as Snappy or Lz4 are
used.

G. VERSION 5 (V5): HYBRID-SMASH (HYBRID CPU-GPU
COMPRESSION)
Performance results in previous sections have shown that
CPU compression performs better than GPU compression for
small data sizes. GPU setup time penalizes GPU performance
for these data sizes. As data size increases, however, GPU
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FIGURE 19. Execution trace of Snappy V4 (multi-GPU) when compressing a 25MB dataset, using a chunk size of 2MB, up to six concurrent kernels and
two GPUs. This trace was obtained using the NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

FIGURE 20. Execution trace of Snappy V4 (multi-GPU) when decompressing a 25MB dataset, using a chunk size of 2MB, up to six concurrent kernels and
two GPUs. This trace was obtained using the NVIDIA Nsight Systems profiler. The legend is shown in Figure 1.

FIGURE 21. Speed-up obtained by V4 (multi-GPU) with respect to V3
(multi-stream) when compressing and decompressing using two GPUs.

setup time is compensated by the longer computing time, and
GPU compression performs better than CPU. For this reason,
in this section, we present ‘‘Version 5 (V5)’’, a heterogeneous
CPU-GPU compression library. It uses the CPU or the GPU
depending on (i) the size of the data to compress/decompress
and (ii) the compression library used. We also referred to this
final version as ‘‘Hybrid-Smash’’. Table 1 shows the data
size thresholds used for each compression library to decide
whether to use the CPU or the GPU. If the size of the data to

compress is below the threshold, it will be compressed using
the CPU; otherwise, the GPU will be used. The thresholds
have been chosen taking into account the results of the
experiments in the previous sections.

We would like to emphasize that our implementation
encompasses the culmination of extensive research outlined
in the paper. This version has been developed thanks to
the iterations done in the different versions of GPU-based
compression libraries implemented, and the research of the
best configuration for each of them.

TABLE 1. Data size thresholds used for each compression library to
decide whether to use the CPU or the GPU. If the size of the data to
compress is below the threshold, the CPU is used; otherwise, the GPU is
used.

IV. CONCLUSION AND FUTURE WORK
In this paper, we have investigated when GPUs are beneficial
for data compression and when CPUs are preferred. We have
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done this by comparing the performance of the same
compression algorithms on both the CPU and the GPU.
Based on these results, we have presented our new abstraction
compression library and we explain in an iterative manner
how we have arrived at this version. Thus, we have
discussed the different versions created and the improvements
introduced in each one: the initial naive GPU compression
(V1), implementing a GPU compression pipeline (V2), using
multiple GPU streams (V3), leveraging multiple GPUs (V4),
and the final hybrid CPU-GPU compression (V5).

During the development of this final version, our devel-
oped GPU compression library outperformed the nvCOMP
provided by NVIDIA for some compression libraries when
the data size was large enough. Furthermore, contrary to
this one, our GPU library uses data initially located in the
CPU memory and stores the resulting data in the CPU
memory.

Finally, notice that V5 (referred to as Hybrid-Smash)
is based on the knowledge acquired during all the evo-
lution process followed in the paper. Hybrid-Smash
is a heterogeneous CPU-GPU compression library. Our
research shows that CPU compression performs better than
GPU compression for small data sizes. For this reason,
Hybrid-Smash transparently uses CPU or GPU compression
depending on the size of the data to be compressed and the
compression library to be used.

The research carried out in this paper provides several
opportunities for future work, among which we highlight the
following:
• Collaborative version based on CPU and GPU.
In this paper, we have created a basic heterogeneous
CPU-GPU compression library that uses a CPU
or a GPU implementation depending on the data
size and the specific compression library. However,
developing a more complex version that decides
which implementation to use and even a collabo-
ration between both implementations depending on
factors such as the system load would be interesting.
In this way, this future version would appropriately
distribute the chunks to be (de)compressed between
the CPU and GPU implementations presented in this
paper.

• On-the-fly CPU-GPU communication system. As com-
mented in previous sections, we plan to apply this
research in new challenging scenarios, such as the
rCUDA remote GPU virtualization framework. This
type of solutions present a client-server architecture
with GPUs installed only on the server side. Thus,
this new communication system will use CPU-based
implementation on the client side, because there is no
GPU there. However, the server side is more complex
because there is a GPU and both GPU and CPU
implementations can be used. Thus, on the server side
it would be possible to locate data to (de)compress on
the device or on the host memory, while in this paper we
have only considered the case where the data is located

on the host. All that would lead to further research to
find the best configuration.
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