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ABSTRACT Today, the transportation industry contributes significantly to greenhouse gas emissions-
roughly 23% of worldwide emissions. Battery electric vehicles (BEVs) are a viable technical option since
they have the ability to drastically cut emissions (e.g., up to 70% compared to gasoline automobiles).
Lithium-ion batteries, the fundamental component of BEVs, are essential to the efficiency and performance
of the vehicle. Nevertheless, it might be difficult to make the best decision given the wide range of battery
producers. In order to close this gap, eleven of the top producers of lithium batteries (e.g., Tesla, Ford and
Toyota) were assessed for their 2019-2021 performance. We evaluate battery performance using both the
Ordinal Priority Approach (OPA) and Malmquist productivity index (MPI). According to the results, Ford,
BMW, and Tesla had the greatest average MPI efficiency. Conversely, Toyota, Hyundai, and Mercedes-Benz
secured the highest positions among lithium-battery manufacturers in the OPA rankings. Through the
use of these methodologies, we aim to provide comparative rankings that will eventually help promote
sustainable mobility by giving decision-makers, investors, consumers and other stakeholders an overview
for well-informed battery selections.

INDEX TERMS Ordinal priority approach, lithium battery, decision-making, Malmquist, data envelopment
analysis.

I. INTRODUCTION
At the ‘‘Earth summit,’’ 172 national governments decided
to work together to make eco-efficiency a guiding princi-
ple, starting the transition towards a more sustainable world.
Specifically, the transportation network was prioritized to
minimize automobile emissions, urban traffic jams, and
health issues stemming from air pollution and smog [1].
In relation to greenhouse gas emissions, transportation is
especially important: The transportation industry was respon-
sible for 14% of global greenhouse gas emissions in 2010,
according to the IPCC’s Fifth Assessment Report.; con-
currently, in 2010 the final energy used for transportation
accounted for 28% of all end-use energy. Since 1970, the
transportation industry’s greenhouse gas (GHG) emissions
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have more than doubled and are rising faster than those of
any other energy end-use sector. Approximately 80% of this
rise is attributable to automobiles [3]. Even more concern-
ing is the prediction that, globally, the number of passenger
kilometers would more than triple between 2010 and 2100,
while the number of freight kilometers may rise by a factor of
3.5 during same time [2]. The battery electric vehicle (BEV)
offers the automotive industry a technological solution in this
scenario. Energy efficiency may increase fourfold if a car
with a combustion engine is converted to an electric one [4].
A prospective solution for significantly lowering emissions
from road transportation is the electric car. This is a crucial
component in lowering air pollution, noise pollution, and
carbon dioxide (CO2) emissions from passenger automobiles
and light commercial vehicles [5]. Thus, a broad adoption of
electric cars might save most of the total energy consumption
in the EU-27’s transportation sector by 2050, according to the
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German Advisory Council on Global Change [6]. The trend
of shifting to using electric cars to replace fossil fuel vehicles
in the future is inevitable.

Electric car batteries are considered as the core technol-
ogy of the electric vehicle industry. With electric cars, the
battery is the ‘‘soul’’, the core technology of electric vehicle
design, accounting for a large proportion of the selling price
of electric cars as well as requiring a high level of science
and technology. The choice of battery is an important factor
when choosing an electric vehicle. So far, there have been
many articles referring to the evaluation of different types
of batteries. but there are no comparative reviews of dif-
ferent manufacturers. Therefore, the article selects the topic
‘‘A Mathematical Model-Based Integrated Decision-Making
Approach for Lithium Battery Manufacturers Evaluation’’
in which the goal of this study is to give customers an
open and data-driven platform to evaluate electric vehicles
according to the efficiency and longevity of their batteries.
This might enable customers to choose the vehicle that best
fits their demands and budget with greater knowledge. This
research will use a Malmquist productivity index (MPI)
methodology to assess the performance of ten lithium battery
manufacturers (LBM) with an emphasis on their perfor-
mance from 2019 to 2021 and the Ordinal Priority Approach
(OPA) model, which is predicated on experts’ comparative
evaluations of the factors involved in choosing batteries for
electric cars. To determine opportunities for development
for the remaining manufacturers and to highlight efficient
manufacturers, MPI is an appropriate tool for comparing the
relative efficiency of units with many inputs and outputs.
In contrast in OPA, experts would use pairwise comparison
to explain the relative relevance of various elements, such
as energy density or safety, rather than numerical weights.
WhereinMPI’s quantitative analysis is supplemented by OPA
to include qualitative factors of battery selection. Next, to get
the best outcomes, graph the comparison of businesses using
the ranking order from the previous two ways. Therefore, the
main contribution of this paper is presented as follows:

• The aim of this study is to provide an overview of a
combined technique that makes use of both qualitative
(Ordinal priority approach) and quantitative (Malmquist
productivity index) evaluations. When compared to
other approaches that just use quantitative or qual-
itative assessment, this integration provides a more
comprehensive review.

• The research focuses on comparing and ranking lithium
battery manufacturers themselves, rather than just eval-
uating individual batteries. This manufacturer-centric
approach provides valuable insights for consumers
choosing EVs based on the battery technology behind
them.

• The goal of creating an open and data-driven platform
for evaluation adds to the novelty. This transparency
and accessibility could empower consumers to make
informed choices based on real-world data and expert
opinions.

The structure of the study is as follows. The study’s authors
assess relevant research on DEA models and their applica-
tions in the manufacturing sector in Section II. An overview
of the DEA Malmquist and Ordinal priority approach is
included in Section III’s analysis of methodology. The
authors utilize the case study of lithium battery producers
in Section IV to illustrate the efficacy testing of the recom-
mended approach in the aviation industry. We summarize
our findings, highlight the study’s shortcomings, and make
suggestions for more research in Section V, which concludes
the article.

II. LITERATURE REVIEW
The first and most evident advantage of electric cars is their
environmental friendliness. This car produces no emissions,
which lessens pollution and its negative effects on the envi-
ronment. Driving an electric car will help to ensure that the
air is cleaner, there is less pollution, and global warming is
decreased [7]. In heavily crowdedmetropolitan areas, electric
cars are also a great mode of transportation [8]. Modern
electric vehicle models are suitable for usage in highly pop-
ulated, heavily used roadway systems, such as those seen
in Vietnam. You may drive more simply and conveniently
across the city if you own an electric vehicle. Electric cars
just require electrical energy to run; they do not require a
motor [9]. Electric cars’ structural layout includes fewer parts
that are connected to the internal combustion engine sys-
tem, which lowers repair costs in the event of a malfunction
[10], [11]. It will not be necessary for users to bother with
oil filters, spark plugs, oil changes, or other equipment. The
appraisal of electric vehicles has since been brought up by
other writers, including Factors of electric car adoption: An
expanded theory of planned behavior is used to compare the
use of conventional and electric cars. Based on online surveys
conducted in Denmark and Sweden, this study analyzes the
sociodemographic profiles, attitudinal profiles, and mobility
patterns by S Haustein of users of conventional vehicles (CV)
and users of battery-electric vehicles (BEVs) [12]. In order to
predict the use intention of an electric car, Moons et al. break
down the theory of planned behavior through multi-group
comparisons and an investigation of how usage intention
determinants vary amongst consumer groups with varying
levels of environmental consciousness, inventiveness, and
personal values [13]. Electric vehicle charging infrastructure
(EVCI) can significantly reduce carbon emissions in China
by integrating with the circular economy and energy tran-
sition, as demonstrated by G Li et al.’s research. This is
because EVCI performance can be mitigated by making use
of resources and energy structures [14].
The battery is the part that provides power for all electric

vehicle operations [15], [16]. Therefore, the battery is also
one of the factors that customers often pay attention to when
choosing and using green vehicles [17], [18]. To improve the
user experience, electric vehicle manufacturers are constantly
improving technology, so the battery standards for electric
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cars are also improved [19], [20]. Also, to improve travel
distance, ensure operating safety and optimize costs. There
are a lot of people who are considering bringing up the issue
of evaluating the performance of lithium battery manufac-
turers for electric vehicles. For example, Andreas Poullikkas
et al In Sustainable Options for Electric Vehicle Technology
provides an overview of EV technology and related charging
mechanisms [21].

In order to create plans, policies, programs, and financial
judgements, decision-making is vital. Haseli et al. demon-
strated how multi-criteria decision making in green finance
may be best distribute resources to the projects that author-
ities prioritize those that are economically viable, socially
acceptable, and environmentally friendly [49]. Also, another
notable study for decision-makers with the use of Fuzzy-ZE
numbers were able to address in Mexico City invest and
improve the condition of the urban transportation system
that would result less greenhouse gas emissions and utilizing
renewable energy [50]. In their evaluation of the efficiency
of lithium-ion batteries in electric vehicles, Barić et al. exam-
ined a number of areas that can be assessed using CBA and
MCDMmethods, including risk assessment, materials supply
issues, recycling procedures, optimal technology selection,
optimal energy storage systems, efficiency testing, and EV
charging location selection [52]. Tang et al. carried out a
study comparing the use of EVs and internal combustion
engines (ICEVs) in China’s various provinces by using a two-
stage DEA. In which the study’s findings showed that EVs’
wheel-to-wheel carbon emissions are generally lower than
ICEVs’. That provinces in China with a high hydropower
and high degree of power autonomy could modify the amount
of thermal power and inter-provincial power transmission to
improve environmental sustainability without affecting the
environmental efficiency of the provinces [53]. However,
most studies do not evaluate the growth of battery compa-
nies for electric vehicles year over year, nor do they give
consumers a more objective view of the comparison between
manufacturers battery output. Various techniques exist for
doing performance analysis, including ratio analysis, data
packaging analysis (DEA), performance pyramid, analyti-
cal hierarchical process (AHP), stochastic frontier analysis
(SFA), and variable factor productivity (VFP). In which,
the DEA method in calculating and estimating the (tech-
nical) efficiency of businesses, banks, schools (collectively
referred to as units) Decision Making Unit lithium battery
manufacturers (LBM) in the use of input resources to pro-
duce outputs [22]. Such efficiency measurement is based
on the method of frontier analysis, whereby the most effi-
cient LBMs will establish a production frontier. and the
LBMs will be compared with this limit line to determine
if they are operating efficiently. For efficient LBMs, since
they lie on the limit line, their technical efficiency score
(TE) is equal to 1. For less efficient LBMs (within the limit
line), their efficiency scores will be smaller [22]. DEA is
a linear programming method for measuring the effective-
ness of multiple decision-making units (LBMs) as a process.

production presents the structure of multiple inputs and out-
puts [23]. The main advantage of this approach is its ability
to accommodate multiple input and output multiples. It is
also useful because it considers proportional returns in effi-
ciency calculations, allowing the concept of increasing or
decreasing efficiency based on output size and level. One
drawback of this technique is the specification of the model
and the inclusion/exclusion of variables that could influence
the results [24].

However, using the DEA can only provide a quantitative
assessment of the annual development specifications of the
LBMs. But to be able to evaluate product selection, it is still
necessary to pay attention to many external factors of the
product. The authors proposed the Ordinal priority approach
(OPA) to weighing the selected criteria by experts. OPA is
a multi-criteria approach of decision analysis that facilitates
collective decision-making on the basis of priority relation-
ships [25], [26]. Rather than utilizing pairwise comparison
matrices, the OPA approach has been introduced in recent
years to tackle multi-criteria decision-making issues based
on ordinal data [26], [27]. Experts might not be sufficiently
knowledgeable on a particular approach judgment or set of
criteria in real-world scenarios. Since the problem’s input
data is lacking in this instance, OPA’s linear programming
should incorporate it. Constraints pertaining to criteria or
alternatives that should be eliminated from the OPA linear
programming model in order to accommodate deficient input
data in theOPA technique. As a result, the paper employed the
DEA and OPA approaches concurrently in order to evaluate
issues with manufacturer selection in an unbiased manner.

The sections that follow address efficiency measurement
techniques that employ the Malmquist and Ordinal priority
approach examining the productivity of lithium battery pro-
ducers. The methodology section presents the procedures and
data that were utilized to assess the companies. The outcomes
of these investigations and their interpretations were offered
in the last part in order to highlight the most efficient and
effective manufacturer. For the relevant study, Table 1 shows
the inputs, outputs, DMU, and application areas.

III. METHODOLOGY
This section presents the proposed methodology as a paral-
lelly integrated process of DEA Malmquist and OPA models
shown in Fig 1. The goal of this study is to assess ten lithium
battery producers’ efficiency for electric vehicles between
2019 and 2021. Accordingly, the revenue-leading LBMs
are considered to perform both qualitative and quantitative
efficiency assessments.

In terms of quantitative assessment, firstly, the DEA
model’s inputs and outputs are determined. Based on the
databases, the values of the inputs and outputs are collected.
Then Pearson’s formula is applied to calculate the corre-
lation among inputs and outputs. Accordingly, the selected
inputs and outputs should be isotropic. It implies that
the inputs and outputs both increase or decrease together.
Otherwise, the input/output selection process is repeated.
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TABLE 1. Overview of the methodology and relevant research.

Next, the Malmquist model is applied to determine the effi-
ciency of the LBMs. Their quantitative rank is established
based on the Malmquist efficiency of the LBMs.

In terms of qualitative assessment, as a first step, a group of
experts, who have expertise in the area under consideration,
is identified. Because of the difference in expertise, experts
are ranked. Based on expert recommendations as well as
references, qualitative efficient evaluation criteria for LBMs
are determined. In the next step, ordinal judgments of the
criteria are provided by each expert. Simultaneously, each

FIGURE 1. Proposed framework.

expert provides ordinal judgments of efficiency among LBMs
according to each criterion. Finally, the experts’ ranking
and their ordinal judgments are applied to the OPA model.
The solution of the OPA model provides optimal weights of
experts, criteria, and LBMs simultaneously. Their qualitative
rank is established based on the optimal weights of the LBMs.

In the last stage, quantitative and qualitative ranking results
are integrated to classify LBMs. Based on the classifica-
tion results, discussions, and recommendations for groups of
LBMs are provided.

A. VALIDATION OF THE DATA
Ensuring that every input and output utilized for analysis
has a good correlation is essential before utilizing the DEA
Malmquist. In order to confirm that this requirement is satis-
fied, the Pearson correlation test was initially employed. The
link between the input and output variables is said to be closer
when the correlation coefficient is higher, and less so when it
is lower [36]. where n denotes the sample size, xI, yIare the
individual points indexed i, lastly the x =

1
n

∑n
i=1 xI is the

sample mean and analogous for y.

rxy =

∑n
i=1 (xi − x) (yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
(1)

B. MALMQUIST MODEL
The Malmquist productivity index (MPI) assesses a DMU’s
performance across two set periods of time. Equations (2)
through (4) show that the efficiencies of the DMUs is
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assessed from t to period t+1 and is composed of three
components: technical efficiency change (catch-up index,
(CP)t→t+1), technological change (frontier-shift,FS t+1

t ), and
Malmquist productivity index ((MP)t→t+1), [36], [46]. where
MPt+1

t > 1 indicates that operational efficiency increased,
MPt+1

t < 1indicates that operational efficiency decreased,
and MPt+1

t = 1 indicates that there has been no change in
operational efficiency.

CPt→t+1
=

OZ t+1
t+1

OZ t+1

OZ tt
OZ t

=
TSE t+1

TSE t
(2)

FS t+1
t =


OZ tt
OZ t

×
OZ t+1

t

OZ t+1

OZ tt+1

OZ t
×
OZ t+1

t+1

OZ t+1


0.5

=

[
TSE t

TSE t+1 ×
IEI t+1→t

IEI t→t+1

]0.5
(3)

MPt+1
t = C t→t+1

× F t+1
t

=
TSE t+1

TSE t
×

[
TSE t

TSE t+1 ×
IEI t+1→t

IEI t→t+1

]0.5
=

[
TSE t+1

TSE t
×
IEI t+1→t

IEI t→t+1

]0.5
(4)

C. ORDINAL PRIORITY APPROACH
Ataei et al. presented the OPA, a newly developed MCDM
technique, in 2020. This approach toMCDMproblem solving
is based on ordinal relations and linear programming. The
OPA is recognized by researchers as an effective, objective,
and flexible method. The distinct advantages of this method
are that it does not require the normalization procedure, pair-
wise comparisons, and data completeness. Shown in Table 2
displays the set, parameters, and decision variables of the
OPA mathematical model used in this investigation.

TABLE 2. The OPA method’s sets, parameters, and variables.

The procedure for weighting the criteria using OPA in this
study includes the following steps:

Step 1: Identify a group of experts or decision-makers.
Because their expertise is different, experts are ranked by

ordinal numbers based on level of education and years of
experience.

Step 2: The criteria are prioritized by each expert.
Step 3: Based on the ordinal judgments in steps 1 and 2,

the mathematical model (5) is developed and solved.
Where Z : Unrestricted in sign

Maximize Z

s.t. : Z ≤ p
(
j
(
wrpj − wr+1

pj

))
∀p, j, r

Z ≤ pjwjpj ∀p, j
k∑

p=1

m∑
j=1

wpj = 1

wpj ≥ 0 ∀p, j (5)

After solving Model (5), the criteria and expert’s weights are
determined using following Equations (6)-(7):

wj =

k∑
p=1

wpj∀j (6)

wp =

m∑
j=1

wpj∀p (7)

IV. CASE STUDY
A. DATA ENVELOPMENT ANALYSIS (DECISION-MAKING
UNITS SELECTION)
This study evaluates the effectiveness and productivity of the
top ten producers of lithium batteries for electric vehicles
between 2019 and 2021 as shown in Table 3. The study’s
dataset was gathered from the global stock market [38].

TABLE 3. List of decision-making units.

The DEA Malmquist model relies heavily on inputs and
outputs to assess the effectiveness of LBM. To justify the
choice of the financial variables in the paper’s model, the
authors looked at a large number of pertinent papers pub-
lished over the last several decades. After a thorough study,
the authors consider four inputs, namely cost of revenue,
operating expense, Total Current Assets, and Total Non-
Current Assets, while gross profit and total revenue are
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TABLE 4. Statistical description of inputs in billion USD.

TABLE 5. Statistical description of outputs in billion USD.

considered as output variables. As shown in Table 4 and
Table 5, the statistical description of the input and output data.
Input factors:

• Cost of Revenue (I1): The total cost associated with
producing and offering a good product or service to
customers.

• Operating expenses (I2): expenses incurred by a firm in
the course of its regular operations. Rent, equipment,
inventory rates, marketing, wages, insurance, handling
charges, and funds for research and development are all
considered forms of operating expenditures.

• Total Current Assets (I3): The physical manifestation
of components directly involved in production business
activities (these components are also known as labor
objects).

• Total Non-Current Assets (I4): The value of assets that
are not reflected in the short-term assets. Long-term
assets are assets with a maturity of more than 12 months
at the reporting time.

Output factors:

• Gross profit (O1): Revenue less the cost of products sold
is what is known as gross profit. It should be noted that

other fixed and variable expenditures like rent, utilities,
and payroll are not subtracted from gross profit.

• Total revenue (O2): The complete sales of goods and
services multiplied by the pricing of goods and services
results in the total sales of products and services.

B. ORDINAL PRIORITY APPROACH (CRITERIA SELECTION)
This selection of criteria plays an important role in the
application of the OPA model. By referring to the relevant
literature reviews on the quality evaluation criteria of lithium
batteries for electric vehicles as shown in Table 6.

TABLE 6. List of previous studies on battery evaluation.

From Table 6, checking the appropriate correlation
between the criteria, the decision was made to choose four
criteria including price, longevity, wattage, reliability. The
definition of the criteria is clearly shown in Table 7.

V. RESULT ANALYSIS
A. FRONTIER-SHIFT ANALYSIS (TECHNOLOGICAL
CHANGE)
The efficiency frontiers (technological change) of the LBMs
between two time periods are expressed by frontier-shift
indices, which also represent the LBMs’ performance in light
of numerous external factors including innovations, competi-
tion, technical development, and the regulatory and political
environment.

According to Fig. 2, for the period of 2019-2021, all LBMs
have a growing average Frontier-shift index. Volvo, Ford,
and Honda have the highest average Frontier-shift index.

40042 VOLUME 12, 2024



C.-N. Wang et al.: Mathematical Model-Based Integrated Decision-Making Approach

TABLE 7. Definition of each criterion.

Meanwhile, Nissan and Volkswagen also have a growing
average Frontier-shift index. But they have the lowest growth.

As shown in Fig. 2, all LBMs are developed in the period
of 2019-2021. Of these Ford has the most stable technology
performance in the period of 2019-2021. Ford achieved the
highest Frontier-shift index in the period 2020-2021. Next,
in the period of 2019-2021, Nissan is the LBM with the
lowest Frontier-shift index. But by 2020-2021, Nissan has
thrived, becoming the LBM with the fourth Frontier-shift
index out of ten LBMs. Although BMW and Volkswagen
are also developing, they are growing more slowly than other
LBMs. In the period of 2019-2020 BMW and Volkswagen
are the two LBMs with the highest growth among the ten

FIGURE 2. Technological change for the period 2019 to 2021.

LBMs. By the period of 2020-2021, BMW and Volkswagen
are the two LBMs with the lowest Frontier-shift index among
the ten LBMs. As a result, shown in Fig. 2 Ford and Volvo
were the top performers, regularly showing high frontier-
shift indices, while Nissan significantly improved its score
from the lowest to the fourth highest, indicating potential for
progress. Conversely, slower growth was seen by BMW and
VW, which had a strong growth at first, followed by a fall in
growth over the research period.

B. CATCH-UP ANALYSIS (TECHNICAL EFFICIENCY)
As shown in Fig 3, which track the development indica-
tors of lithium battery manufacturers over time, illustrates
how the technological efficiency of LBMs has changed over
time. If the catch-up index is greater than 1 (>1), then it
corresponds to progress. Conversely, the catch-up index is
less than 1 (<1), which corresponds to the regression of the
technical efficiency of the LBMs.

FIGURE 3. Technological change (catch-up).

The average catch-up index of LBMs for the 2019–2021
period is less than 1. The three LBMs that have improved
their average technical efficiency the most between 2019 and
2021 are Ford, Tesla, and BMW. In contrast, Volvo, Honda,
and Toyota were the LBMs with the least effective means of
technical improvement.

From Fig. 3, we can see that in the period of 2019-2021,
Ford and Tesla have the strongest growth fluctuations in the
research period. Specifically, in the period of 2019-2020,
Ford has the lowest catch-up index. But by the period 2020-
2021, Ford has thrived, becoming the LBM with the highest
catch-up index. Next, Tesla does the same, in the period of
2019- 2020, Tesla has an average catch-up index compared
to the remaining LBMs. By the period 2020-2021, Tesla has
risen to second place. In contrast, Honda and Nissan dropped
the most. In the period of 2019-2020, Honda and Nissan
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have grown strongly. But in the period 2020-2021 Honda and
Nissan fell sharply, with the lowest catch-up index compared
to the remaining LBMs. As a result, shown in Fig. 3 Ford,
Tesla, and BMWwere the top improvers and show promising
catch-up tendencies. In contrast, Ford and Tesla’s swings
indicate possible instability in their methods even if they
reached high peaks, making them the volatile performers.
Conversely, Honda and Nissan had rapid declines after their
first rise.

C. MALMQUIST PRODUCTIVITY INDEX
TheMalmquist Productivity Index (MPI) is presented in Fig 4
shows the firms’MPIs as they progressed through each phase.
When MPI = 1 indicates the state of efficient production,
MPI > 1 indicates highly efficient production, and MPI < 1
corresponds to loss of efficiency.

FIGURE 4. Total productivity change (Malmquist).

The results reveal that all LBMs have an average MPI
greater than 1, which suggests that over the research period,
the firms’ production increased. The three firms with the
highest average MPI are Tesla, BMW, and Ford. That these
LBMs have demonstrated strong performance in terms of
technological and technical efficiency. In contrast, Nissan and
Volvo are the two companies with the smallest MPI compared
to the remaining LBMs.

According to Fig 4, it seems that the development perfor-
mance of companies is different. Specifically, in the period
of 2019-2020, Ford is the company with an MPI of less
than 1, the company with the smallest MPI of the ten LBMs.
But by the period 2020-2021, Ford is the company with
strong growth, with the largest MPI. Next is Tesla. In the
period of 2019-2020, tesla is the company with MPI lower
than 1. but in the period of 2020-2021, Tesla thrives to rise
to the 2nd position compared to other LBMs. In contrast,
Nissa is the LBM with the strongest downtrend. In the period

of 2019-2020, Nissan has anMPI of less than 1. By the period
of 2020-2021, Nissan continues to decrease, becoming the
LBMwith the lowest MPI. As a result, shown in Fig. 4 Tesla,
BMW, and Ford are the best performers with continuously
high average MPIs that lead to notable efficiency benefits.
Nissan’s ongoing downward trajectory, however, points to a
lack of long-term viability.

D. ORDINAL PRIORITY APPROACH RESULT
In this application, the article presents a multi-criteria
decision-making problem for consideration. We determine
that price, longevity, wattage, reliability influence the choice
of lithium battery manufacturing company. By constructing
10 different manufacturers (LBMs) and four criteria, experts
from academia and related business fields were contacted and
reviewed the literature for evaluation selection. Five experts
were interviewed for a comparative assessment of the four
criteria shown in Table 8.

TABLE 8. Experts’ evaluation criteria ranking.

As seen in Fig. 5, five experts have evaluated and compared
the LBMs according to four criteria: price, longevity, wattage,
and reliability. Their evaluations are based on impartial
assessments and professional credentials. After the evaluator
compares the criteria, and compares the LBMs based on
four different criteria, this study uses the Ordinal Priority
Approach model (5) to evaluate. Based on Fig. 6, price (31%)
and reliability (29%), are the two factors that experts evaluate
the highest. Next, two criteria longevity and wattage are
compared equally at a 20% ratio.

As shown in Fig 7, the highest rated LBM is Toyota with
a ratio of 0.131. Next, Hyundai (0.118) and Mercedes-Benz
(0.115) are the highest ranked companies after Toyota. The
lowest rated LBM is Nissan (0.06). The two nearly equally
underrated LBMs on only Nissan are Ford (0.086) and Volvo
(0.084). Based on the obtained results, we arrange the order
of LBM. According to the study, choosing the finest LBM
for the needs may be aided by taking into account factors like
pricing, reliability, longevity and wattage. Based on expert
judgment within this paradigm, Toyota comes out on top.

VI. DISCUSSION
According to Fig 8, we can see the ranking of the LBMs
through two different evaluations. We use the results of that
ranking from 1st to 10th to draw a diagram. The horizontal
column is the ranking results of the LBMs based on the
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FIGURE 5. Expert survey for DMUs ranking according to criteria: (a) Wattage; (b) Longevity; (c) Price; (d) Reliability.

FIGURE 6. Criteria weights by OPA model.

Malmquist DEA method. Vertical columns are the result of
ratings of the OPAmodel through expert judgment of experts.
We have 10 LBMs in each vertical and horizontal column.
Vertical column divided into 2 parts (reviewed by experts and
not appreciated by experts). The horizontal column is divided
into 2 parts (high performance and low efficiency).

As shown in Fig 8, we can see that BMW, Mercedes-Benz,
and Hyundai are the options that are highly appreciated for
their economic production efficiency and highly appreciated
by experts (positive group). In contrast, Nisan, Volvo, and
Honda are three options that are not appreciated in both
aspects (expectation group).

FIGURE 7. Evaluation of Lithium battery manufacturers.

In the remaining, Ford and Tesla are economic production
companies with high efficiency but not highly appreciated by
experts (new technical group). Volkswagen and Toyota are
two companies that are highly appreciated by experts, but the
eco-nomic and technical production results vary from year to
year (high confidence group).

• Positive group: This group is highly appreciated in eco-
nomic development, technical and expert assessment.
But for partner companies and investors, it will be a
challenge. because there are many competitors.
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FIGURE 8. Evaluation of Lithium battery manufacturers.

• Expectation group: This is a group that is not appreciated
in both aspects compared to other companies in the
ten evaluated companies. but these are still three of the
top ten companies by revenue in the field of battery
production for electric vehicles. So, this is still a group
with high expectations, and can still be considered when
collaborating.

• Economic development group: This is a group highly
appreciated in economic and technical development.
investors, partner companies can pay attention to invest
in these companies. but these companies are not appre-
ciated by experts in the field of battery manufacturing
for electric vehicles. Therefore, the company needs to
consider more product development.

• High confidence group: This is the group that is highly
rated by experts. but in the assessment of economic
development, technology is not high. This is a challenge
for companies in this group. They need to consider
more development to have the appropriate direction.
Customers may consider choosing this group more.

VII. CONCLUSION
In order to establish an adequate and feasible framework
for the performance evaluation process of lithium battery
manufacturers for electric cars, the main objective of the
current study was to examine the performance of companies
that create lithium batteries for electric vehicles. This was
done by concentrating on two aspects that correspond to the
two images in the study. In terms of methodology, the com-
bined method used the above-mentioned advantages of DEA
Malmquist and OPA models over classical models. Applying
the suggested approach to a sample of ten corresponding
lithium battery manufacturing companies in 2019–2021 is
done using financial indicator data from the stock market:

operating expenses, total current assets, total non-current
assets, cost of revenue, gross profit, and total revenue (output
variables). Using Malmquist indices, the productivity growth
rate of operators over the 2019–2021 period is provided, and
the results are used to rank companies according to their
technological advancements during this time. This allows the
Malmquist DEAmodel to investigate the pattern of efficiency
changes over time. Conversely, the OPA model relies on
the views and references of experts in the field. Next, each
expert, ranked according to expertise, evaluates the impact’s
size using an ordinal scale. The OPA approach is then used
to compute the weights of the effects. Consequently, this
integrated strategy provides a more effective framework for
managing and evaluating the operations and expansion of the
business.

The study that is being presented provides information and
useful applications to the field of performance monitoring
in the lithium battery manufacturing sector. The results are
significant because they help manufacturers comprehend and
recognize key indications in the operations and expansion of
their businesses. As a result, businesses may improve their
technological and technical performance.

In conclusion, the primary contributions of this research
may be summed up as follows: (1) By integrating the OPA
model with DEA Malmquist, the study carried out a novel
comparative evaluation of lithium battery manufacturers for
electric cars. This method can calculate the rating index of
LBM based on the objective assessments of various experts,
which means that both internal and external aspects are ana-
lyzed and evaluated in a general way to get an overview.
It can also measure the total relative productivity of LBMs
in many stages—multiple input and output variables through
technology assessment.; (2) findings from a case study that
offers thorough and accurate information on the top ten
lithium battery manufacturers for electric cars in recent years;
(3) Based on the performance of a few profitable companies,
the paper anticipates that the model findings will accurately
depict the current state of lithium battery companies for elec-
tric vehicles. In order to help decision-makers, investors, and
customers—as well as any business worldwide—improve
their performance in the direction of sustainable develop-
ment, this article might serve as a helpful guide.

However, the current studies has some limitations, the
DEA is well recognized for assessing manufacturers’ effi-
ciency, in certain earlier instances, by using the bootstrapping
technique can also employ to measure the inaccuracy in
the estimations for future studies. By applying bootstrap-
ping provides for sensitive analyses if scaling indicators and
efficiency score sensitivities by sampling the original data
many times [47]. On the other hand, the main issue with
practically every MCDM technique is the standardization of
incommensurable criteria, which is why the OPA method
has so much flexibility in handling uncertainty in decision-
making situations [48]. Future research should take into
account more factors connected to numerous other factors
in order to broaden the quantitative and qualitative criteria.
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Enhancing the effectiveness towards sustainable development
will greatly benefit from more study in this area. In the
context of the future study, input and output factors requiring
further evaluation include physical production and environ-
mental variables. In addition, the ability to rank business
units and compare the results using several multicriteria
decision-making processes such as TOPSIS, AHP, VIKOR,
and Fuzzy including other areas like efficiency testing, selec-
tion of EV charging location, in order to provide more precise
and understandable results.

ABBREVIATION
DEA Data Envelopment Analysis.
MPI Malmquist Productivity index.
DMU Decision making units.
OPA Ordinal Priority Approach.
MCDM Multi-criteria decision making.
LBM Lithium Battery Manufacturers.
BEV Battery Electric Vehicles.
EV Electric Vehicle.
ICEV Internal combustion engine vehicle.
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