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ABSTRACT To support dramatically increasing services from internet of thing (IoT) devices with the
sporadic and fluctuated generation of short packet traffic, this paper investigates joint dynamic time division
duplexing (TDD) and radio resource control (RRC) connection management in a single-cell massive
IoT network. Specifically, under the grant-free transmission incurring packet collision, this study models
the factors affecting the time resource utilization (TRU) and energy consumption of IoT devices as a
comprehensive system utility and further formulates the problem as a decision-making process aiming
for balancing the long-term average TRU and energy consumption. To address the formulated problem,
based on the deep reinforcement learning framework, this paper designs an experience-driven joint dynamic
TDD and RRC connection management scheme that intelligently i) determines the TDD configuration
based on the most recent downlink (DL)/uplink (UL) traffic demands and ii) adjusts the RRC state of each
IoT device to control the maximum number of transmitting IoT devices. Finally, trace-driven simulation
results demonstrate that the proposed scheme outperforms existing benchmarks, such as Static TDD and
Dynamic TDD, in terms of transmission success ratio difference (TSRD) (up to 89% reduction), time resource
utilization (TRU) (up to 17× increase), and energy consumption (up to 70% reduction) of IoT devices.

INDEX TERMS Internet of Things, time division duplexing, grant-free transmission, radio resource control,
deep reinforcement learning.

I. INTRODUCTION
With a dramatic upsurge of applications from internet of thing
(IoT) devices with the sporadic and fluctuated generation of
short packet traffic, exemplified by healthcare, smart home
or autonomous vehicles [1], the development of massive
IoT networks has been attracting significant attention from
industry and academia [2], [3], [4]. Furthermore, the diverse
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array of applications associated with IoT devices necessitates
attention to various requirements, encompassing power con-
sumption, access delay, privacy, and security [5]. In alignment
with this trajectory, the 3rd Generation Partnership Project
(3GPP) has introduced both narrowband IoT (NB-IoT)
and LTE-M under cellular networks to accommodate a
substantial number of IoT devices while delivering tailored
services [6]. Nevertheless, since the rapidly increasing
number of IoT devices generatesmassive amounts of sporadic
and fluctuating traffic under limited bandwidth, efficient
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radio resource management for achieving maximum resource
utilization with the required latency constraints remains
challenging [7].

The conventional LTE scheduling [8], based on grants
triggered by IoT devices through the random access (RA)
procedure, poses a potential limitation in reducing uplink
(UL) transmission latency. This is due to the mandatory steps
involved in requesting access grants within the RA procedure.
Recently, an alternative approach has been proposed to
address this limitation by eliminating the request-grant
step in UL transmission [9]. This method, termed grant-
free transmission, enables IoT devices to promptly transmit
packets upon arrival over the shared frequency resource.
Grant-free transmission presents distinct advantages, partic-
ularly in reducing the time spent on the request and grant
process inherent in grant-based scheduling. This approach
is especially appealing for IoT devices characterized by
periodic and sporadic traffic patterns [10]. However, it is
crucial to consider the impact of increased UL traffic density
on overall throughput when employing contention-based
grant-free transmission, as this may lead to a deterioration
in performance.

Recent concerns have prompted extensive performance
analyses and studies focused on enhancing grant-free
transmission where the number of transmitting devices
is a great issue. Moreover, the fluctuations in downlink
(DL)/UL traffic generated by IoT devices increase the
complexity of deploying grant-free transmission for massive
IoT networks. It is noteworthy that while IoT devices in
massive IoT networks typically produce more UL traffic than
DL traffic, this proportion can vary depending on their appli-
cations [11]. Addressing this issue, dynamic time-division
duplexing (TDD) serves as an efficient solution to manage
DL/UL traffic variations by dynamically adjusting TDD
configurations in real-time. In recent studies on dynamic
TDD [12], the management of dynamic TDD has mainly
concentrated on determining optimal TDD configurations
from a physical layer perspective. This involves detailed
modeling of cross-link interference (CLI) and forward-link
interference (FLI) between base stations and devices. The
objective of this management is to enhance the overall
throughput of systems. However, existing studies, to the
best of our knowledge, lack a comprehensive consideration
of simultaneously controlling the number of transmitting
IoT devices and adjusting relevant dynamic TDD configu-
rations to support grant-free transmissions in massive IoT
networks. This problem cannot be formulated as a convex
problem. Additionally, conventional heuristic algorithms
prove impractical in real-time applications due to their high
complexity. In light of these challenges, experience-driven
AI algorithms present a promising avenue for addressing
the complexity of this problem in massive IoT networks.
Consequently, there exists room for improvement in prior
works, thus motivating the present research.

This paper introduces a novel approach to address the chal-
lenges in massive IoT networks through a deep reinforcement

learning (DRL)-driven joint dynamic TDD and RRC con-
nection management scheme. Specifically, we utilize TDD
configuration selection and RRC connection control modules
to effectively adapt to the sporadic and fluctuating traffic
in the network. Each module’s problem is formulated as
a decision-making process, with the objective of striking
a balance between the long-term average time resource
utilization (TRU) and energy consumption, achieved by min-
imizing the transmission success ratio difference (TSRD).
Within the DRL framework, our approach involves designing
experience-driven agents that collaboratively address two key
aspects: i) determining the optimal TDD configuration based
on the most recent DL/UL traffic demands and ii) modifying
the RRC state of each IoT device to control the maximum
number of transmitting IoT devices. The contributions of this
paper are detailed in the following.
• This research introduces a comprehensive joint dynamic
TDD and RRC connection management scheme tailored
for massive IoT networks. Operating collaboratively,
the TDD configuration selection and RRC connection
control modules effectively manage the challenges
posed by sporadic and fluctuating short-packet traffic
generation.

• The interrelated problems addressed by these modules
are formulated using a DRL framework to minimize
the TSRD, effectively balancing long-term TRU and
energy consumption. Leveraging the DRL framework,
our approach efficiently resolves non-convex problems
by deploying jointly operating experience-driven agents.

• The scheme incorporates the estimation of the most
recent DL/UL traffic demands, enabling the TDD
configuration selection module to determine the optimal
TDD configuration. Subsequently, guided by the chosen
TDD configuration, the RRC connection control module
manages the maximum number of transmitting IoT
devices. This is achieved by dynamically adjusting their
RRC states to facilitate grant-free transmission while
mitigating packet collision.

• Trace-driven simulation results demonstrate the efficacy
of the proposed scheme, achieving an impressive 89%
reduction in TSRD and a remarkable 17-fold increase
in TRU compared to existing benchmarks. Additionally,
the proposed scheme significantly reduces IoT device
energy consumption, achieving up to a 70% reduction.
Notably, retransmission accounts for less than 25% of
energy consumption, while the existing benchmarks
surpass 90% in energy consumption.

The rest of this paper is structured as follows: Section II
provides a comprehensive overview of the relevant literature.
In Section III, the system model for massive IoT networks
is presented, accompanied by a mathematical formulation of
the problem pertaining to joint dynamic TDD and RRC con-
nection management. Section IV elaborates the design of our
DRL approach employed for solving the articulated problem.
To assess the effectiveness of the proposed scheme, Section V
presents trace-driven simulation results. The findings are
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then discussed in terms of performance evaluation. Lastly,
Section VI outlines potential avenues for future research
within the scope of the present investigation, concluding with
final remarks in Section VII.

II. RELATED WORK
For the efficient management of dynamic TDD in a massive
IoT network, the performance of the resource scheduling
algorithm is crucial. Grant-free transmission under OFDMA
is a viable UL resource scheduling algorithm for IoT devices,
yet it faces challenges such as packet collisions due to
the fluctuations in UL demand. To address this, dynamic
TDD and RRC connection control offer feasible solutions to
facilitate grant-free transmission in a massive IoT network.
This section provides a brief overview of existing research
related to massive IoT networks, dynamic TDD, grant-free
transmission, and RRC connection control.

A. MASSIVE IOT NETWORK
In the context of massive IoT networks, NB-IoT emerges
as an alternative solution strategically deployed by cellular
networks to cater to the connectivity, reliability, and quality
of service (QoS) requirements for a vast number of IoT
devices [13]. A specific focus in [14] delves into the DL
resource allocation of NB-IoT, aiming to mitigate latency and
user blockage within the expansive landscape of a massive
IoT network. However, the predominant transmission mode
for IoT devices, primarily comprising upstream communica-
tion, necessitates an optimized UL transmission strategy to
meet the network’s demanding requirements [11], [15].

For instance, Ahmed et al. [16] specifically addresses
upstream QoS concerns in terms of communication delay,
security risks, and message failure, based on the devices’
requirements in QoS-Aware IoT-Based Vehicular Networks.
Jiang et al. [17] scrutinize the collision probability of RA
schemes designed for requesting UL grants, proposing a
novel RA scheme in the context of amassive IoT environment
to reduce average queueing and waiting delays for UL
transmissions. Additionally, the work in [18] enhances the
reliability of UL transmission in RACH procedure through
real-time traffic value analysis. However, unlike conventional
human-type communications (HTC), where straightforward
granting and scheduling are necessary due to the huge data
transmission within the limited bandwidth, the sporadic and
short-packet data transmissions from massively deployed
devices in the networks pose a unique challenge in terms
of latency. Consequently, numerous studies concentrate on
enabling grant-free transmissions for UL resource scheduling
of IoT devices to reduce the time required for granting UL
access [19].
Moreover, energy efficiency is a critical consideration in

massive IoT networks due to the devices being powered by
limited-energy batteries [20]. To address this in [21], IoT
devices compress collected medical data before transmission
to the cloud, impacting the consumption of IoT devices.
The transmitted data are then restored at the cloud using

machine learning techniques without degrading the quality
of the original data. Lee et al. [22] propose an approach to
adaptively control the transmission period of IoT devices,
extending the lifespan of devices while maintaining high data
quality by adjusting the transmission period concerning the
fluctuation of monitored values at IoT devices.

Recent studies on efficient energy consumption of IoT
devices revolve around the network access of uplink IoT traf-
fic [23].With the development of grant-free transmission sup-
porting sporadic generation of short packets, Azari et al. [24]
conduct a comparative analysis on grant-free and traditional
grant-based transmission in terms of reliability and energy
consumption. They investigate traffic load regimes at which
IoT devices benefit from grant-free transmission in terms of
energy efficiency. Additionally, efforts on further reducing
the energy consumed from the repetitive transmissions
in grant-free transmission by controlling the number of
repetitions are being developedwhile satisfying the reliability
requirements [25], [26].

Furthermore, addressing the significant DL/UL traffic
volume imbalance is crucial in massive IoT networks.
While conventional networks explore dynamic TDDmanage-
ment [27], [28], [29], [30], [31], the unique context ofmassive
IoT networks creates a notable research gap, exacerbated
by significant DL and UL traffic differences. This paper
contributes by implementing a dynamic TDD scheme under
grant-free transmission, an additional consideration that
aims to facilitate transmission in massive IoT environments.
The proposed approach optimizes resource utilization and
enhances overall network efficiency, specifically addressing
the challenge of achieving a more balanced DL/UL traffic
flow in massive IoT environments.

B. DYNAMIC TDD
Table 1 presents brief descriptions of considerations
addressed in existing works concerning dynamic TDD.
Additionally, the table incorporates our proposed work,
aiming to distinguish various considerations from previous
studies that predominantly cater to conventional networks
serving human-centric devices, to recent investigations on
TDD networks supporting MTDs.

To date, researchers have been actively working on
optimizing TDD configurations in HTC networks, [32],
[33], [34], [35], [36], [37], [38]. In [32], efforts focus on
maximizing the overall DL/UL weighted sum rate in a multi-
cell environment. This involves adjusting power allocation,
scheduling, and TDD configuration. Analytical solutions
assume DL/UL resource demands are uniform, finding
a Nash equilibrium between base stations’ maximization
issues. Meanwhile, [33], [34] employ a Poisson point process
to model traffic generation, resulting in analytical solutions
that enhance dynamic TDD optimization by mitigating
interference between base stations and increase overall
system throughput.

However, the TDD configurations in the aforementioned
studies are determined based on packet arrival rates of all
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TABLE 1. Comparisons of existing works in dynamic TDD.

users rather than the actual occurrence of DL/UL traffic
demands at the base station. Ding et al. [35] explore
two different schemes, one allocating DL/UL subframes
proportional to packet arrival rates and the other proportional
to the actual DL/UL traffic demands. Despite achieving
the same average allocation of DL/UL subframes, the
latter, considering actual traffic generation, exhibits higher
resource utilization. However, this approach demands rapid
adjustment of TDD configuration at the end of every TDD
frame in response to DL/UL traffic variations. In response
to this issue, [36] introduces a dynamic TDD control
system, employing the DRL approach. The DRL agents
at base stations operate within a coordinated single-leader
multi-follower Stackelberg game framework to dynamically
determine TDD configurations, adhering to the imposed time
constraints.

Furthermore, the integration of traffic demand estimation
under the DRL framework is explored by [37] and [38]
to enhance TDD configuration adjustment. Addressing user
mobility in a heterogeneous network, Tang et al. [37] predict
variations in DL/UL traffic demands for users moving
between adjacent cells. Simultaneously, Esswie et al. [38]
estimate UL traffic demand based on the retransmission
probability for the Hybrid Automatic Repeat and Request
(HARQ) scheme. Consequently, in a massive Internet
of Things (IoT) network, the considerations of traffic
demand estimation and the DRL framework are imperative
for efficient DL/UL resource management and practical
deployment.

While previous studies primarily focus on TDD deploy-
ment within human-type communication networks, several
studies introduced in [39] shift their attention to TDD deploy-
ment within massive IoT networks where UL transmissions
are dominated by the short and sporadic traffic generated by
IoT devices. For instance, in [40], the study emphasizes the
characteristics of IoT traffic when dynamically determining
TDD configurations. This involves leveraging actual IoT
traffic data collected at each access point, where DRL-based
agents benefit from a training dataset composed of this real
IoT data.

In contrast, Fukue et al. [41] highlight the energy
constraints of IoT devices as they address the trade-off
between system throughput and DL/UL traffic fairness

in TDD management of IoT networks. Lee et al. [42],
[43] conduct a comprehensive study on the coexis-
tence of HTC and MTC, exploring power allocation in
beamforming under dynamic TDD management. Various
constraints, such as energy consumption and QoS, are
considered.

While contemporary studies on TDD management in
massive IoT networks actively account for characteristics
and requirements posed by IoT devices, it is crucial not
to overlook potential applications anticipated within the
IoT network itself. These applications may differ from the
conventional system network primarily focused on providing
HTC services [44]. Therefore, for the comprehensive man-
agement of TDD in massive IoT networks, it is essential
to consider the influence of network-specific transmission
types, including grant-free transmission [45].

C. GRANT-FREE TRANSMISSION AND RRC CONNECTION
CONTROL
Numerous studies have contributed to the understanding of
grant-free transmission and its implications on reliability
and efficiency. Jacobsen et al. [46] conducted an evaluation
in a large urban macro network scenario, highlighting
the superior performance of grant-free transmission in
terms of lower latency and successful packet delivery
compared to grant-based schemes. Berardinelli et al. [47]
delved into the outage probability of different variations
of grant-free OFDMA transmission. Notably, the blind
scheme, known as K-repetition [48], demonstrated the lowest
outage probability with sufficient frequency bandwidth, yet
exhibited performance degradation with increasing packet
arrival rates due to frequent collisions. In this regard,
Kim et al. [49] proposed an analytical framework for
grant-free multiple access protocols in the IoT scenario with
sporadic traffic. Their results underscored that, with the
same multi-packet reception capability and resource blocks,
a higher multi-packet reception capability showed a greater
influence on increasing throughput and reducing latency
by alleviating the packet collision issues in the grant-free
transmission.

Furthermore, to support a higher number of devices in
massive IoT networks, the implementation of grant-free
transmission in non-orthogonal multiple access (NOMA)
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FIGURE 1. Proposed system model in a single-cell massive IoT network environment.

[50], [51] has been explored. From a theoretical perspective,
NOMA gains higher capacity than OFDMA, by over-
loading non-orthogonal resource allocation. In the context
of grant-free NOMA systems, advancements were made
with dynamic compressive sensing [52], where block error
rates in grant-free NOMA systems are lower compared to
conventional CS. Additionally, Zhang et al. [53] introduced
a DRL-based grant-free NOMA algorithm for subchannel
and discrete power level selection, achieving highly suc-
cessful access. However, computational resource constraints
poses high challenges in applying NOMA to massive IoT
networks.

On the other hand, to handle the challenge posed by a
substantial number of devices in implementing grant-free
transmission under OFDMA within a massive IoT network,
the management of RRC connection control emerges as a
practical solution [54]. For instance, Han et al. [55] introduce
an RRC assignment method aimed at controlling random
access collisions in the context of massive machine-type
communication. In the study by Leyva et al. [56], a novel
access class barring approach based on RRC signaling is
proposed to enhance network access performance during

periods of high congestion in machine-type communications.
Addressing energy consumption concerns, the regulation of
device transmissions is achieved by selectively defining RRC
states based on their traffic generation, thereby enhancing
energy efficiency [57]. In light of these considerations, this
paper also leverages RRC connection control to facilitate
grant-free transmission based on OFDMA in massive IoT
networks, offering increased successful transmissions and
reduced energy consumption aligned with the demands of
massive IoT deployments.

III. SYSTEM MODEL
A. NETWORK MODEL
The proposed system model, depicted in Fig. 1, delineates
our approach within a single-cell massive IoT network
under TDD mode for DL/UL transmissions. A proportional
fair scheduling algorithm, specifically discussed in [38]
and [36], is adopted for DL resource scheduling to fairly
transmit DL packets across a myriad of IoT devices,
without bias towards any specific device [58]. Conversely,
for UL resource scheduling, the system employs grant-
free transmission, specifically Transmission Without Grant
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(TWG) of Type1, as defined in New Radio (NR) Release
17 [59]. This strategy accommodates the sporadic gener-
ation of UL packets, benefiting from reduced contention
for resource blocks among a moderate number of IoT
devices [60].

In the proposed scheme, depicted in the bottom right of
Fig. 1, the base station transmits a RRC configuration signal
to IoT devices. This signal encapsulates TDD configurations
and RRC states of each device, signifying either RRC IDLE
or RRCCONNECTED. For simplicity, we denote RRC states
in this paper as IDLE or CONNECTED. CONNECTED IoT
devices transmit UL data based on the predetermined TDD
configuration structure. Upon a successful UL transmission,
the base station issues a feedback signal, acknowledging the
successful transmission. This process repeats in subsequent
periods, with new RRC configuration signals issued to IoT
devices.

Our approach integrates TDD configuration selection and
RRC connection control modules to manage fluctuating
DL/UL traffic demands in a single-cell massive IoT envi-
ronment. Specifically, DRL-driven TDD and RRC agents
jointly determine TDD configurations and RRC states,
respectively, as illustrated in Fig. 1. The agents update their
states through information exchange and observations within
the massive IoT network. The TDD agent determines the
TDD configuration index, representing the ratio of DL/UL
subframes in the determined configuration. Simultaneously,
the RRC agent adjusts the number of CONNECTED IoT
devices and randomly defines their RRC states. These
parameters are then included in the RRC configuration signal
transmitted to IoT devices.

Each period comprises 10 time slots with a 1ms duration,
allowing for the allocation of DL or UL subframes. The
total number of DL/UL subframes in each period consistently
equals 10. The RRC configuration signal is dynamically
modified in every period through joint management by
the TDD and RRC agents, aiming to address sporadic
DL/UL traffic generation. The objective is to minimize the
difference in the successful transmission ratio of DL/UL
traffic and enhance the number of successful UL transmis-
sions. This adaptive approach underscores the efficiency
and adaptability of our proposed system model in address-
ing the unique challenges of a single-cell massive IoT
network.

B. TRAFFIC DEMAND MODEL
The system’s traffic demand model, a pivotal element of our
proposed approach, quantifies the DL/UL traffic demands
by expressing the total number of DL/UL packets slated
for transmission. In alignment with the sporadic packet
generation characteristic of IoT devices [47], [49], [61],
wemodel the packet generation process with a Poisson arrival
rate. The probabilities of DL/UL packet arrivals, denoted as
qDL and qUL , can be computed, considering that up to one
DL/UL packet can be generated for each IoT device during

each period Tperiod :

qDL = 1− e−λDLTperiod (1)

and

qUL = 1− e−λULTperiod , (2)

where λDL and λUL are the DL/UL packet arrival rates,
respectively. Packets are generated at the commencement of
each period and transmitted to the base station or IoT devices
based on their resource scheduling algorithms. To simplify
the model, we assume that packets not successfully trans-
mitted in one period are reserved until the next period for
retransmission [62].

The DL/UL traffic demands at period t , represented as
QDL (t) and QUL (t), respectively, can be expressed as the
sum of packets reserved from the previous period and the
packets generated at the start of period t . Specifically, for
QDL (t), the value cannot surpass the base station’s buffer
size, denoted as QDL,max, such as QDL (t) ≤ QDL,max for t ∈
T , where T signifies a set of periods. Moreover, considering
the limited buffer size of IoT devices [63], each device can
store up to one packet, ensuring that the maximum UL traffic
demand does not exceed the number of UL IoT devices, i.e.,
QUL (t) ≤ NUL for t ∈ T , where NUL is the number of UL
IoT devices.

Dynamic TDD, as motivated by [26], seeks to align DL/UL
subframe resources with variations in traffic demands.
Transmission Success Ratios (TSRs) for DL/UL at period t ,
denoted as �DL (t) and �UL (t), respectively, are defined as
follows:

�DL (t) =
PDL (t)
QDL (t)

(3)

and

�UL (t) =
PUL (t)
QUL (t)

(4)

where PDL (t) and PUL (t) represent the number of suc-
cessfully transmitted DL/UL packets during period t .
Consequently, �DL (t) and �UL (t) delineate the ratios of
successfully transmitted packets to the total demands at
period t . These values guide the adjustment of DL/UL
subframe resource allocation through TDD configuration
selection. For instance, a lower �DL (t) compared to �UL (t)
can prompt the selection of a TDD configuration with
more DL subframe resources to increase �DL (t + 1) in the
subsequent period.

C. DOWNLINK AND UPLINK TRANSMISSION
The DL resource scheduling within our proposed system
model is underpinned by a user-prioritized proportional fair
algorithm, as detailed in [64]. The scheduling prioritization
coefficient for each DL is expressed as:

P =
Dα

Rβ
(5)
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Here, α and β are set as 1 in [64], and D and R denote the
current achievable data rate and the historical average data
rate for the corresponding IoT device, respectively. The data
rate for each IoT device in single-cell DL transmission is
modeled using the Signal-to-Noise Ratio (SNR), impacted
by the physical location of the device in relation to the base
station and the noise parameter. The prioritization coefficient
is influenced by the noise parameter of additive white
Gaussian noise [36], [37], [38], considering that data rates
are subject to various random processes of environmental
noise. Consequently, DL resource scheduling prioritizes
devices with lower Gaussian noise values, assuming that the
scheduled DL packets are successfully transmitted, given the
scheduling occurs under stabilized throughput conditions for
devices [65].
In terms of UL resource scheduling, we implement

K -repetition grant-free transmission from [47] in the TWG
framework. Here, K denotes the number of repetitive trans-
missions of a single packet for each device, corresponding
to the number of UL subframes in one TDD frame. Upon
UL packet generation, IoT devices in the CONNECTED
state transmit packets to the base station using K -repetition
grant-free transmission. Successful UL transmission is
acknowledged if the base station correctly receives any
of the repetitive transmissions of a single packet, whereas
unsuccessful transmission occurs when all transmissions
fail due to packet collision. Although high multi-packet
reception capability at the base station, as detailed in [49],
can alleviate packet collisions, it cannot fully overcome them.
Consequently, we deploy grant-free OFDMA transmission,
where the multi-packet reception capability is conservatively
set, ensuring that collisions between any number of packets
induce packet failure at the base station. This strategic
deployment enhances the robustness of UL transmission in
the face of packet collisions, contributing to the reliability of
our proposed system model.

D. TDD CONFIGURATION SELECTION
The primary objective of TDD configuration selection is
to align the DL/UL TSRs as defined in (3) and (4). This
alignment, aimed at reducing the disparity between DL/UL
TSRs, enhances fairness in delivering services to DL/UL IoT
devices, especially in the face of fluctuating traffic patterns.
In massive IoT networks, the base station can measure both
the number of successfully transmitted DL/UL packets and
the DL traffic demand. However, unlike the UL resource
scheduling outlined in [36], the actual amount of UL traffic
demand is treated as an unknown factor due to practical
considerations.

In [38], the estimation of UL traffic demand involves
multiplying the reciprocal of the average block error rate by
the number of retransmitted packets. Similarly, an estimation
based on the success probability distribution of UL transmis-
sion is considered, where the success probability hinges on
the failure probability due to packet collision. For example,

with Nc shared resource blocks capable of carrying a single
packet each and NT simultaneously transmitting devices, the
probabilities of packet collision, pc (NT , k), and failure due
to collision, pf (NT , k), are calculated as:

pc (NT , k) =
(
NT
k

)
(Nc − 1)NT−1−k

NNT−1
c

, (6)

and

pf (NT , k) = pc (NT , k) 1 (k < δ) , (7)

where δ refers to the multi-packet reception capability of
a base station, set to 2 to indicate that any collision with
another packet results in packet failure [66]. The total failure
probability, pf (NT ), is obtained by summing pf (NT , k) over
k from 0 to NT − 1, which can be expressed as

pf (NT ) =

NT−1∑
k=0

pf (NT , k) . (8)

Concerning K -repetition grant-free transmission, where
the failure probability at each time slot in a TDD frame
is independent, the probability of transmission failure for
a single packet at every time slot in a TDD frame is
computed by squaring pf (NT ) and multiplying it by the
number of UL subframes in a TDD frame, fUL . Taking
this into consideration, the success probability is given
by 1 − pf (NT )fUL . This success probability is identically
independently distributed (IID) for each IoT device, allowing
the expected number of successfully transmitted packets to be
calculated by multiplying the number of transmitting devices
with the success probability.

The number of transmitting IoT devices is approximated to
find the value at which the expected number of successfully
transmitted packets is closest to the actual number. Based on
the estimated number of transmitting IoT devices, ÑT , the
estimated amount of UL traffic demand, Q̃UL , is computed as

ÑT = argmin
N

∣∣∣Na − N (
1− pf (N )fUL

)∣∣∣ (9)

and

Q̃UL =
ÑT
Ns

NUL (10)

where Na is the number of successfully received UL packets
and Ns is that of the CONNECTED IoT devices. The solution
in (9) is determined by an exhaustive search method, with
computational overhead reduced by skipping rounds where
the number of successfully received packets exceeds that of
transmitting devices. As the solution represents the estimated
number of transmitting IoT devices from randomly selected
devices, the UL traffic demand can be estimated in proportion
to the total number of UL IoT devices.

By adjusting the TDD configuration index at period t , ct ,
the number of successful DL/UL transmissions, PUL (t) and
PDL (t), can be controlled to reduce the difference of DL/UL
TSRs. Therefore, based on the estimated value of Q̃UL and
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measured values of QDL , the optimization problem of TDD
configuration selection is formulated as Problem 1:

minimize
C

∑
t∈T

∣∣∣�DL (t)− �̃UL (t)
∣∣∣

subject to QDL (t) ≤ QDL,max

Q̃DL (t) ≤ QUL,max,

over a set of TDD configuration indices, C = {c1, c2, · · · ,
cT }, where �̃UL (t) is defined as PUL (t)

Q̃UL (t)
so that the objective

function approximates the summation of the difference
between DL/UL TSRs over a set of periods, T . To achieve
high fairness in terms of DL/UL transmission in massive
IoT networks, it is necessary to minimize the summation
with respect to the varying amount of DL/UL demands.
The constraints indicate the maximum amount of DL/UL
demands that can be accommodated, such as QDL,max and
QUL,max, respectively.

E. RRC CONNECTION CONTROL
In the context of the determined TDD configuration from the
TDD configuration selection, the focus of RRC connection
control is to maximize the number of successful UL packets
through the adjustment of the RRC state for each IoT
device. Defining the RRC state for each IoT device facilitates
control over the maximum number of UL transmissions,
thereby mitigating packet collisions and increasing the
overall success of UL transmissions. The RRC states and the
success of UL transmissions for IoT devices are denoted as
a connection vector, α (t), and an observation vector, β (t),
respectively:

α (t) =
(
α1 (t) , α2 (t) , · · · , αNUL (t)

)
,

αi (t) =

{
1, if RRC state of i-th device is CONNECTED
0, if RRC state of i-th device is IDLE

β (t) =
(
β1 (t) , β2 (t) , · · · , βNUL (t)

)
,

βi (t) =

{
1, if packet from i-th device is successful
0, otherwise.

RRC connection control aims to determine the number
of CONNECTED IoT devices at a given period t , denoted
as Ns (t). Subsequently, the CONNECTED IoT devices are
randomly selected from NUL devices, ensuring that the sum
of all elements in α (t) equals Ns (t). Once a packet arrives,
devices in the CONNECTED state transmit their packets to
the base station, and the transmission results are reflected
in β (t).
Due to the unknown packet arrival rate of each IoT

device at the base station and the variability in the expected
number of successful packets based on the number of
transmitting IoT devices and UL subframes, RRC connection
control adjusts the number of CONNECTED IoT devices
at each period t , Ns (t), to effectively control the number
of successfully transmitted packets denoted by β (t). Thus,
the optimization problem for RRC connection control is

formulated as Problem 2:

maximize
N

∑
t∈T

NUL∑
i=1

βi (t)

subject to Ns (t) =
NUL∑
i=1

αi (t) .

over a set of numbers of CONNECTED IoT devices,
N = {Ns (1) ,Ns (2) , · · · ,Ns (T )}. The objective function in
Problem 2 represents the number of successful UL packets at
each period t as the summation of all elements of β (t), and
it is accumulated over the set of periods, T . The constraint
ensures that the number of randomly selected CONNECTED
IoT devices at period t equals Ns (t).

IV. DRL-BASED ALGORITHM DESIGN
In addressing both Problem 1 and Problem 2, decisions
regarding TDD configuration selection and RRC connection
control must be made at each period, where choices made
in every period influence the subsequent periods. Notably,
the search space for Problem 1 grows in proportion to the
base station’s buffer size and the quantity of IoT devices,
while Problem 2’s search space exhibits exponential growth
concerning the number of IoT devices. Consequently, the
presence of a large number of IoT devices in massive IoT
networks introduces challenges in finding solutions within
this expansive search space.
To tackle this challenge, we propose the utilization of a

DRL algorithm. Specifically, our design involves training
the TDD and RRC agents using the DRL algorithm to
dynamically determine TDD configurations at the base
station and manage RRC states for UL IoT devices,
respectively. In this section, we articulate the definition
of states, actions, and rewards for both the TDD and
RRC agents. Furthermore, we elucidate the application
of the proximal policy optimization (PPO) algorithm, the
method through which these agents undergo training. This
strategic approach aims to enhance the adaptability and
decision-making capabilities of the TDD and RRC agents
within the context of large-scale IoT networks.

A. TDD AGENT DESIGN
To facilitate TDD configuration selection, the TDD agent
engages in determining each configuration at the onset
of every period, immediately following the conclusion of
the preceding TDD frame. Guided by the latest DL/UL
traffic demands, the TDD agent makes decisions regarding
the number of DL/UL subframes in the upcoming TDD
frame. Consequently, the base station observes the count
of successfully transmitted DL/UL packets, enabling the
computation of the current TSRs for DL/UL. In the following,
we elaborate on the TDD agent’s design, specifically focusing
on the definition of its state space, action space, and reward
function:
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• State space: When selecting the TDD configuration at
period t , consideration is given to information regarding
the current DL/UL traffic demands, influenced by prior
TDD configuration selections. The state of the TDD
agent is represented as follows:

sςt =
{
sςt,1, s

ς
t,2, s

ς
t,3

}
where

sςt,1 = TDD configuration index at period t − 1,

sςt,2 =
QDL (t)

QDL (t)+ Q̃UL (t − 1)
,

sςt,3 =
Q̃UL (t − 1)

QDL (t)+ Q̃UL (t − 1)
.

where sςt,2 and sςt,3 represent the demand ratios of the
most recent DL/UL transmissions, respectively.

• Action space: The TDD agent, in its role of selecting
random or specific ratios of DL and UL subframes to
either explore or maximize returns, defines the number
of DL and UL subframes within a range of 1 to 9, which
sums up to 10. Given this finite set, the selection of DL
and UL subframe ratios is expressed as:

aς
t = TDD configuration index at period t,

where different TDD configuration indices indicate
distinct ratios of DL and UL subframes.

• Reward function: Under the state, sςt , when the action
aς
t is implemented, the TDD agent receives a reward rς

t .
Given the objective of minimizing the disparity between
TSRs of DL/UL, the reward is formulated as:

rς
t = −Cconst

∣∣∣∣PDL (t)
QDL (t)

−
PUL (t)

Q̃UL (t)

∣∣∣∣ .
The inclusion of the negative sign is intended for
leveraging a reinforcement learning algorithm that
maximizes return. Additionally, Cconst is multiplied to
offset the small value of the ratio difference.

B. RRC AGENT DESIGN
Considering the success probability detailed in section III-D,
the number of successfully received packets hinges on both
the quantity of transmitting IoT devices and the number of
UL subframes in the TDD configuration. Notably, the packet
arrival rate of each IoT device remains undisclosed to the
base station. Consequently, the RRC agent seeks to optimize
the number of successful UL packets by acquiring insights
into the correlation between the number of CONNECTED
IoT devices and successful UL transmissions. The following
outlines the state space, action space, and reward function for
the RRC agent:

• State space: Leveraging historical data encompassing
the count of CONNECTED IoT devices and the number
of successfully transmitted packets, the RRC agent
deduces the optimal number of CONNECTED devices
to maximize successful UL transmissions within a given

TDD configuration. Accordingly, the state of the RRC
agent is articulated as:

sξt =
{
sξt,1, s

ξ
t,2, s

ξ
t,3

}
where

sξt,1 = TDD configuration index at period t,

sξt,2 =

∑NUL
i=1 αi (t − 1)

NUL
,

sξt,3 =

∑NUL
i=1 βi (t − 1)

NUL
.

where sξt,2 and sξt,3 denote the ratios of CONNECTED
IoT devices and successful UL packets, respectively,
concerning the total number of UL IoT devices at
period t .

• Action space: The RRC agent, in choosing either a
random or a specific number of CONNECTED IoT
devices to explore or maximize returns, respectively,
defines its action as:

aξ
t = Ns (t) .

Based on the determined number of CONNECTED
IoT devices, the values of each element in the con-
nection vector, α (t), are determined as explained in
section III-E.

• Reward function: When the action aξ
t is implemented

under the state, sξt ,, the RRC agent receives a reward
rξ
t . Aimed at maximizing the number of successful UL
packets, the reward is expressed as:

rξ
t (t) =

NUL∑
i=1

βi (t) .

C. DRL TRAINING METHODOLOGY
In this study, we employ the Actor-Critic method [67],
[68] for training both the TDD and RRC agent, widely
applied across diverse domains for dynamic decision-making
processes. Among the policy optimization algorithms within
the Actor-Critic framework [69], [70], [71], [72] such as
DPG, TRPO, A2C, and PPO, we opt for the PPO algorithm
to maximize the agents’ objectives. PPO stands out due to its
ease of implementation, encompassing hyperparameter tun-
ing and data sampling, and its ability to provide stable updates
as the policy gradually deviates from the previous one. This
stability enables the RRC agent to consistently enhance its
return across various TDD configurations, enabling the TDD
agent to effectively maximize its return [73]. Consequently,
PPO is employed to train both the TDD and RRC agents in
optimizing their policies.

The TDD agent comprises an Actor network,
πς

(
aς
t | s

ς
t ; θ

ς
a
)
, and a Critic network, V ς

(
sςt ; θ

ς
v
)
, rep-

resenting the policy network with parameters θ
ς
a and

an estimated value function with parameters θ
ς
v , respec-

tively. Similarly, for the RRC agent, its Actor network,
π ξ

(
aξ
t | s

ξ
t ; θ

ξ
a

)
, and Critic network, V ξ

(
sξt ; θ

ξ
v

)
, mirror
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FIGURE 2. The framework of DRL driven joint management of TDD agent and RRC agent.

FIGURE 3. Structure of TDD agent and RRC agent.

those of the TDD agent. An overview of the training process
for both agents within the DRL framework in a massive IoT
network is presented in Fig. 2. The parameter settings of the
TDD agent and RRC agent are depicted in Fig. 3 with their
detailed training procedure outlined in Algorithm 1.

The training initiates with the initialization of parameters
for the Actor and Critic networks for both the TDD and
RRC agents. Concurrently, trajectory sets, Dς and Dξ , are
initialized to store training data (lines 1-2 in Algorithm 1).
At each period’s inception, the base station observes DL/UL
traffic demands, QDL (t) and Q̃UL (t − 1), respectively.
Subsequently, the TDD policy network, πς

(
·|sςt ; θ

ς
a
)
, deter-

mines the action, aς
t , based on the state, sςt (lines 5-7 in

Algorithm 1). The determined TDD configuration index,
aς
t , is then fed into the RRC policy network, π ξ

(
·|sξt ; θ

ξ
a

)
,

to obtain the action, aξ
t . The value of aξ

t determines the
connection vector, α (t) (lines 8-10 in Algorithm 1). At the
period’s conclusion, the base station observes the number
of successfully transmitted DL packets, PDL (t), and UL
packets, PUL (t). It estimates the UL traffic demand, Q̃UL (t),
and computes rewards, rς

t and rξ
t , storing experiences,(

sςt , a
ς
t , r

ς
t
)
and

(
sξt , a

ξ
t , r

ξ
t

)
in trajectory sets, Dς and Dξ ,

respectively (lines 11-14 in Algorithm 1).
At the end of each episode, a batch of trajectories,

composed of
(
sξt , a

ξ
t , s

ξ
t+1, r

ξ
t

)
, is randomly sampled from

the trajectory set, Dξ , to serve as a training set. These
trajectories update the parameters, θ

ξ
a and θ

ξ
v , of the RRC
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Algorithm 1 DRL Training Procedure

1: Randomly initialize TDD agent with θ
ς
a,0 and θ

ς
v,0, and

RRC agent with θ
ξ
a,0 and θ

ξ
v,0

2: Initialize trajectory sets Dς and Dξ

3: for each episode ∈ {1, 2, · · · , I } do
4: for each period t ∈ {1, 2, · · · , J} do
5: Observe traffic demands QDL (t) and Q̃UL (t − 1)
6: sςt ←

{
sςt,1, s

ς
t,2, s

ς
t,3

}
7: Get action aς

t based on πς
(
·|sςt ; θ

ς
a
)

8: sξt ←
{
sξt,1, s

ξ
t,2, s

ξ
t,3

}
9: Get action aξ

t based on π ξ
(
·|sξt ; θ

ξ
a

)
10: Get connection vector α (t)
11: Observe transmission success PDL (t) and PUL (t)
12: Compute UL traffic demand estimate Q̃UL (t)
13: Compute reward rς

t and rξ
t

14: Store
(
sςt , a

ς
t , r

ς
t
)
in Dς ,

and
(
sξt , a

ξ
t , r

ξ
t

)
in Dξ

15: end for
16: for m ∈

{
1, 2, · · · ,M ξ

}
do

17: Sample a batch of trajectories consisting of(
sξt , a

ξ
t , s

ξ
t+1, r

ξ
t

)
from Dξ

18: Update θ
ξ
a and θ

ξ
v using PPO

19: end for
20: Clear trajectory set Dξ

21: if episode%R == 0 then
22: for m ∈ {1, 2, · · · ,Mς } do
23: Sample a batch of trajectories consisting of(

sςt , a
ς
t , s

ς
t+1, r

ς
t
)
from Dς

24: Update θ
ς
a and θ

ς
v using PPO

25: end for
26: Clear trajectory set Dς

27: end if
28: end for

agent using PPO. This process repeatsM ξ times, after which
Dξ is cleared for the subsequent episode (lines 16-19 in
Algorithm 1). Similarly, at every R-th episode’s conclusion,
the parameters of the TDD agent, θ

ς
a and θ

ς
v , are updated

using a batch of
(
sςt , a

ς
t , s

ς
t+1, r

ς
t
)
sampled from the trajectory

set, Dς . After Mς rounds of update, Dς is cleared for the
next round of updates (lines 21-26 in Algorithm 1). Notably,
by setting R to a value larger than 1, the parameters of the
RRC agent undergo more frequent updates compared to those
of the TDD agent. This strategic approach enables the RRC
agent to maximize successful UL transmissions across varied
TDD configurations and intermittent UL traffic occurrences,
leveraging the TDD agent to balance DL/UL TSRs.

V. PERFORMANCE EVALUATIONS
In this section, we conduct a comprehensive evaluation of the
proposed algorithm, comparing its performance against three
distinct schemes: Static TDD, Dynamic TDD, and MinMax,

TABLE 2. Simulation parameters and values.

TABLE 3. Metric acronyms.

within a simulated DL/UL traffic generation environment.
To assess the efficacy of dynamically allocating DL/UL
subframes in response to actual traffic patterns, we contrast
our proposed algorithmwith Static TDD, where the allocation
of DL/UL subframes remains fixed and is proportionate to the
average DL/UL traffic generation [35].
Furthermore, for an in-depth performance evaluation of

RRC connection control in the context of grant-free OFDM
transmission within our proposed algorithm, we introduce
Dynamic TDD. This scheme dynamically manages TDD
configurations to ensure a balanced DL/UL TSRs. Addition-
ally, we validate the performance of the proposed scheme
in comparison to MinMax, which adopts the approaches
proposed in [38] and [41]. The method in these stud-
ies aims to maximize the overall system throughput in
allocating resources to each device and simultaneously
select TDD configurations that minimize the DL/UL traffic
imbalance.

Correspondingly, in our application of MinMax, we define
the RRC states of all UL devices to maximize the number of
received packets for each TDD configuration. Subsequently,
we select the TDD configuration that minimizes the differ-
ence between DL/UL TSRs. It is noteworthy that, while the
overall amount of UL traffic demand is presumed to be known
at the base station in both Static TDD and Dynamic TDD,
the UL traffic demand of each device is known in MinMax,
forming a basis for our comparative analyses.

A. SIMULATION SETTINGS
Based on the transmission records of IoT devices obtained
from a prominent Finnish mobile network operator [11],
the average DL/UL throughputs for each IoT device were
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FIGURE 4. Training progress with respect to DL ratio (top) and UL ratio (bottom).

FIGURE 5. Actual and estimated UL ratio of the proposed algorithm.

observed to vary between 4 to 20 and 12 to 41 bytes/sec,
respectively, over a 2-year period from September 2016 to
August 2018. Considering the typical packet size of IoT
devices, as reported by Nokia Networks [74], to be less
than 32 bytes, our experimental setup encompasses a range
of UL packet arrival rates from 0.1 to 1.5 packets/sec.
Concurrently, we maintain a constant DL packet arrival rate
of 0.5 packets/sec for each IoT device. The overall simulation
parameters and values used for this study are summarized
in Table 2. Additionally, the training parameters I , J , Mς ,
M ξ and R in Algorithm 1 are consistently set to 500, 100,
50, 150 and 10, respectively, across all variations in UL
packet arrival rates, ensuring a standardized foundation for
our experimentation.

B. PERFORMANCE INDICATORS
The primary performance assessments in this study are cen-
tered around TSRD and TRU, as defined by Ding et al. [35].
TSRD, representing the absolute difference between DL and
UL TSRs, is categorized into actual TSRD and estimated
TSRD. Actual TSRD, denoted as Actual TSRD (t), is the
absolute difference between DL TSR, �DL (t), and UL
TSR, �UL (t). Conversely, estimated TSRD, labeled as
Estimated TSRD (t), quantifies the difference between DL
TSR, �DL (t), and estimated UL TSR, �̃UL (t). Notably, the
estimated TSRD incorporates the use of the estimated UL
TSR.

The TRU metric, which signifies the multiplication of
subframe allocation ratios with their respective utilization,
is defined at each period t . Given the unique UL resource
scheduling in this paper, we adjust the computation of TRU
to account for the distinctions in DL and UL resource
scheduling in comparison to the definition provided by
Ding et al. [35]. The acronyms associated with these metrics
are consolidated in Table 3, and the following elaborates on
each metric:

• TSRD: TSRD (t) expresses the absolute difference
between DL and UL TSRs at period t . It comprises
two components: Actual TSRD and Estimated TSRD,
calculated as follows:

Actual TSRD (t) = |�DL (t)−�UL (t)| (11)
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and

Estimated TSRD (t) =
∣∣∣�DL (t)− �̃UL (t)

∣∣∣ . (12)

• TRU: TRU (t) is the product of the subframe allocation
ratio and its utilization at period t . The utilization is
computed by the ratio of the number of successfully
transmitted packets to the maximum number of suc-
cessfully transmittable packets, given the number of
resource blocks and the number of allocated subframes.
Two distinct TRUs are defined: DL TRU and UL
TRU, representing TRUs for DL and UL transmissions,
respectively:

DL TRU (t) =
fDL (t)
Tperiod

PDL (t)
PDL,max (Nc, fDL (t))

(13)

and

UL TRU (t) =
fUL (t)
Tperiod

PUL (t)
PUL,max (Nc, fUL (t))

. (14)

Here, PDL,max (Nc, fDL (t)) and PUL,max (Nc, fUL (t))
represent the maximum numbers of successfully trans-
mittable DL and UL packets, respectively, considering
the given number of resource blocks and the duration
of DL and UL subframes at period t as Nc, fDL (t), and
fUL (t).

C. TRAINING RESULT
In Fig. 4, we present a comparative analysis of the DL/UL
TSRs across three schemes during the training process.
Notably, while Static TDD requires no explicit training,
its results are included for comparison with schemes that
undergo training. The training processes are conducted under
various settings of λUL ranging from 0.1 to 1.5. For clarity,
the results are showcased for values of λUL , specifically 0.1,
0.3, 0.5, 1, and 1.5.

In Fig.4 (a) and Fig.4 (d), representing Static TDD, the
DL/UL TSRs exhibit a rough balance only at λUL = 0.1,
where low packet generation leads to the successful transmis-
sion of all generated packets. However, with increasing λUL ,
UL TSR approaches zero while DL TSR remains relatively
high, even at λUL = 1.5, which is three times higher than
λDL . Consequently, Static TDD encounters challenges in
maintaining DL/UL TSR balance.

For Dynamic TDD, as shown in Fig.4 (b) and Fig.4 (e),
DL/UL TSRs tend to sustain similar values as λUL increases
compared to Static TDD. At low λUL , DL/UL TSRs
approach unity. With rising λUL , UL TSR experiences a rapid
decline due to an increasing number of packet collisions,
resulting in a reduced count of successful UL transmissions.
Consequently, the number of DL transmissions decreases to
align with the diminished UL TSR by allocating a reduced
number of DL subframes.

Contrastingly, the proposed algorithm, depicted in Fig.4 (c)
and Fig.4 (f), showcases a less drastic decrease in DL/UL
TSRs as λUL increases. Particularly, at λUL three times higher
than λDL , DL/UL TSRs converge at a substantially higher

value compared to Dynamic TDD. The RRC connection con-
trol, optimizing the RRC states of IoT devices to maximize
successful UL transmissions, contributes to achieving higher
DL/UL TSRs compared to previous cases.

In addition, Fig. 5 presents additional results illustrating
UL TSR based on actual and estimated UL traffic demand,
represented by solid and square lines, respectively. The
estimated value closely aligns with the actual UL TSR,
indicating the effectiveness of the proposed algorithm in
approximating real-time UL traffic demand.

D. PERFORMANCE COMPARISON FOR TSRD
TSRD measures the fairness in managing DL/UL traffic
demands, which is defined as the difference between DL/UL
TSRs. By minimizing TSRD, the primary objective of this
study, the network can properly provide unbiased service
toward both DL/UL transmissions. In Fig.6, the performance
of each scheme is evaluated in terms of TSRD across a
range of λUL values from 0.1 to 1.5. UL TSR, shown in
Fig.6 (a), Fig.6 (b) and Fig.6 (d), is calculated based on the
actual amount of UL traffic demand, denoted as the actual
UL TSR in Fig.6 (c). Additionally, the estimated UL TSR
in Fig. 6 (c) is computed based on the estimated amount of
UL traffic demand. Actual TSRD and estimated TSRD are
obtained from the actual DL/UL TSRs and estimated UL
TSR, following (11) and (12), respectively.

For Static TDD in Fig. 6 (a), nearly all DL/UL traffic
demands are successfully transmitted when λUL is 0.1,
resulting in DL/UL TSRs close to one and minimal TSRD.
However, with increasing λUL , the number of successful
UL packets rapidly declines due to packet collisions.
Consequently, TSRD approaches DL TSR, and for λUL
exceeding 1.3, TSRD decreases due to reduced DL TSR
with fewer DL subframe allocations while UL TSR remains
low.
Dynamic TDD in Fig. 6 (b) adjusts TDD configurations to

minimize the difference in DL/UL TSRs for increasing λUL .
Consequently, TSRD remains at a low value over increasing
λUL . However, frequent packet collisions in UL transmission
lead to low DL/UL TSRs.

In the proposed algorithm, RRC connection control aims to
maximize the number of successful UL transmissions under
various TDD configurations. Consequently, while the actual
UL TSR and DL TSR gradually decrease for increasing λUL
in Fig. 6 (c), they remain higher than those of Dynamic TDD.
Moreover, the TSRDof the proposed algorithmmaintains low
values for increasing λUL compared to Dynamic TDD and
Static TDD.

In Fig. 6 (d), itMinMax demonstrates the similar perfor-
mance to the proposed algorithm. This similarity arises from
the fact that both schemes aim to maximize the number of
successful UL packets by dynamically adjusting the RRC
states while selecting the TDD configuration to alleviate the
DL/UL traffic imbalance. MinMax, benefiting from precise
knowledge of DL/UL traffic demand at the base station,
achieves higher DL/UL TSRs with sufficiently low TSRD in
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FIGURE 6. Average TSRD for different schemes.

TABLE 4. Average TSRD comparison.

most cases compared to the proposed scheme. The proposed
algorithm relies on the estimated traffic demand and historical
training data for its operation. Nevertheless, even without
precise information on the UL traffic demand of each device,
the proposed scheme still exhibits desirable performance
when compared to Static TDD and Dynamic TDD in the
context of UL traffic demand variations. In conclusion, the
proposed scheme achieves low TSRD which indicates its
capability of balancing the DL/UL traffic demands for the
different sets of UL traffic demands

Table 4 provides specific DL/UL TSRs and TSRD values
for each scheme in Fig. 6, calculated based on the actual
amount of UL traffic demand. While TSRDs for all schemes
are close to zero when traffic generation is low, Static TDD
performs the worst, struggling to maintain low TSRD for
increasing λUL . In contrast, Dynamic TDD, the proposed
algorithm, and MinMax consistently achieve TSRD values
below 0.1 in many cases. Notably,Dynamic TDD experiences
a gradual increase in TSRD along with λUL , while the
proposed algorithm outperforms it by achieving an 89%
reduction in TSRD when λUL is 1.5. Furthermore, the
DL/UL TSRs of the proposed algorithm surpass those of
Dynamic TDD by 3 and 16 times, respectively. Moreover,
even without the UL demand information of each device,
the proposed algorithm maintains high UL TSR with less
than 10% gap from that of MinMax for various sets of
UL traffic demand. These results underscore the proposed
algorithm’s capability to stably achieve low TSRD while
accommodating the gradual decline of DL/UL TSRs for
increasing λUL .

E. PERFORMANCE COMPARISON FOR TRU
In grant-free transmission, the devices suffer from high
transmission failure which severely degrades their resource
utilization for high UL traffic demand. In this regard, TRU
provides crucial information indicating the sufficiency of
resources utilized by transmitting devices. Fig.7 presents
the average TRU for each scheme across a range of λUL
values from 0.1 to 1.5. The DL/UL subframe ratios in Fig.7
represent the average proportions of their subframes in the
TDD frame, ensuring their sum equals one. DL TRU and
UL TRU, computed according to (13) and (14), indicate the
extent of successfully utilized resources, considering their
DL/UL subframe ratios, respectively. The gap between the
subframe ratio and TRU signifies the amount of wasted
resources, as indicated by red and blue arrows in each figure.

For Static TDD in Fig. 7 (a), the UL gap widens with
increasing λUL due to more frequent packet collisions,
resulting in low utilization of UL resources. Concurrently, the
allocated amount of DL resources decreases for higher λUL ,
reducing the DL gap as the relative amount of utilized DL
resources increases despite fewer allocated DL resources.

In the case ofDynamic TDD, as shown in Fig. 7 (b), the UL
gap expands with growing UL traffic demand. Additionally,
the gap increases more significantly due to the rapid decline
in the number of successful UL transmissions. Conversely,
DL resources are sufficiently utilized when λUL is above
0.3 as the DL subframe is significantly less allocated for
transmission.

For the proposed algorithm illustrated in Fig. 7 (c), DL/UL
resources are under-utilized at low λUL as all demands
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FIGURE 7. Average TRU for different schemes.

TABLE 5. Average TRU comparison.

can be processed within the allocated resources. However,
with increasing UL traffic demand, the proposed algorithm
effectively utilizes DL/UL resources, surpassing the utiliza-
tion levels achieved by the previous schemes. Similarly,
in Fig. 7 (d), itMinMax fully utilizes the determined set
of DL/UL resources at the base station to maximize the
number of successfully transmitted packets in both directions
as UL traffic demand grows. In comparison, it processes a
higher number of UL traffic demands under a similar amount
of UL resources, indicated by higher UL TSR in Table 4.
However, such a slight increase can be achieved at the cost
of information exchange of UL traffic demand between the
base station and devices, which is not available in grant-free
transmissions.

Table 5 provides specific TRU values for each scheme,
along with DL/UL utilization expressed as a percentage.
DL utilization tends to increase with λUL for all schemes.
However, UL utilization for Static TDD and Dynamic TDD
drops below 10% with increasing UL traffic demand due
to frequent packet collisions. In contrast, the proposed
algorithm maintains steady UL utilization, remaining above
95% for increasing λUL . Consequently, the UL TRU of
the proposed algorithm exceeds that of Static TDD and
Dynamic TDD by 17 and 11 times, respectively, when λUL

is 1.5. These results indicate that the proposed algorithm
enables efficient utilization of UL resources, with over 90%
of resources wasted by Static TDD and Dynamic TDD for
λUL above 0.2 and 0.3, respectively. Moreover, the feasibility
of the proposed algorithm in terms of resource utilization
can be validated as it closely follows that of MinMax in
high UL traffic demand. To conclude, the proposed scheme
benefits from more efficient utilization of determined UL
resources by leveraging RRC connection control than the
Static TDD and Dynamic TDD, while maintaining a higher
amount of allocated UL resources to flexibly adapt to the
increasing UL traffic demand. In addition, compared to
MinMax where the UL traffic demand is fully known, the
proposed scheme achieves sufficient resource utilization in
grant-free transmission from the estimated amount of traffic
demands.

F. PERFORMANCE COMPARISON FOR ENERGY
CONSUMPTION
The energy consumption of IoT devices is a critical concern
given their limited energy capacity, particularly in grant-free
transmission where a single packet is repeatedly transmit-
ted based on the number of UL subframes, constituting
a significant portion of the overall energy consumption.

VOLUME 12, 2024 34987



J. Park et al.: DRL Driven Joint Dynamic TDD and RRC Connection Management Scheme

FIGURE 8. Normalized energy consumption for different schemes.

TABLE 6. Energy consumption comparison.

FIGURE 9. Average energy consumption.

Moreover, a large portion of UL transmission can result
in transmission failure when the network encounters an
increasing number of transmitting devices. As a result, the
energy efficiency of transmitting devices can deteriorate
rapidly in grant-free transmission. In this experiment, we cal-
culated the energy consumption for UL IoT devices in the
simulated environment, considering three operational modes
for IoT devices: transmission (Tx), receiving (Rx), and sleep,
with energy usage rates of 0.45, 0.15, and 0.00012 W ,
respectively [75]. The energy computation also included
transmission (ReTx) and receiving (ReRx) energy resulting
from retransmissions. Fig.8 displays the normalized energy
consumption of each mode for each scheme. Meanwhile,
Fig.9 presents the average energy consumption of IoT devices
during 1000 periods for each scheme.

For Static TDD, retransmissions become more frequent
as λUL increases, leading to ReTx dominating the energy
consumption by Tx for λUL over 0.2, indicating the failure of
almost all UL transmissions in Fig. 8 (a). Similarly, in the case
of Dynamic TDD from Fig. 8 (b), frequent packet collisions

for increasing λUL result in ReTx contributing significantly
to the energy consumption by Tx. Additionally, due to the
high number of allocated UL subframes, the average energy
consumption of IoT devices rises rapidly from repetitive
transmissions, compared to Static TDD in Fig. 9.

In contrast, the proposed scheme from Fig. 8 (c) exhibits
fewer retransmissions since the number of transmitting IoT
devices is regulated by RRC connection control. Conse-
quently, the energy consumption of ReTx constitutes a
smaller portion of the energy consumption by Tx compared to
the previous cases. On the other hand, MinMax consistently
demonstrates the small and steady portion of retransmissions
among the compared schemes for varying λUL . Moreover,
according to Fig. 9, its average energy consumption gradually
increases and remains at low values compared to Static TDD
and Dynamic TDD as λUL grows.

Nevertheless, the proposed scheme supports behavior
similar to MinMax by effectively regulating the number of
transmitting devices, with slight variations due to imperfect
estimation of UL traffic demand. In conclusion, the proposed
algorithm allocates fewer UL subframes, under the regulated
UL transmissions through RRC connection control, resulting
in a low average energy consumption of IoT devices
according to Fig. 9. This allocation strategy reduces the
proportion occupied by retransmissions.

Table 6 summarizes the energy consumption of each
scheme as depicted in Fig. 8 and Fig. 9. For ease of
comparison, the table presents the proportion of ReTx in
Tx, as transmission accounts for the majority of energy
consumption. For Static TDD and Dynamic TDD, the
proportion of ReTx in Tx exceeds 90% as UL traffic demand
increases. However, this value remains below 25% for the
proposed algorithm, indicating a reduction of roughly 70% in
overall retransmissions. Moreover, by adjusting the number
of transmitting devices, the average energy consumption
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of the proposed algorithm is reduced by up to 62% and
70%, compared to that of Static TDD and Dynamic TDD,
respectively.

VI. DISCUSSION
Facilitating the sporadic and short packet transmissions of
IoT devices is achievable through grant-free transmission.
Given the expectation of UL transmission consuming a
significant portion of overall communication compared to
DL transmission, the deployment of dynamic TDD becomes
essential to maintain fairness between DL and UL traffic
demand. However, solely adjusting the TDD configuration
can lead to a severe degradation in performance, especially
with the increasing UL traffic demand and transmission
failures in grant-free transmission. To address this challenge,
we incorporate RRC connection control, defining the RRC
state for each device to regulate the total number of UL
transmissions. The joint operation of dynamic TDD and
RRC connection control enhances the number of successful
transmissions for the determined TDD configuration. This
not only maximizes resource utilization but also improves
energy efficiency significantly.

Regardless, there are important issues to be addressed
regarding the deployment of the proposed method in
networks. To balance the DL/UL traffic, their traffic demand
needs to be acquired at the base station. Compared to the DL
traffic demand, the UL traffic demand is unknown to the base
station. In response, we implemented a statistical method to
estimate the UL traffic demand based on the modeling of
collision dynamics of grant-free transmission. However, the
accuracy of the estimation can fluctuate depending on the
considerations comprehended in the dynamics. Regardless,
with ongoing research on elaborating the dynamics of grant-
free transmissions [76], we can mitigate the estimation errors
by simultaneously adopting the modeling to improve the
performance of the proposed method.

Moreover, the computational constraint is an important
aspect to be considered for the application of deep neural
networks in wireless communication networks. The proposed
method requires the management of two deep neural
networks, TDD agent and RRC agent, at each base station
to determine the DL/UL configuration and RRC state of
each device. While such implementation imposes a high
burden on the base station due to its limited amount of
resources consumed by both agents, lightweight neural
networks are concurrently developed to foster the application
on wireless networks to reduce the computational cost with
satisfying performance compared to its counterparts with
deeper layers [77], [78].
On the other hand, this research unfolds several promising

avenues for future exploration. Firstly, while our current
investigation centers on TDD management within a single-
cell environment, there exists ample potential for expansion
into a multi-cell setting, a scenario more reflective of
real-world conditions given the increasing densification of
base stations to meet 5G requirements. The extension of our

work to TDD management in a massive IoT network across
multiple base stations is crucial, especially considering the
impact of CLI and FLI between these base stations, which
significantly influence DL/UL transmissions of IoT devices
and contribute to packet collisions between UL devices.
Hence, future research could explore the adaptation of our
single-cell environment scenario to a multi-cell environment.

Secondly, our proposed approach can be further enhanced
to accommodate the diverse requirements of individual IoT
devices. Different applications may have varying latency
and throughput prerequisites, and IoT devices with distinct
packet sizes might demand transmission fairness with the
base station. In future investigations, incorporating such
diverse requirements alongside DL/UL traffic demand can
be explored. This could involve redefining DL/UL traffic
demand by integrating device-specific requirements with
an overall count of DL/UL packets for effective TDD
management in a massive IoT network.

Lastly, energy consumption continues to be a critical con-
cern for IoT devices. While our proposed method succeeds
in reducing average energy consumption by constraining
the number of transmitting devices, thereby mitigating the
need for frequent retransmissions and averting a surge
in average energy consumption during high UL traffic
demand, energy expenditure in grant-free transmission is also
contingent on repetitive transmissions. In future endeavors,
the current work can be extended by modeling the trade-off
between the number of successful UL transmissions and the
frequency of repetitive transmissions, thereby delving into
TDD management from the perspective of IoT device energy
consumption.

VII. CONCLUSION
In this study, we explored a novel approach to joint dynamic
TDD and RRC connection management in the face of DL/UL
traffic variations within a single-cell massive IoT network.
Our focus involved formulating an optimization problem for
the TDD configuration selection module, aiming to minimize
the disparity between DL/UL TSRs across diverse traffic
demand scenarios. Additionally, we proposed an optimization
problem for RRC connection control, seeking to maximize
the number of successful UL transmissions by dynamically
adjusting the RRC state of each device. Leveraging deep
reinforcement learning, we employed TDD and RRC agents
to address these optimization problems. The synergy between
the agents, facilitated by information sharing, including TDD
configuration and estimated UL traffic demand, enables them
to take strategic actions to optimize their respective objective
functions.

We evaluated the performance of our proposed method,
considering metrics such as TSRD, TRU, and energy
consumption, comparing it against the benchmarks of Static
TDD andDynamic TDD. Simulation results revealed that our
method significantly reduced TSRD compared to Dynamic
TDD, achieving an 89% reduction, accompanied by 3 and
16 times higher DL/UL TSRs, respectively. Notably, the UL
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TRU for our algorithm demonstrated efficient utilization,
exceeding 90%, resulting in 17 and 11 times higher UL TRU
compared to Dynamic TDD and Static TDD, respectively.
Furthermore, our method substantially reduced average
energy consumption by 70% and 62% for Dynamic TDD and
Static TDD, respectively. Notably, retransmission accounted
for less than 25% of consumed energy in our proposed
method, contrasting with over 90% for the comparative
schemes. Thus, our approach not only surpasses existing
benchmarks in managing DL/UL traffic imbalances but
also achieves a greater number of successful transmissions
with enhanced resource utilization and reduced energy
consumption for IoT devices.

Looking ahead, our future work aims to extend this
study to dynamic TDD management in a multi-cell massive
IoT network environment, where CLI and FLI impact the
success probability of DL/UL transmissions in grant-free
transmission scenarios. Additionally, considering QoS for
each device introduces an additional layer of complexity,
as prioritizing DL/UL transmissions based on individual
device requirements becomes imperative in the dynamic TDD
management paradigm.
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