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ABSTRACT The Smart Grid is a modern power grid that relies on advanced technologies to provide
reliable and sustainable electricity. However, its integration with various communication technologies and
IoT devices makes it vulnerable to cyber-attacks. Such attacks can lead to significant damage, economic
losses, and public safety hazards. To ensure the security of the smart grid, increasingly strong security
solutions are needed. This paper provides a comprehensive analysis of the vulnerabilities of the smart grid
and the different approaches for detecting cyber-attacks. It examines the different vulnerabilities of the smart
grid, including system vulnerabilities and cyber-attacks, and discusses the vulnerabilities of all its elements.
The paper also investigates various approaches for detecting cyber-attacks, including rule-based, signature-
based, anomaly detection, and ma-chine learning-based methods, with a focus on their effectiveness and
related research. Finally, prospective cybersecurity approaches for the smart grid, such as AI approaches and
blockchain, are discussed along with the challenges and future prospects of cyberattacks on the smart grid.
The paper’s findings can help policymakers and stakeholders make informed decisions about the security of
the smart grid and develop effective strategies to protect it from cyber-attacks.

INDEX TERMS Smart grid, cyber-attacks, detection methodologies, anomaly detection, machine learning,
future prospects.

I. INTRODUCTION
The Smart Grid is an advanced and integrated power system
that relies on sophisticated computer and communication
technologies to ensure efficient, reliable, and sustainable
electricity supply. However, the integration of these technolo-
gies makes the Smart Grid vulnerable to cyber-attacks, which
can have serious implications for national security, economic

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed F. Zobaa .

stability, and public safety [1]. These attacks can disrupt
the entire grid system, damage physical infrastructure, and
compromise confidential information. As a result, ensuring
the security of the Smart Grid is crucial for its successful
implementation and operation. In recent years, the frequency
and sophistication of cyber-attacks on the Smart Grid have
increased significantly [2]. These attacks can target various
components of the Smart Grid, such as software, hardware,
data transfer systems, and operational procedures. Moreover,
the introduction of new technologies and the increasing use
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of IoT devices have expanded the attack surface of the Smart
Grid, making it even more vulnerable to cyber-attacks [3].
To address these challenges, various detection methodologies
have been proposed to detect and prevent cyber-attacks on the
Smart Grid [4]. These methodologies range from rule-based
and signature-based approaches to more advanced anomaly
detection and machine learning-based methods [5]. However,
the effectiveness of these approaches varies, and new and
more sophisticated attacks require more advanced and reli-
able detection methodologies [6]. In this paper, we provide
a comprehensive review of the vulnerabilities of the Smart
Grid, including system vulnerabilities and cyber-attacks.
We also review the different detection methodologies intro-
duced in previous studies, with a focus on their effectiveness
and limitations. Furthermore, we discuss the prospective
cybersecurity approaches for the Smart Grid, such as AI
and blockchain, and their potential benefits and challenges.
Finally, we present the future prospects of cyber-attacks on
the Smart Grid, based on recent research and technological
advancements as show in Figure 1.

FIGURE 1. Smart grid features [7].

II. RESEARCH BACKGROUND
A smart grid is a vital national infrastructure that employs
information and communication technologies to deliver
reliable and efficient power transmission and distribution.
However, smart grids are vulnerable to cyber-attacks due
to their integration of physical and cyber space [8]. For
instance, the 2015 Black Energy attack on Ukraine’s electric-
ity infrastructure left around 700,000 users without power,
highlighting the need for fast response to cyber-attacks [9].
Given the wide variety of attacks, it is essential to clas-
sify them to enable appropriate responses. Two primary
approaches for detecting attacks are using an attack sample
library to match and typical machine learning methods [10].
While the attack sample library can effectively recognize
known attacks, it is limited in identifying new attacks not
previously recorded in the library [11]. On the other hand,
traditional machine learning can recognize and classify new
types of attacks by learning from attack samples [12].
However, the success of traditional machine learning algo-
rithms heavily relies on feature engineering, which may be

problematic if the attacker conceals these attributes, reducing
the effectiveness of the machine learning model [13].
Cyberattacks against smart grid CPSs, an essential infras-

tructure of all countries, have recently become more preva-
lent [14]. These attacks pose security challenges such as
theft of sensitive data, insertion of fraudulent data, and loss
of assets and information through compromised physical
devices controlled by supervisory control and data acquisition
(SCADA) systems [15]. Detecting these intrusions early is
crucial to safeguard smart grid equipment and data, but exist-
ing research on intrusion detection systems in smart grids is
inadequate [16]. Various machine learning (ML) algorithms
that use supervised or unsupervised methods have been pro-
posed in recent years to maintain the cybersecurity of smart
grids by categorizing cyberattacks based on different network
properties [17]. ML techniques are popular because they can
scale to larger systems at a low computational cost. However,
selecting the right features and parameters can significantly
improve the computing efficiency of any ML method [18].
Many studies have presented ML-based techniques for iden-
tifying false data injection (FDI) assaults, such as anomaly
detection techniques and support vector machines, which
were effective in detecting FDI assaults based on statistical
discrepancies in data [19]. Additionally, other methods such
as k-nearest neighbors (KNN), single-layer perceptron, and
linear andGaussian support vectormachine (SVM)were used
as supervised learning techniques to compare and evaluate
their performance in detecting FDI assaults [20]. Although
these techniques have shown promise in identifying FDI
assaults, there is a need for extensive cross-validation among
algorithms with varied parameters, and testing should be
conducted on power systems of varying sizes to assess the
adaptability of the categorization algorithms [21].

One potential solution to the complex problem of iden-
tifying and categorizing cyberattacks is the use of neural
networks. By employing deep network design, neural net-
works can extract high-dimensional characteristics, resulting
in improved robustness and generalization performance [22],
[23], [24], [25], [26], [27], [28]. Additionally, the smart grid’s
unique ability to communicate with itself provides advan-
tages in terms of effective energy utilization and distribution
for a variety of smart devices and machines [29], [30], [31],
[32]. However, because the smart grid may store sensitive
information, cybersecurity is crucial, and a variety of security
solutions must be evaluated and analyzed [33], [34], [35].
Although the smart grid uses communication and information
technology to generate, distribute, and consume electricity,
there are potential disadvantages such as compromised relia-
bility during power outages and potential privacy concerns
if critical data is lost or stolen [36], [37]. One growing
method of cyberattack against smart grids is FDI, which
can be difficult to detect using current methods [38], [39].
As an alternative to FDI detection, machine learning has
been proposed. Injection attacks can also lead to the security
breach of an entire web server, resulting in a denial-of-service
attack [39], [40].
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Hybrid systems are widely applied in industries such as
aerospace, energy systems, and industrial control to achieve
various objectives by using feedback functions from a spe-
cific family [41]. A methodology for developing and access-
ing a supervisory hybrid control scheme for a microgrid
system is presented in [41], using a specialized configura-
tion that includes wind power conversion technology [42],
[43]. The microgrid system is represented as a probabilistic
hybrid system with many functions for energy management,
as depicted in [44]. A formal link between microgrids and
stochastic hybrid systems has been established [45], while
a state variable modeling technique is used to develop a
hybrid large-scale system model of a microgrid system [46].
An intrusion detection system based on network measure-
ments for detectingWBAN jamming attempts was introduced
in [47], which employed deep neural networks (DNN) to
reduce feature dimensionality [48].

TABLE 1. Existing methods performance.

The authors of [59] proposed a methodology called deep
adversary learning (DAL) to detect network penetration by
employing statistical learning and signals. The classifier’s
objective is to decline intrusion improved data, whereas the
producer generates intrusion enhanced datasets. SVM are
used to differentiate between the dataset of the attack and

normal incursion. The performance of the intrusion detection
rate may be improved further by using a deep migrat-
ing training model with four steps: ideal feature, variables,
knowledge, and feature sampling [60]. The researchers
of [61] proposed a five-level restricted Boltzmann machine
(RBM) model for identifying Distributed Denial of Ser-
vice (DDoS) attacks in datasets from applications for smart
cities, while [62] integrated the geometric differential module
(GDM) and GDM/AG with a deep learning neural network
structure to enhance the accuracy and detection of automobile
security breaches. Table 1 provides a summary of various
existing approaches.

Intrusion detection system (IDS)-based interruption recog-
nition systems have exhibited great promise in certain
scenarios [63]. However, to obtain critical information, IDS
must be complemented with dynamic system monitoring
tools along with traditional security components such as fire-
walls and antivirus software. To detect FDI attacks, many
proposed detection systems employ spatial-transient links,
continuous connections, and factual connections of meter
estimates [64], [65]. The authors of [66] provide multiple
strategies for FDI attack detection using state estimation. The
connection between FDI and tiny signal/transient stability
requires further investigation for future research. The broad
area measuring system is widely used in the current power
grid to detect power system irregularities.

The phasor measuring Units (PMUs) are transmitted to the
control center for monitoring and damping [67]. FDI attacks
can compromise communication between the PMU and the
control center, reducing inter-area oscillation dampening and
causing small-signal instability. Hence, sophisticated AI sys-
tems are needed. Several ML approaches have been recently
implemented to detect cyberattacks on a smart grid [68]. For
identifying cyberattacks in a CPS, the authors of [69] utilized
KNN, decision trees, bootstrap aggregation, and random for-
est. An auto-associative kernel regression model was utilized
to enhance detection performance.Wang et al. [70] advocated
using recurrent neural networks with long short-termmemory
to anticipate the types of cyberattacks.

According to [71] and [72], random forest outperforms
SVM and KNN for detecting anomalies in clean water supply
systems. In [73], He et al. utilized various ML techniques
to evaluate traffic data to identify assaults on thermal power
production plants. Numerous studies have employed ML for
anomaly/attack detection in SCADA systems, with varying
degrees of effectiveness. Comprehensive reviews of these
investigations are provided in [74] and [75]. However, previ-
ous research did not consider cross-validation of algorithms
with variable parameters for detecting cyberattacks in smart-
grid settings.

Additionally, ML algorithms are generally assessed on
a single smart-grid scenario and may not be applicable to
smart grids of various sizes. Secondary systems in smart
grids are vulnerable, making security crucial. Previously,
machine learning-based approaches have been presented for
detecting smart grid assaults. For example, the authors of [76]
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FIGURE 2. IEEE 118 bus test system [77].

developed a method based on classical machine learning
methods that used KNN and SVM algorithms to classify
assaults and explored online learning techniques for various
attack situations.

In [78], the authors suggested a supervised learning-based
approach that trains a distributed SVM to detect smart grid
threats. The authors of [79] developed a deep learning-based
cyberphysical technique using a DBN to prevent data cor-
ruption in WAMSs and evaluated performance through
simulation. The authors of [80] proposed deep learning algo-
rithms that utilize Conditional DBN to identify aspects of
FDI attack behavior using historical measurement data. They
also introduced a Long Short-Term Memory neural network
in [81] to identify fraudulent input in smart terminals. FDI
attacks are a prevalent type of smart grid cyber-attack [82].
Currently, it is challenging to identify FDI attacks that use
subpar data detection technology. Machine learning has been
suggested in the past to detect FDI attacks. A study [26], [104]
investigates three distinct feature selection (FS) procedures
and focuses on three varied supervised learning strategies.
To test these approaches, IEEE 14-, 57-, and 118-bus systems
are utilized as shown in Figure 2.
The accuracy of detection methods for identifying spe-

cific threats is often compared. The integration of supervised
learning and heuristic feature selection approaches in simula-
tions has led to improved functionality of FDI attack detection

systems [83]. Through simulations on a high-fidelity smart
grid test bed, it has been demonstrated that machine-learned
features can identify SCADA breaches in power transmission
systems. Figure 3 illustrates a sample study on the defense
system against FDI attacks, based on a conceptual and func-
tional analysis of SCADA [84].

With the incorporation of Information and communication
technologies (ICT), the traditional electrical grid is evolving
into a smarter grid. However, the smart grid is vulnerable
to cyber-attacks, with FDI attacks being among the most
severe [85]. To detect such attacks, various ML techniques
are under investigation [86]. Nevertheless, the skewed class
distribution of the dataset presents a challenge, and prompt
response is essential in a smart grid. Fake data injection
attacks aim to disrupt microgrid power transmission by
providing false information [87]. To combat state estimate
attacks, data-driven machine learning is utilized, and ensem-
ble classifiers are employed for classification [88].

Both supervised and unsupervised classifiers are utilized
in this approach [89]. The evaluation of this technique is
performed through simulation using IEEE 14-bus data [90].
The performance of specific and ensemble models is com-
pared, with the latter outperforming individual classifiers in
unsupervised models. Additionally, supervised learning may
be used to detect malicious communications and assess their
security risks. The Internet of Things (IoT) is a concept
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FIGURE 3. Smart grid protection through cyber-malware detection
employing efficient and new machine learning techniques.

that seeks to connect people and things with any network
and level of support, anytime and anywhere, through various
means [91], [92]. IoT has numerous applications and is char-
acterized by a four-layer architecture, as shown in Figure 4.
It aims to seamlessly integrate the physical and digital worlds
through a networking system of real-world objects equipped
with sensors [45], [93].

FIGURE 4. Frameworks of IoT [5].

The Internet of Things (IoT) refers to the connection of
physical and technological objects over the internet. How-
ever, as IoT devices become more common, so do Denial
of Service (DoS) and spoofing attacks. Reference [94] have
examined IoT network data using classification methods
and supervised feature selection approaches. The smart grid

security technologies, which were initially thought to be
secure, have failed to meet modern cybersecurity require-
ments. Various tools and methods are required to tackle
cyber threats. AI and data modeling may transform the secu-
rity industry, as they can detect unknown threats using ML
algorithms that adjust to a subject’s baseline attitude. Refer-
ence [35] discuss how technical improvements have shaped
the contemporary electrical grid, with debates over its relia-
bility, safety, and efficacy. The smart grid has the potential to
increase dependability, visibility, efficiency, and control, but
communication within it is critical, and hackers are becoming
more interested in smart grid fraud. Cybersecurity and vulner-
ability risks associated with the smart grid are discussed in a
report [95], which addresses attacks and provides responses.
The security issues associated with smart grid communica-
tions networks, systems, and gadgets are becoming more
common, and this research helps readers understand how to
detect illegal sensor information tampering. ML algorithms
have replaced residual based Bad Data Detection (BDD) in
the detection of illegal sensor information tampering.

Semi-supervised anomaly detection methods using PMU
data have been employed to identify cyber risks in smart
grids. Cyberattacks on SCADA systems are particularly
destructive and must be handled with utmost care. DML has
been used to overcome intrusion prevention challenges, and
the intrusion detection approach based on Deep Machine
Learning (DML) has an accuracy rate of roughly 90.0 percent.
The authors of [96] have enhanced the detection process by
shifting the defensive aim from rejecting assaults to prevent-
ing outages, and the authors of [97] have evaluated the impact
of a cyberattack on the PMU state estimation procedure.

The authors of [98] presented a defect detection, clas-
sification, and placement strategy in radial distribution
systems based on sophisticated machine learning techniques.
A lightweight technique was proposed in [99], [100], and
[101] to detect aberrant state assessments in smart grids
produced by FDI assaults in real-time by investigating
the spatial-temporal connections between grid state estima-
tions and using trust-voting. Chi-square sensor and cosine
resemblance matching techniques were studied in [102] for
detecting cyber assaults in smart grids. An adaptable cumu-
lative sum technique for detecting FDI assaults in real-time
was devised by the authors of [103].

Recently, machine learning (ML) has been popular for
identifying cyber assaults in smart grids, with most sug-
gested systems relying on supervised learning algorithms.
[76] used ensemble learning and feature-level fusion with
common supervised algorithms like KNN, SVMs, and SLR to
anticipate FDI assaults. The authors of [101] examined SVM,
KNN, and expanded nearest neighbor (ENN) for clarifying
the FDI attacks in smart grids.

In [104], an abnormality detection system was suggested
that used a decision tree-based approach based on PMU
data to differentiate between normal tripping and power line
failures and malicious assaults physically tripping connec-
tions. An Adaboost-based classification method was created
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in [105] using the random forest as the basic classifier for
identifying power system problems and cyber threats utilizing
individual PMU data.

Feature engineering procedures, such as feature selection,
have been studied in previous research to increase detec-
tion performance and minimize computing complexity [78],
[106], [107]. In [108] created an intrusion detection mod-
ule for detecting malicious assaults in the SCADA system
using network traces. They used One-Class support vector
machine (OCSVM) with K-means recursive clustering to
identify intrusions in SCADA systems in real-time [109].
Reference [26] investigated three distinct supervised learning
strategies to be employed in conjunction with three dis-
tinct Feature Selection (FS) techniques. These approaches
are evaluated for adaptability on 118-bus systems, 57-bus,
and IEEE 14-bus. The simulation study shows that super-
vised learning mixed with heuristic FS approaches results
in enhanced classification algorithm performance for FDI
attack detection. SVM, KNN, and Artificial Neural Network
(ANN) are the three ML methods employed. Heuristic FS
approaches can pick a subset of features to achieve improved
classification accuracy with a much smaller number of
features.

The classification of feature selection techniques includes
three main categories: filter, wrapper, and embedding
approaches. Filter approaches evaluate characteristics indi-
vidually, utilizing statistical metrics such as correlation,
information gain, or chi-square. Wrapper approaches assess
feature subsets by integrating the performance of the learning
process, often by training and testing the model with various
subsets. Embedded approaches incorporate feature selection
inside the model training process, optimizing features as an
integral component of the overall learning procedure. Genetic
Algorithms (GA) are significant in the field of evolution-
ary computation for their ability to optimize feature subsets
through the simulation of natural selection. Within the frame-
work of a smart grid, GA has been utilized for the function of
feature selection. This application was examined in research
that aimed to discover pertinent attributes for machine learn-
ing models by utilizing smart grid data [110]. Genetic
programming (GP) utilizes tree topologies to describe alter-
native solutions and employs evolutionary operations such
as crossover and mutation. GP has been implemented in
smart grids to optimize demand response, as demonstrated
in research [111]. Ant Colony Optimization (ACO) is a
prominent evolutionary computation approach that draws
inspiration from the foraging behavior of ants, employing
swarm intelligence. ACO has been utilized in machine learn-
ing to efficiently find subsets of features, hence improving
the interpretability of models [112]. Evolutionary computing
techniques are crucial in optimizing feature subsets, lead-
ing to improved model performance and interpretability in
diverse applications such as smart grids and machine learn-
ing [113]. Their use demonstrates their efficacy in addressing
feature selection issues in intricate datasets [114].

Furthermore, Feature extraction is an essential first step
in machine learning [115], with the aim of converting raw
data into a more manageable and useful format. This pro-
cedure entails the careful selection and modification of
pertinent data with the aim of lowering complexity, improv-
ing computing effectiveness, and minimizing the likelihood
of overfitting [116]. These include linear methods like prin-
cipal component analysis (PCA) and non-linear methods like
t-distributed stochastic neighbor embedding (t-SNE), which
is an unsupervised non-linear dimensionality reduction tech-
nique for exploring and visualizing high-dimensional data,
and autoencoders [117]. These are all types of artificial neu-
ral networks (ANNs) that are used to learn how to code
unlabeled data efficiently through unsupervised learning.
An autoencoder learns two functions: an encoding function
that transforms the input data, and a decoding function that
recreates the input data from the encoded representation. Fea-
ture extraction is utilized in several fields, including computer
vision, natural language processing, and signal processing,
to enhance model performance and interpretability. Never-
theless, there are obstacles to overcome, such as the risk
of information loss during the extraction process and the
requirement for meticulous algorithm selection. The PCA can
be used to slice data into smaller linear pieces [56], t-SNE
can be used to see relationships that don’t follow a straight
line [118], and autoencoders can be used to get features [119].

Several research possibilities exist to develop antennas
with better radiation qualities and innovative ways for pro-
ducing circular polarization radiation with a broad ARBW
that is small in size and covers all necessary bands, as cov-
ered in [120]. In [41], the author highlighted a significant
advancement approaching the potential implementation of
smart grids., operating as a composite system based on
cyber-physical concepts. The suggested modeling technique
proposes an active paradigm for the management construc-
tion of complicated energy systems, aiming to help the
environment, technical performance, and economic value.
The model was validated by running it through a virtual test
bench and studying its reaction throughout an operational
range, providing a thorough demonstration of the suggested
technique.

The system may run and switch between modes to provide
maximum dependability in the face of variable dynamics and
load demand. The model uses historical and log data to iden-
tify attacks, and the unsupervised machine learning technique
is advantageous for identifying zero-day attacks. However,
it is prone to false positives, and supervised learning can
significantly improve detection confidence. To enhance the
feature construction process, the authors analyzed the raw
data in the electrical network and generated 16 new features
by combining attributes. The authors of [12] proposed a
unique strategy for developing a deep neural network that can
categorize cyberattacks in smart grids by generating attack
behaviors and anticipating the type of assault based on the
received message.
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In [84], an unsupervised feature learning approach was
developed to detect threats in transmission SCADA systems,
which improves the accuracy of detection while relying less
on system modeling and human knowledge. The approach
proposed in [121] identifies new data characteristics that were
previously unavailable for 1D power system measurements,
leading to further performance improvements. Unlike previ-
ous works, which focused primarily on binary classification
solutions, the system in [121] addresses the issue of detecting
FDI attacks as a problem of multi-class classification, with
Convolutional Neural Network (CCN) serving as a multi-
label predictor. In [122], a machine learning strategy was
presented to detect and protect smart grids against False Data
Injection Attacks (FDIA),, which merged feature selection
and machine learning. The authors used supervised machine
learning models to implement hybrid approaches and com-
pared the suggested model in terms of accuracy, precision,
recall, and F1 score.

A. SMART GRID VULNERABILITIES
The Smart Grid is vulnerable to various types of attacks,
including cyber-attacks, physical attacks, and human errors.
These vulnerabilities can be classified into two categories:
system vulnerabilities and cyber-attacks. System vulnera-
bilities refer to weaknesses in the Smart Grid’s physical
infrastructure and operational procedures. These vulnera-
bilities can be caused by outdated or poorly maintained
hardware, inadequate security measures, or inadequate train-
ing of personnel. For example, outdated software or hardware
components may contain security vulnerabilities that can be
exploited by attackers to gain unauthorized access to the
Smart Grid. Similarly, inadequate security measures, such as
weak passwords or lack of encryption, can make the Smart
Grid vulnerable to attacks.

Cyber-attacks are a major threat to the Smart Grid. They
can be launched remotely and are designed to exploit vul-
nerabilities in the Smart Grid’s communication and control
systems. Cyber-attacks can take various forms, such as
denial-of-service attacks, phishing attacks, malware attacks,
and advanced persistent threats. These attacks can result in
data theft, service disruption, equipment damage, and even
physical harm to the operators and the public. The vulnera-
bilities of the Smart Grid extend to all its elements, including
software, hardware, and data transfer systems. The Smart
Grid relies on various software components, such as operating
systems, control systems, and database management systems.
These components can contain security vulnerabilities that
can be exploited by attackers. Similarly, hardware compo-
nents, such as routers, switches, and sensors, can also be
targeted by attackers.

Moreover, the data transfer systems used by the Smart
Grid, such as wired and wireless networks, can be vulnerable
to attacks. These systems can be targeted by attackers who
want to intercept, manipulate, or destroy the data transferred
over them. Finally, the Smart Grid’s operational procedures
and applications, such as energy management systems and

billing systems, can also be targeted by attackers who want to
disrupt the grid’s operations or steal confidential information.
The Smart Grid is vulnerable to various system vulnerabilities
and cyber-attacks.

These vulnerabilities can have serious implications for
national security, economic stability, and public safety.
Therefore, it is essential to develop effective detection
methodologies and cybersecurity solutions to ensure the
Smart Grid’s security and reliability.

B. CYBER-ATTACK DETECTION TECHNIQUES
To detect cyber-attacks on the Smart Grid, various detec-
tion methodologies have been introduced in previous studies.
These methodologies can be classified into three categories:
signature-based, anomaly-based, and hybrid-based detection.
Signature-based detection relies on predefined signatures or
patterns of known cyber-attacks to identify and block mali-
cious traffic. This approach is effective against known attacks,
but it is less effective against new and unknown attacks
that do not match the predefined signatures. Anomaly-based
detection, on the other hand, relies on statistical analysis
and machine learning algorithms to detect abnormal behav-
ior or deviations from normal patterns in the Smart Grid’s
network traffic. This approach can detect unknown and zero-
day attacks, but it can also generate false alarms and miss
some attacks that are similar to normal behavior. Hybrid-
based detection combines the strengths of signature-based
and anomaly-based detection. This approach uses predefined
signatures to detect known attacks and machine learning
algorithms to detect unknown and abnormal behavior in the
Smart Grid’s network traffic. This approach can provide a
higher level of accuracy and reduce false alarms.

In addition to these detection methodologies, various tech-
niques have been proposed to enhance the detection of
cyber-attacks on the Smart Grid. These techniques include
deep learning, feature selection, and ensemble learning.
Deep learning techniques, such as convolutional neural net-
works (CNNs), can automatically learn and extract features
from the Smart Grid’s network traffic and use them to
detect cyber-attacks. These techniques can provide high
accuracy and reduce false alarms. Feature selection tech-
niques can reduce the dimensionality of the Smart Grid’s
network traffic and improve the performance of the detection
algorithms.

These techniques can select the most relevant features that
are important for detecting cyber-attacks and remove irrele-
vant and redundant features. Ensemble learning techniques
can combine multiple detection algorithms to improve the
accuracy and robustness of the detection system. These tech-
niques can reduce the risk of false alarms and provide a higher
level of confidence in the detection results. Various detection
methodologies and techniques have been proposed to detect
cyber-attacks on the Smart Grid. These methodologies and
techniques can provide a higher level of accuracy and reduce
false alarms, and they can enhance the security and reliability
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of the Smart Grid. The detecting cyber-attacks in the Smart
Grid would consist of several components such as:
1) Smart Grid devices and components: This includes all

the devices and components of the Smart Grid such as
smart meters, sensors, controllers, and communication
networks.

2) Data pre-processing and feature selection: This compo-
nent is responsible for pre-processing the data generated
by the Smart Grid devices and selecting the most rele-
vant features for detecting cyber-attacks.

3) Machine learning algorithms: This component includes
various machine learning algorithms such as decision
trees, random forests, and support vector machines that
can learn patterns from the Smart Grid data and detect
cyber-attacks.

4) Anomaly detection and signature-based detection: This
component includes anomaly detection techniques and
signature-based detection techniques that can detect
abnormal behavior and known cyber-attacks in the
Smart Grid data.

5) Ensemble learning: This component combines multiple
detection algorithms to improve the accuracy and robust-
ness of the detection system and reduce the risk of false
alarms.

6) Intrusion detection system (IDS): This component mon-
itors and analyzes the Smart Grid data for signs of
suspicious activity and raises an alert if an attack is
detected.

7) Security information and event management (SIEM)
system: This component collects and analyzes data from
different components of the Smart Grid and uses cor-
relation and pattern recognition techniques to detect
cyber-attacks.

Overall, the designed to integrate different detection method-
ologies and techniques to improve the accuracy and reliability
of the cyber-attack detection system in the Smart Grid as
shows respectively in Figures 5 and 6.

FIGURE 5. Frameworks of IoT [5].

FIGURE 6. Illustration of a smart grid’s conceptual model.

C. DATASETS FOR CYBER-ATTACK DETECTION
The use of relevant data sets is essential in training and
assessing machine learning models specifically developed to
detect and mitigate cyber-attacks. The availability of these
datasets is crucial for academics and practitioners to create
efficient algorithms and systems for the detection of cyber-
attacks. The dimensionality of these datasets varies based
on the number of characteristics or variables employed to
depict network traffic. Commonly, the datasets employed for
cyber-attack detection might encompass hundreds to tens of
thousands of characteristics that portray distinct facets of net-
work behavior and communication. The process of framing
the issue of cyber-attack detection as a big data problem
requires the management and analysis of vast quantities of
data produced by network operations. This encompasses the
difficulties associated with scaling, optimizing storage, and
processing data with a large number of dimensions. Apache
Hadoop and Apache Spark, which are big data technologies,
can be employed to solve the difficulties associated with
managing and analyzing massive amounts of information
with the aim of detecting cyber-attacks. Following are many
prominent datasets frequently utilized in the field:
1) The NSL-KDD dataset is an enhanced iteration of the

extensively utilized KDD Cup 1999 dataset. It rectifies
several deficiencies of the first dataset and offers a more
authentic portrayal of network activity.

2) The UNSW-NB15 dataset is a collection of net-
work traffic data specifically designed for evaluat-
ing network-based intrusion detection systems (NIDS).
It encompasses a broad spectrum of both malicious
assaults and regular operations within a network.

3) The CICIDS2017 dataset is a recent collection of
data from the Canadian Institute for Cybersecurity that
contains both harmless and harmful network traffic.
Its purpose is to assess the efficacy of intrusion detection
systems.

4) The dataset is called AWID (Aarhus WiFi IDS). The
AWID dataset is specifically designed to analyze and
address security issues related to wireless networks.
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It contains data collected from aWiFi intrusion detection
system. It detects several forms of assault in a wireless
setting.

5) The dataset used is ISCX-IDS-2012. The origin of this
dataset may be traced back to the 2012 International
Cyber Security Challenge (ICSC). The controlled envi-
ronment encompasses a diverse range of threats aimed
at assessing the effectiveness of intrusion detection
systems.

6) The KDD Cup 1999 dataset, although dated, is a widely
recognized benchmark dataset that has been extensively
utilized in early research on intrusion detection. It con-
sists of a wide range of characteristics derived from
network traffic.

D. DEEP LEARNING APPROACHES FOR CYBER-ATTACK
DETECTION
Deep learning methods have demonstrated potential for
enhancing the precision of cyberattack detection by
autonomously acquiring hierarchical characteristics from
unprocessed data. Here are a few pertinent methodologies:
1) Convolutional Neural Networks (CNNs): CNNs have

effectively been utilized for detecting intrusions in net-
work traffic by acquiring knowledge of spatial patterns
within the data. These algorithms have the ability to
perform functions such as infection detection or the
recognition of unusual patterns in network traffic [123].

2) Recurrent neural networks (RNNs) are advantageous for
evaluating sequential data, such as time-series logs or
network packet sequences. LSTM networks, which are
a form of recurrent neural network (RNN), are adept
at identifying long-range associations in time-varying
data [124].

3) Autoencoders: Anomaly detection may be achieved
through the utilization of unsupervised learning using
autoencoders. By effectively modeling standard pat-
terns, these models may detect differences that suggest
possible cyber risks [125].

4) Generative adversarial networks (GANs) may be uti-
lized to produce artificial data for the purpose of
enhancing training sets or simulating cyber-attacks. This
contributes to the model’s acquisition of a wide range of
attack patterns [126].

Regarding the significance of classical feature selection tech-
niques in the era of deep learning, it is significant that
deep learning models are designed specifically to, without
supervision, acquire appropriate characteristics from unpro-
cessed data, frequently obviating the necessity for explicit
feature engineering. Nevertheless, there are situations in
which feature selection approaches can still be advantageous,
particularly when working with data that has a large number
of dimensions or requires domain-specific expertise.

E. PHYSICS-INFORMED MACHINE LEARNING (PIML)
Physics-Informed Machine Learning (PIML) techniques are
a specific category of machine learning (ML) approaches

used to identify and detect cyber-attacks [127]. The current
plans and methods use the basic physical features of the
power grid along with different types of machine learning,
such as supervised or semi-supervised learning, unsupervised
learning, and reinforcement learning (RL) [128]. The litera-
ture on PIML techniques for applications such as anomaly
detection, classification, and localization. The advancement
in digital automation for smart grids recently led to the
use of measuring devices such as phasor measurement units
(PMUs), micro-PMUs (µ-PMUs), and smart meters [127].
However, the large amount of data collected from these sen-
sors causes many challenges since control room operators
need to integrate this data with models in order to make
educated decisions for the reliable and resilient operation
of the cyber-power systems [129]. The ML-based solutions
provide a reliable analysis of the significant quantity of
data collected from the field. In order to ensure satisfac-
tory network performance in all situations, decision-makers
need to utilize technologies adept at identifying solutions
that are economically acceptable and compatible with the
system’s limitations [130]. These appliances are efficient,
reliable, and simply comprehensible. As a result, the use of
PIML approaches continues to develop to solve problems
using model-based or data-driven machine learning tech-
niques [131]. Therefore, ML techniques have the ability to
detect and analyze connections across distance, time, and data
patterns, leading to the generation of detailed and precise
solutions [132]. Furthermore, these techniques could pro-
vide results that satisfy the demands of real-time monitoring
and control in the electric grid, a critical feature for ensur-
ing dependable and effective operation [133]. Efficiently
handling the significant amount of data generated by these
sensors is a challenge for decision-making procedures [134].
Improving the understanding of the system’s dynamics leads
to a more accurate perception and increases the poten-
tial of identifying abnormal metrics, such as outliers or
anomalies [135].

III. CHALLENGES
The ever-evolving nature of cyber threats poses a signif-
icant challenge to the smart grid’s security. The attackers
are continually developing new techniques to breach the
system, making it difficult to predict and mitigate potential
risks. The complexity and interconnectivity of smart grid
components also make it challenging to implement security
measures that cover all system elements. Additionally, the
lack of standardization across the smart grid industry is a
challenge in developing comprehensive security protocols
that are universally adopted. Furthermore, the cost associated
with implementing robust security measures in a smart grid
system can be substantial, and this may hinder some stake-
holders from investing in adequate security solutions. Finally,
the shortage of cybersecurity professionals with the necessary
expertise in smart grid security is another challenge. The
increasing demand for these professionals, coupled with the
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limited supply, may result in a skills gap that could leave
smart grid systems vulnerable to cyber threats.

A. SMART GRID CYBER-PHYSICAL SECURITY
(VULNERABILITIES)
Vulnerability can be defined as a flaw in the computational
logic (such as coding) identified in hardware and software
components that, when abused, causes a negative effect on
secrecy, integrity, OR availability [136]. In this respect, vul-
nerability mitigation often entails code improvements, but it
may also entail specification changes or even design voca-
tion [136]. Recent smart grids have grown into a sophisticated
technological system that combines physical networks, IT,
and OT, as well as interoperates and engages with several
other essential assets. All vulnerabilities [137] incorporated
in the grid system, including those of external entities asso-
ciated with it, have a significant effect on grid cybersecurity.
Vulnerability is a big concern to smart grids and can possibly
result in a variety of effects such as power failures, power
dissipation, financial harm, and so on.

B. PHYSICAL COMPONENTS SECURITY
A smart grid is made up of many different elements, includ-
ing equipment, software, and control systems. All of these
elements are vulnerable in some way, including:
1) Weak physical access control systems, such as insuffi-

cient video surveillance and autonomous site inspection.
2) Insufficient physical protection for DERs at remote

areas.
3) Internal layoff limits inside the substation.
4) Insufficient long-line surveillance.
5) Outdated parts and lengthy maintenance delays for

faulty equipment.
6) Inadequate electromagnetic pulse filtering near the

smart grid system.
7) Poor grid operating physical-world. These possible con-

cerns are typical issues that arise from natural or not
natural physical harm [138], and there are several
established techniques and approaches of prevention
available.

These physical weaknesses, on the other hand, have the abil-
ity to assist a concerted cyberattack, a mixture of local and
opponent intrusions.

C. VULNERABILITIES IN IT/OT
Information technology (IT) or Operational technology (OT)
advancements have enabled linked substations to function
together with little or no human contact. With more new
technologies being incorporated into smart grids, maintaining
grid security is becoming increasingly difficult. This integra-
tion of OT and IT is altering the mindset and method to smart
grid cyber-security. At the same time, all of IT/weaknesses
OTs constitute a danger element to the whole grid
system [138].

Smart grids are made up of a diverse set of smart soft-
ware and hardware, particularly networked computers. Any

weakness in this software and hardware might result in cyber-
attacks [139]. The Common Vulnerability Scoring System
(CVSS) and Common Vulnerabilities and Exposures (CVE)
metrics demonstrate a long-term pattern of rising weak-
nesses in grids components and associated programs [140],
[141]. ‘‘The weakness of those devices with networking
capabilities and smart operation is increasing so fast, not
only due to more vulnerabilities in smart technologies, but
also due to developing the systems of the smart grids,
relatively new smart grid environmental elements, and inflat-
ing services and applications’’ [141]. ‘‘Data communication
vulnerabilities also enable network-based attacks and other
communication [142], [143].

The OT communication lacks adequate security design to
secure data transmission inside OT parts and with IT parts.
This is largely a smart grid vulnerability that is difficult to
address in the short future. It might take a long time to replace
technology and equipment and improve OT. The weakness in
IT communications is not novel, but it serves as a conduit
between the external attacker and the internal OT.

D. DATA MANAGEMENT SECURITY
Current data management of smart grids has issues with clus-
tering integrity, confidentiality, compliance control, shared
scope, and management method efficiency. A vast volume
of data is produced and moved between many entities. Data
packet streams that are accurate and consistent, including as
power grid, weather predictions, and business-related infor-
mation, enable operators to regulate and oversee the system of
the smart grids. This sort of information is critical for avoid-
ing unexpected and sudden power outages and maintaining
the quality of grid operations and businesses. Furthermore,
such huge data may be utilized for grid operations, alerts,
demand forecasting, generation estimations, pricing changes,
and so on. Because numerous smart grid sectors are engaged
in the process, the data gathered is rather big. In addition,
there is a statutory need to give correct data as often as fea-
sible, which is difficult. Yet, several weaknesses are there in
the cyber environment’s long chain of information gathering,
analysis, computing, security, and control [14], [144].

E. APPLICATIONS AND SERVICES SECURITY
The access to IT and OT information allows the quick
physical data translation into useful information, allowing
sophisticated financial advisory platforms, distribution grid
technologies, and distributed energy management systems to
be developed [145]. The applications have resulted in some
incredible advantages for asset-rich substations. Interconnec-
tivity speeds up data flow between devices, allowing for the
automating of substation control and protection systems and
giving operational advantages. Smart grids may offer a wide
range of services and applications, including energy trading,
electricity services, energy converging, and numerous client
services.
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All of these services based on digitization depend on grid
operation, grid connectivity, data collecting, and the model-
ing of application process [145]. On the smart grid, there are
various inherent weaknesses and vulnerabilities in systems
of information technology programs that are significantly
expanded in size and extend to all sectors of services and
applications [145], [146]. All of these flaws substantially
impair the routine functioning and services of smart grids.
These vulnerabilities include:
1) Inadequate patching and frequent upgrades, resulting in

unpatched software and systems.
2) Failures in common mode.
3) Inadequate resources management.
4) Inadequate documentation of maintenance control.
5) Using obsolete versions of Operating system (OS).
6) Inadequate grid separation from the World Wide Web.
7) Shortage of OT intrusion detection systems.
8) Inadequate OT malware identification &

protection [146].

F. RUNNING ENVIRONMENT SECURITY
The operational environment of smart grids covers various
layers, ranging from technologies to community, individuals,
morality, economics, national policy, and the regulatory envi-
ronment [146], [147]. As a result, the classic grid operating
environment vulnerabilities are including a lot of non-IT
aspects, such as: Staff ineptness, such as absence of spe-
cialized skills, unreliable and dishonest behavior, and so
on; Noncompliance with national and global rules; Political,
war, or proxy wars. The majority of the aforementioned
risks should be addressed by a combination of technological
and nontechnical solutions, such as increased cyber-security
awareness, adequate advanced training, and regular control-
ling of the smart grid’s complete working environment. Since
the smart grids are traditional vital infrastructures, they may
be particularly vulnerable to assault in difficult settings. As a
result, the political and geopolitical context should not be
overlooked.

G. EVOLVING AND COMPLEX SMART GRIDS SECURITY
Smart grids are developing and changing, including increas-
ingly more IEDs and elements, connecting to multiple
network systems, supporting an increasing number of appli-
cations and functions, and interfacing with other essential
infrastructures. As a result, smart grids are a typical SoS.
Every vulnerability in just about any component of the com-
plicated advanced systems endangers the smart grid, and the
dynamism and intricacy end up making vulnerability iden-
tification and treatment much more difficult [148], [149].
Vulnerability assessment, identification, and restoration must
be handled methodically and in tandem with cyberattack
evaluation. The majority of cyberattacks target smart grid
system vulnerabilities, particularly those in components and
networked devices. The security of Smart grid is more than
just creating secure networks. A more reasonable way would
be to create an effective management of networking system

vulnerability that can swiftly react to changing situations
while causing minimal defect to smart grids. The following
are the primary duties for vulnerability management:
1) Identify as many and full vulnerabilities at all levels of

the system as feasible, as each unknown vulnerability
might lead to significant security issues. The security of
smart grids is decided by the most vulnerable link, not
the most secured one.

2) As quickly as feasible, repair or eliminate system vul-
nerabilities. Once vulnerabilities have been identified,
hidden risks should be eradicated as soon as feasible.
Many cyberattacks take use of zero-day weaknesses.

3) Association of vulnerabilities. The system’s ultimate
weakness is more than just a collection of weaknesses.
It is vital to determine their logical, functional, and phys-
ical relationships as well as their aggregation criteria.
This provides a comprehensive overview of smart grid
system vulnerabilities.

4) System vulnerabilities must be discovered and analyzed
automatically. The system of the smart grids has sev-
eral weaknesses or vulnerabilities, and it is challenging
to identify and evaluate all of them manually using
thorough approaches in a timely manner. Automated
techniques for vulnerability identification, analysis, and
management must be created.

5) Analysis of vulnerabilities and attack matches. A 100%
of the cyberattacks target single or multiple system
weaknesses. In defending and safeguarding system
security, a detailed vulnerabilities map and assaults is
quite useful.

6) To tackle the weaknesses, a systematic approach includ-
ing countermeasures is required. A single point of failure
or weakest spot in a smart grid is always a difficulty.

IV. CYBER-PHYSICAL ATTACKS
Lately, there has been an increase in interest in analyzing
Cyber-Physical System of Systems or group (CPSG) vul-
nerabilities. The usual strategy is to investigate individual
attacks on a certain system component. A CPSG is made up
of information and OT. IT corresponds to the use of networks
to handle data and the movement of digital information. OT,
on the other hand, refers to technology which controls and
monitors certain equipment like the SCADA system. IT and
OT are converging, a process called as IT-OT convergence,
and the line between them is becoming increasingly blurred.

A. DATA AVAILABILITY ATTACKS
Opponents can launch attack methods against the channel
of communication since cellular communication is widely
employed in a CPSG. We classify assaults that limit accessi-
bility as IT attacks in this study [150], [151]. These attacks are
initiated by exploited interior routers to disrupt trusted rout-
ing, lowering the overall performance of the network [151].
Naturally, attackers undertake Byzantine assaults with two
goals in mind. The initial goal is vandalism, in which
cyber-attackers claim channel emptiness while sensing data
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show that the channel is active. The 2nd goal is exploited,
in which attackers get exclusive connection to the idle chan-
nel by transmitting channel busy data when their detecting
findings show that the channel is idle. Attackers can maxi-
mize their attack usefulness by pursuing the aforementioned
goals [152]. In contrast to Byzantine attacks, which impede
availability of data by weakening the communication chan-
nel, DoS assaults obstruct regular data transit by filling the
communication channel with garbage data. A DoS attack in
a CPSG aims to interrupt communications between a control
center and field sensors or actuators. DoS attackers do not
need to understand the CPSG settings or be able to change
measurement or control information in the communication
channel. As a result of the loss of measurement data, system
operators can readily detect the assault. However, the opera-
tors are unable to stop the onslaught since they are unable to
send control signals to the actuators. The above-mentioned
incident involving Ukrainian electric power providers is an
example of a DoS attack [153], [154].

B. CONTROL SIGNAL ATTACKS
1) AURORA ATTACKS
The Idaho National Laboratory discovered the aurora gener-
ator vulnerability, in which a hypothetical attacker intention-
ally opens and closes a generator’s circuit breaker by inserting
a sequence of compromised control instructions [155]. When
the generator is unplugged from the electrical grid, it becomes
desynchronized. When the system and generator go out of
sync, the aurora attack is meant to re-close the breaker before
the protective system responds to the attack [156], [157].
Because generator protection parts are purposely delayed
minimizing needless tripping, attackers generally have a 15-
cycle window before any protection mechanism kicks in [3]
and [158].

2) PRICING ATTACKS
Retail markets are paying more attention to demand-response
systems in order to improve grid efficiency. In its most basic
form, demand-response is a control system in which con-
trol signals serve as incentives. Tan et al. [159] developed
a pricing assault on price signals by scaling and delaying.
Giraldo et al. [160] ‘‘enhanced the assault even further by
simulating an attacker who intends to raise the imbalance
between consumed and generated energy by infiltrating the
communication channel and employing an attack time series
to influence the pricing signal. Unlike one-shot attacks,
in which the attackers inject harmful data just once’’ [160],
authors of [161] evaluated assaults capable of inserting incor-
rect price data at any time and frequently over a lengthy
period of time. Long-term assaults can generate a power
imbalance, which can result in over-generation, economic
losses, and poor quality of energy. The authors devised a sen-
sitivity analysis approach to measure the impact of repeated
assaults. They used a z-transform sensitivity functionality to
represent the system’s dynamics in their investigation.

The authors of [162] enhanced the pricing assault by inject-
ing fraudulent bidding quantities and prices from prosumers
through malware. The market clearing price was altered as
a result of these assaults, and each individual prosumer’s
energy usage was altered, negatively affecting total demand
on distribution feeders. In [162], two attack possibilities were
investigated: the first intended to undermine the system’s
dependability by influencing the bid price to certain extreme
levels, while the second aimed at reaping profit over time by
influencing the bid price within bounds to prevent detection.
Prosumers are aware of these bid restrictions because of the
service agreement. If the attacker distorts the impulses to
the point where they exceed the restrictions, the modification
will be visible [161]. In comparison to the first scenario, the
assault in the second scenario has a minor influence on the
total load, making detection difficult.

C. MEASUREMENT ATTACKS
1) AGC ATTACKS
In linked power grids, Automatic Generation Control (AGC)
is a wide-area frequency control application. The controller
error is calculated by AGC using flow of power and fre-
quency information from distant sensors (ACE). AGC is
vulnerable to measurement assaults because to the lack of
a measurement verification or attack detection system. Once
hacked, it has the potential to quickly generate an imbalance
of power in the system. The adversary in this example is
a provider that intends to produce more electricity than the
assigned timetable without being noticed. Another type of
attack targets power flow sensors by employing a sustained
fake data injection attack across numerous AGC cycles.
Chen et al. [163] investigated the 4 sorts of attacks used
to accomplish the AGC attack approach, which targeted the
control of load frequency explicitly.

2) FDI ATTACKS
FDI assaults on bad data detection and state prediction are
two of the smart grid’s hottest subjects. Liu et al. [164]
were the first to show it using DC system models. They
believed that the attacker is familiar with the network settings
and topology of the whole power system, as well as the
capacity to manipulate data readings from meters. An FDI
assault has the potential to defraud the power system state
estimate, which serves as the basis for a lot of functions
of power system like contingencies and revenue maximiza-
tion [165], [166]. Falsified state estimate findings may cause
the EMS’s functioning and auto-control mechanism to mal-
function. Financial damage, unpredictable system states, and
even system voltage failure are all possible outcomes of such
attacks [167]. Authors in [168] proposed an FDI attack capa-
ble of causing physical line overflows, as shown in Figure 7.
Considering the EMS sequential information computing fea-
tures, their optimal attack vector caused line overload when
incorrect parameters caused generation dispatch. Intricately
designed cyberattacks can avoid bad data identification by
adhering to physical rules such as Kirchhoff’s circuit laws.
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FIGURE 7. FDI assaults on economic load dispatch.

3) BLIND FDI ATTACKS
With no knowledge acquisition of the power grid structure,
blind FDI threats can be built. The assault is built using
the principal component analysis (PCA) [169] estimation
approach. The topological data can be incorporated in the
connections between measurements. While, data-driven tac-
tics, particularly machine learning-based Apache’s, are an
important component of cyber-physical assaults against smart
grids. If an opponent is aware of the susceptibility of all
transmission lines that are proceeding to that bus, they can
undertake concealed FDI assaults to manipulate the state
variable on that bus. Authors in [170] developed an unsuper-
vised learning strategy to cluster the data set in circumstances
when attackers are unable to identify the eavesdropped mea-
surement related to the existing system architecture. For
dimensional reduction, the suggested data categorization uses
T-distributed stochastic neighbor embedding. Despite the fact
that attackers can gain topology information in the scenarios
mentioned above, attackers may also construct FDI assaults
with little topology knowledge [171].

a: LOAD REDISTRIBUTION
Recently, researchers have been focused on discovering the
exact assault implications [172]. Che et al. [173] investi-
gated the method by which an attacker might implicitly
recognize the intended beginning uncertainty as a system
weakness, then exploit such a weak spot to carry out LR
assaults that result in physical harm to the system. The
Security Constrained Economic Dispatch (SCED) imposes
line flow limitations depending on the improper power flow
status under the influence of the load attack vector. Severe
transmission overloads might occur when the generators
follow the dispatch directives issued by the SCED [174].
Xiang et al. [175] proposed a power system stability evalu-
ation model to quantify the effect of LR assault on long-term
power source dependability. The suggested Monte Carlo
simulation-based assessment approach considers LR assaults
that may result in load reduction. Fu et al. [176] introduced an

attacker who coordinates LR assaults with physical attacks to
target the most tripped lines throughout the cascade process
rather than the most profitable lines.

b: GPS SPOOFING ATTACKS
Spoofing attacks on PMUs in CPSGs are carried out through
GPS spoofing, in which the attacker generates false GPS
signals [177]. The other sort of this kind of attacks is known as
the time stamp assault, also known as a time synchronization
attack (TSA), and it aims to intentionally insert erroneous
time stamps, causing an incorrect phase angle in the PMU
measurements [178]. Authors of [179] devised an optimiza-
tion issue to determine the most susceptible PMUs for use in
the construction of a TSA. The state estimate error was used
to quantify the vulnerability, and a greedy method was used
to address the issue.

D. ATTACKS ON CONTROL SIGNAL MEASUREMENT
Authors of [180] proposed two coordinated cyber-physical
attacks to conceal the line outage: replaying and optimized
coordinated cyber-physical attacks. The replayed coordinated
cyber-physical attacks are highly expensive, and the real sys-
tem state differs from the manipulation measures, making it
observable by separately known-secure PMUs. The enhanced
coordinated cyber-physical attacks cancel out the effect of the
power loss on the BDD residue. Li et al. [181], [182] advo-
cated two-step cyberattacks to hide line disruptions caused
by physical attacks. Cyberattacks are divided into two stages,
the first of which is a topology-preserving assault, followed
by a load redistribution attack. An AC model is used to build
the attack vector, which includes information about the local
network and the capacity to change measurement inside the
assaulted region [183].

V. NOVELTY
In recent years, several prospective cybersecurity approaches
have been proposed for enhancing the security of smart grids
against cyber-attacks. Here are some of the key approaches:
1. Artificial Intelligence (AI) and Machine Learning (ML):

AI andML techniques have beenwidely used for detecting
and mitigating cyber-attacks in smart grids. AI and ML
can analyze vast amounts of data generated by smart
grids and detect patterns that may indicate a cyber-attack.
Additionally, AI and ML can be used to develop advanced
intrusion detection systems (IDSs) that can identify new
and unknown cyber-attacks.

2. Blockchain: Blockchain technology can be used to secure
smart grid transactions and data transfers. Blockchain
provides a decentralized and tamper-proof ledger of trans-
actions that can prevent unauthorized changes to data. This
approach can be used to secure smart grid data transfers
and ensure that only authorized users can access sensitive
information.

3. Software-Defined Networking (SDN): SDN is a network-
ing approach that separates the control and data planes
of a network. SDN can be used to create dynamic and
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programmable networks that can respond to cyber-attacks
in real-time. Additionally, SDN can be used to isolate
infected devices or networks to prevent the spread of
malware.

4. Hardware Security: Hardware security techniques such
as physically unclonable functions (PUFs) and trusted
platform modules (TPMs) can be used to enhance the
security of smart grid hardware. PUFs are hardware-based
security features that can generate unique keys for each
device, which can be used for authentication and encryp-
tion. TPMs are specialized chips that can store sensitive
data such as encryption keys and can be used to ensure the
integrity of the device.

5. Cloud Computing: Cloud computing can be used to
enhance the security of smart grids by providing secure
and scalable computing resources. Cloud computing can
be used to store sensitive data and provide secure com-
munication channels between devices. Additionally, cloud
computing can be used to develop advanced IDSs and to
perform real-time threat analysis.

6. Overall, the prospective cybersecurity approaches for
smart grids involve a combination of technologies and
techniques, including AI andML, blockchain, SDN, hard-
ware security, and cloud computing. These approaches can
help to enhance the security of smart grids and prevent
cyber-attacks.

VI. TECHNOLOGICAL FUTURE PROSPECTS FOR
CYBER-ATTACK IN SMART GRID
The technological future prospects for cyber-attacks in the
smart grid are constantly evolving as new technologies and
security measures are developed. Some of the promising
future prospects for enhancing smart grid cybersecurity are
discussed below:
1. Artificial Intelligence (AI) - AI has the potential to

improve smart grid cybersecurity by automating threat
detection and response. Machine learning algorithms can
be trained to recognize and classify anomalous behavior in
the grid’s systems, allowing for early detection of cyber-
attacks.

2. Blockchain - Blockchain technology has the potential to
enhance smart grid cyber-security by providing a secure
and tamper-proof record of all transactions on the grid.
This can help prevent unauthorized changes to the grid’s
systems and data.

3. Quantum computing - Quantum computing could revolu-
tionize smart grid cyber-security by providing exponen-
tially faster processing speeds, making it easier to analyze
vast amounts of data and detect cyber-attacks in real-time.

4. Edge computing - Edge computing involves processing
data closer to the source of the data, reducing latency and
improving response times. This can be particularly useful
in smart grid cybersecurity, where fast response times are
essential to prevent cyber-attacks.

5. Internet of Things (IoT) security - The proliferation of IoT
devices on the smart grid presents a significant security

TABLE 2. Main abbreviations.

risk. Future cybersecurity measures will need to focus on
securing these devices and ensuring they are not vulnera-
ble to cyber-attacks.

6. Cloud security - The use of cloud computing in the smart
grid can improve scalability and reduce costs, but it also
presents security challenges. Future cybersecurity mea-
sures will need to focus on securing cloud infrastructure
and data.

7. Threat intelligence Cyber-attack detection can be
improved by integrating threat intelligence data from
multiple sources, such as public and private sector orga-
nizations. This can help identify emerging threats and
prevent cyber-attacks before they occur.

Overall, the technological future prospects for cyber-attacks
in the smart grid are varied and evolving. As new technologies
emerge and cybersecurity threats evolve, smart grid operators
will need to continually adapt and implement new security
measures to ensure the grid’s safety and reliability.

VII. CONCLUSION
Cyber-threats to the security of smart grids are a serious topic
that faces several hurdles from a variety of assaults. The
smart grid dangers described in this paper were di-vided into
two categories: system inherent vulnerabilities and external
cyberattacks. Thematic taxonomy of cyberattacks on smart
grids is examined in full using cutting-edge technologies
that describe their assault plan, effects, and detection meth-
ods. Furthermore, blockchain technology and AI approaches
are being considered as potential solutions for cyberattacks
on smart grids. Despite the fact that the aforementioned
technologies reliably identify assaults on smart grids, a few
issues remain, most notably phony topological in-formation,
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detection of faulty data, security flaws, incorporation of big
data, blockchain, and so on. Since a result, future research
directions are suggested from the standpoint of developing
technologies for the vigorous cyber-security of smart grids
against sophisticated cyberattacks, as new attack strategies
are constantly uncovered.

This paper utilized the NSLKDD datasets as a benchmark
for evaluating a classifier model’s effectiveness in identify-
ing intruder attacks within the realm of IoMT. The datasets
consisted of various types of attacks, including DoS attacks,
probing attacks, u2R attacks, and remote to local assaults. The
approach employed SML and RNN techniques, which proved
to be suitable for IoMT scenarios that utilize peer-to-peer
unique internet protocol addresses to connect smart medical
devices. Furthermore, our research focused on strengthening
the cybersecurity of existing power grids by introducing a
two-stage learning-based solution. This solution combined
spatial domain methods and im-age-based DL approaches
to detect and identify FDIAs (False Data Injection Attacks).
Initially, the issue of FDIA detection and localization was
addressed as a multi-label classification task, later transi-
tioning into an image recognition task. Through our efforts,
we successfully developed a robust CNN-based multiclass
classifier that outperforms state-of-the-art detectors.
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