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ABSTRACT Salsa is themost well-known stream cipher and a finalist of the eSTREAMproject. The concept
of probabilistic neutral bits (PNBs) first presented by Aumasson et al., is the most important step in the
cryptanalysis of Salsa. In this paper, we provide a strategy to find a better set of PNBs and we improve the
existing attacks. Our attack complexity is 2210.38, which is an improvement of the latest work at ASIACRYPT
2022. We also revisit the work of Ghafoori et al. (ISPEC 2022). In their study, they used a PNB-based
differential attack to present a key recovery attack on Salsa20/8 with a time complexity of 2144.75. They
claimed their approach was the most effective single-bit differential attack to date. Our paper challenges this
claim, providing experimental results and reasoned arguments to support our case.

INDEX TERMS Differential cryptanalysis, PNBs, stream cipher, Salsa.

I. INTRODUCTION
Symmetric key ciphers serve as crucial tools for safeguarding
security and privacy. Within this realm, two prominent
categories emerge based on the nonlinear operations they
employ: S-box-based ciphers, which rely on substitution
boxes, and ARX ciphers, constructed solely through modular
additions, bit rotations, and bitwise XOR operations. The
only way to increase trust in symmetric key cipher once it
is constructed is to keep trying to assess its security. Many
attacks exist to evaluate the security of symmetric key ciphers.
Themost two important ones are differential cryptanalysis [5]
and linear cryptanalysis [19]. Generally, the attacks fall into
two categories; the distinguisher and the key recovery part.
In this paper, we focus on key recovery of the cipher using
differential cryptanalysis.

Daniel J. Bernstein proposed the design of Salsa stream
cipher in April 2005 [2], which provides a security of
256-bit against key-recovery attacks. Salsa stream cipher
has the option of supporting keys with a 128-bit security
level. Salsa is an ARX-based stream cipher design. Salsa
stream cipher, which has 20 rounds, was submitted by the
designer to the eSTREAM project [21] under the ECRYPT
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Stream Cipher Project. Salsa20/12, a Salsa stream cipher
variant with 12 rounds, was one of the selected candidates
for the eSTREAM software portfolio when it was finalized in
September 2008. Later, Bernstein made some modifications
in the design of Salsa so that after each round gets a good
diffusion and these changes create a stream cipher called
ChaCha [3]. Since Salsa is a famous stream cipher, in order
to update the security margin, security analysis is essential.
In this work, we discuss a key recovery attack on reduced
round Salsa.
Related Work: Crowley introduced the cryptanalysis on

Salsa in 2005 [9]. For the cryptanalysis of these type of
ciphers, Aumasson et al. developed the idea of Probabilistic
Neutral Bits (PNBs) at FSE 2008 [1]. After that, a lot
of authors offered small amendments to Aumasson et
al.’s attack. As an instance, in [22] the idea of Column
Chaining Distinguisher (CCD) was proposed to achieve some
incremental improvement over Salsa and ChaCha. In [17]
Maitra et al. attacked 8 rounds of Salsa with a key search
complexity of 2247.2. To achieve specific improvements over
the prior findings, Maitra [16] put forward IV selection.
Later, Dey and Sarkar [10] improved the attack by choosing
appropriate values for the PNBs. Choudhari and Maitra [6]
significantly improved the attack against Salsa and ChaCha
by using multibit differential distinguishers. Subsequently,
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Coutinho et al. [7], [8], presented the first differential-linear
distinguishers that can reach rounds 7 and 8 of the Salsa
cipher. Additionally, they enhanced the efficacy of PNB-
based key-recovery attacks against 7 and 8 rounds of Salsa.
In [12] Ding provided the related-cipher attack with time
complexity 2193.58 using two separate IVs in Salsa20/12 and
Salsa20/8 with a secret key. Also, in [13] Ghafoori et al.
proposed a PNB-based differential attack on 8 rounds of Salsa
with time complexity 2144.75.
Our Contribution: In this work, we improve the key

recovery attack on 8-round Salsa than ASIACRYPT
2022 paper [7]. For this, we apply a new strategy to find
the PNBs set. Using this strategy, we increase the PNBs
set and enhance the attack complexity for 8-round Salsa.
Also, we show that the forward 5-round differential biases
presented in the paper [13] are incorrect. As a result, their
proposed attack on 8-round Salsa at ISPEC 2022 [13]
becomes invalid. In the following Table 1, we provide our
findings with existing results.
Paper Outline: This paper is structured as follows: in

section II we define our notation and illustrate the structure
of Salsa stream cipher. In section III, we discuss about basic
attack framework using the concept of probabilistic neutral
bits (PNBs). We review the work of ASIACRYPT 2022 [7]
and provide a strategy to find a better set of PNBs that
improve the attack complexity over the previous findings in
section IV. In the following section V, we review the work
of ISPEC 2022 [13], we show some flaws in their work and
their key recovery attack for 8 rounds is incorrect. After that,
we conclude the paper in the section VI.

II. NOTATIONS AND STRUCTURE OF SALSA
In the following Table 2, we list the notations used in the
paper.

A. SALSA
Salsa operates on 64 bytes, comprising 16 words of
32 bits each. The state is represented as a 4 × 4 matrix,
where each element is a 32-bit word. The state of Salsa
initialized with 256-bit key k0, k1, . . . , k7 where each ki
is a 32-bit integer, two 32-bit nonces v0, v1, two 32-bit
counters t0, t1(we may also use the terms IV to refer to
the nonce and counter words), and four constant c0 =

0x61707865, c1 = 0x3320646e, c2 = 0x79622d32
and c3 = 0x6b206574 for Salsa, the following state of the
matrix is:

S =


S[0] S[1] S[2] S[3]
S[4] S[5] S[6] S[7]
S[8] S[9] S[10] S[11]
S[12] S[13] S[14] S[15]

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3


The state matrix is updated in each round by a

Quarter-Round Function (QRF). This QRF is a nonlinear
function that operates on 4-tuple (Sm−1[a], Sm−1[b], Sm−1[c],
Sm−1[d]) to give an output of 4-tuple (Sm[a], Sm[b], Sm[c],
Sm[d]) where each of Sm[a], Sm[b], Sm[c], Sm[d] is a 32-bit

FIGURE 1. Quarter round function of salsa.

word. The QRF is as follows:

Sm[b] = Sm−1[b] ⊕ ((Sm−1[d] ⊞ Sm−1[a]) ≪ 7),

Sm[c] = Sm−1[c] ⊕ ((Sm−1[a] ⊞ Sm[b] ≪ 9),

Sm[d] = Sm−1[d] ⊕ ((Sm[c] ⊞ Sm[b]) ≪ 13),

Sm[a] = Sm−1[a] ⊕ ((Sm[d] ⊞ Sm[c]) ≪ 18).

Here ⊞ denotes addition modulo 232, ⊟ denotes sub-
traction modulo 232, ⊕ is the usual XOR operation,
and ≪ is left cyclic rotation. Figure 1 represents the
QRF of Salsa. The state matrix of Salsa is updated by
using odd round and even round alternatively. Odd rounds
and even rounds are different. In an odd number of
rounds that the original Salsa specification referred to as
column-rounds, applying the nonlinear operation QRF to
columns (S[0], S[4], S[8], S[12]), (S[5], S[9], S[13], S[1]),
(S[10], S[14], S[2], S[6]), (S[15], S[3], S[7], S[11]). In an
even number of rounds that are referred to as the
row rounds, applying the nonlinear operation QRF to
rows (S[0], S[1], S[2], S[3]), (S[5], S[6], S[7], S[4]), (S[10],
S[11], S[8], S[9]), (S[15], S[12], S[13], S[14]). SR is the
updated state after the R round applied to the initial state S0.
A keystream of 512 bits is obtained as Z = S⊞SR. Here, one
should note that each round is reversible; we can compute
S i−1 from S i. For more details on the same, the reader may
have a look on [4].

III. ATTACK FRAMEWORK USING
PROBABILISTIC NEUTRAL BITS
Most of the important attacks in the literature on security
analysis of Salsa and ChaCha are based on the differential
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TABLE 1. Comparison of attack complexities.

TABLE 2. Notations.

attack with probabilistic neutral bits (PNBs) technique that
concept was introduced by Aumasson et al. [1]. Here we
discuss the probabilistic neutral bits (PNBs) and the attack
model using the probabilistic neutral bits (PNBs) technique.
We consider the secret key size 256 bits for this attack
discussion. In the following, we start the discussion with
differential biases and then the PNBs.
Forward Differential Biases: Initially, we initialize the

two-state matrices S0 and S
′0, which consist the same

keywords (k0, k1, . . . , k7) and constants (c0, c1, c2, c3). The
S

′0 matrix, however, is made up of a single bit change in
the nonce v or counter t . For a given difference 1S0[i][j] =

1 to the initial matrix S0 which is called input difference,
we obtain the corresponding initial state matrix S

′0 as v′ =

v⊕ 1v or t ′ = t ⊕ 1t , where v and t indicate the difference
of one bit at the counter or nonce. Next, we use the starting
state matrices S0 and S

′0 as inputs to perform the Salsa round
function and obtain the difference in a single bit of output.
1Sr [p][q] = Sr [p][q] ⊕ S

′r [p][q] is the output difference

from the r-round internal state matrices Sr and S
′r . For all

possible choices of nonces and counters and fixed key, the
single-bit forward differential probability is defined as

Pr(1Sr [p][q] = 1 | 1S0[i][j] = 1) =
1
2
(1 + ϵf ),

where ϵf stands for the forward differential bias. If the key
bits are random, we calculate the value of ϵ∗

f as the median of
ϵf [1]. Here throughout our work, we calculate the differential
bias by taking random key bits and we denote this as ϵf for
avoiding the notation’s confusion.
Probabilistic Neutral Bits: Aumasson first introduced the

PNBs idea in 2008. This idea is useful to reduce the
complexity of searching 256 bits of the secret key. Among
the 256 bits key, there are some key bits, say n bits, that have
negligible influence on the differential that we call invaluable
key bits and other 256 − n bits have a significant influence
on the differential that we call valuable key bits. Using these
two sets of key bits one can recover the secret key.
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To differentiate these two sets Aumasson at el. [1]
calculates the neutrality measure of each key bit and the
neutrality measure is defined as follows:
Definition 1 (Neutrality Measure): The neutrality mea-

sure of the key bit position k concerning the output difference
is defined as φk , where 1

2 (1 + φk ) is the probability that
complementing the key bit k does not change the output
difference.

By performing the following procedure, we compute the
neutrality measure and divide the secret key into two parts
invaluable key bits and valuable key bits:
1. Compute the keystream blocks Z = S0 ⊞ SR and Z ′

=

S
′0 ⊞ S

′R, where (SR, S
′R) be a R-round internal state

matrix pair corresponding to the input pair (S0, S
′0) with

1S0[i][j] = 1.
2. Change the key bit position k of the initial input pair

(S0, S
′0) to obtain the new pair (S̄0, S̄

′0).
3. Apply the inverse round function of Salsa on Z ⊟ S̄0 and

Z ′ ⊟ S̄
′0 for R− r rounds to obtain (Y ,Y ′).

4. Find 8[p][q], where 8[p][q] = Y [p][q] ⊕ Y ′[p][q] for
the fixed output difference bit and Y [p][q] and Y ′[p][q]
denote the qth bit of pth word of Y and Y ′ respectively.

5. Compute the neutrality measure of the key bit as

Pr(1Sr [p][q] = 8[p][q] | 1S0[i][j] = 1) =
1
2
(1 + φk ),

for different initial state matrices with the same input
difference.

6. Set a threshold φ and place all key bits with φk ≥ φ into
the set of n-bit invaluable key bits and those with φk < φ

into the set of m-bit valuable key bits.
The main idea behind key recovery is to search the two

sets (PNBs and the non-PNBs1) separately. Suppose the size
of the subset containing PNBs is n, which implies that the
number of non-PNB bits is m = 256 − n.
Attack after finding PNBs and complexity computation:

Our goal is to determine the values of the non-PNBs without
the knowledge of the accurate values of the PNBs. It is to
be noted that changing the PNBs affects the output with a
low probability. The attacker runs both states in the backward
direction while guessing the valuable key bits with random
values for the PNBs. Using the PNBs described in [1], the
actual attack method is outlined as follows:

1. For a random fixed key, gather N pairs of key stream
blocks (Z ,Z ′),
where each of which is produced by states using a
random nonce and counter (with appropriate ID).

2. For every choice of them valuable key bits, perform the
following procedure:
(a) Compute the bias ϵf using the N pairs of initial

states.
(b) Set the random values for the invaluable key bits

and obtain the states Ŝ and Ŝ ′.

1PNB means invaluable key bit and non-PNB means valuable key bit.
These are interchangeably used.

(c) Reverse the states Z⊟Ŝ and Z ′⊟Ŝ ′ forR−r rounds
and obtain the states Ŷ and Ŷ ′ respectively.

(d) Compute 8̂[p][q] = Ŷ [p][q] ⊕ Ŷ ′[p][q] and the
probability using the N pair of initial states as

Pr(8̂[p][q] = 1Sr [p][q]|1S0[i][j] = 1)

=
1
2
(1 + ϵb).

(e) Also, we compute the

Pr(8̂[p][q] = 1 | 1S0[i][j] = 1) =
1
2
(1 + ϵ)

where ϵ = ϵf · ϵb provided the two events are
independent. If Pr(8̂[p][q] = 1 | 1S0[i][j] = 1)
offer a significant bias ϵ, we conclude that our
guess of valuable key bits is correct. Once the
valuable key bits have been identified, we may
recover the invaluable key bits by exhaustive
search.

When the PNBs are given random values in this attack,
the bias in the backward direction is known as the backward
bias and is denoted by ϵb. For m valuable key bits, there are
2m possible sequences among which only one sequence is
correct. Considering the null hypothesis H0 that the selected
sequence is incorrect, the 2m − 1 sequences satisfy the null
hypothesis, and only one satisfies the alternative hypothesis
H1 that the selected sequence is correct. In this attack
scenario, two possible errors can occur:

• Error of non-detection: The selected sequence is
correct, but cannot be detected. The probability of this
error occurring is Pnd .

• False alarm error: The selected sequence is incorrect
albeit offers a significant bias. The probability of this
event is Pfa.

Aumasson et al. in [1] used a result given by
Neyman-Pearson decision theory for achieving the bound
on these probabilities. Concerning this result, the number of
samples is

N ≈

√
α log 4 + 3

√
1 − (ϵf ϵb)2

ϵf ϵb

2

,

and time complexity of the attack is given by

2m(N + 2nPfa) = 2mN + 2256−α.

Here, the probability of non-detection Pnd = 1.3× 10−3 and
probability of false alarm is Pfa = 2−α.

IV. REVIEWING THE WORK OF ASIACRYPT 2022
At ASIACRYPT 2022 Coutinho et al. [7], provided the key
recovery attack on 8 rounds of Salsa with time complexity
2217.14 and data complexity 2213.14. They provide a new
technique called Bidirectional Linear Expansions (BLE) and
find the single-bit differential correlation for the bit S5[4][7],
here we summarise their work briefly.
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A. BIDIRECTIONAL LINEAR EXPANSIONS
In [7] and [8], Coutinho et al. introduced the BLE approach to
enhance the attacks against Salsa. Using this technique, they
investigated the expansion of a single bit in both forward and
backward directions and improved the key recovery attack on
both 7 and 8-round Salsa. The backward linear approximation
is used to search for correlations in the previous round using
the techniques of BLE. For instance, if we can compute all
possible single-bit differentials form rounds of Salsa, we have
a backward linear approximation.

Sm+1[i][j] = Sm[i1][j1] ⊕ Sm[i2][j2] ⊕ · · · Sm[ik ][jk ]

Then, we can aggregate the bias for each single bit from
the previous round to achieve a differential bias for the
next rounds. Mathematically, it can be expressed as: if
Pr(1Sm[ip][jp] | ID) =

1
2 (1+ϵp) and Pr(1Sm+1[i][j] | ID) =

1
2 (1+ ϵf ) then using the Piling-Up Lemma [19], the targeted
bias is ϵf =

∏k
p=1 ϵp.

Using this strategy, one can compute the differential bias
for 5 rounds of Salsa. This is discussed in the following.

B. SINGLE BIT DIFFERENTIAL BIAS FOR
5 ROUNDS OF SALSA
In [7] and [8], Coutinho et al., provided the technique to find
the single-bit differential correlation for the bit S5[b][7] using
BLE. Using Linear Approximations for Salsa, the bit S5[b][7]
in the fifth round can be written as

S5[b][7] = S4[a][0] ⊕ S4[b][7] ⊕ S4[d][0]

with probability 1, where (a, b, d) ∈ {(0, 4, 12), (5, 13, 1),
(10, 2, 6), (15, 7, 11)}. Using this relation, first, they find the
bias of three bits in the fourth round, and then combining
these biases they get the bias for a bit S5[b][7] in the fifth
round.

They start with input difference 1S0[7][31] = 1 i.e.,

1S0 =


0 0 0 0
0 0 0 0x80000000
0 0 0 0
0 0 0 0

 .

By propagating the differential using the algorithm from [15]
starting with the input difference 1S0 and picking the one
that minimized the hamming weight after one round and get
the differential state matrix as follows:

1S1 = 9 =


0 0 0 0x00000000
0 0 0 0x80000000
0 0 0 0x00001000
0 0 0 0x40020000


Here the given input difference 1S0 generates output
difference at four places after one round with probability
1
2 . Figure 2 illustrates the differential part of their proposed
attack.

To estimate the transition probability from 1S1 to
1S5[b][7], first they find the differential bias for the
following bits S4[0][0], S4[4][7] and S4[12][0] in the fourth

TABLE 3. Computational result.

round using 245 random samples, one can experimentally also
check the following bias. In the following Table 3, we provide
the biases.

The differential bias from round 1 to round 5 of Salsa is
given by

Pr(1S5[4][7] = 0|1S1 = 9) =
1
2
(1 + ϵf )

where ϵf = 2−42.01.

Applying this 5-round forward differential and PNBs idea
they mount an 8-round key recovery attack on Salsa. In the
following, we discuss their attack complexity.
Attack complexity: In their attack, they use a 5-round

forward differential and 3-round in the backward direction to
find the PNBs set. They obtained a 152 size PNBs set which
is as follows:

{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 39, 40,
50,51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 100, 103, 104, 105, 106, 107, 108,
109, 110, 115, 116, 117, 118, 119, 120, 121, 122, 128, 129,
139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152,153, 159, 160, 161, 162, 163, 164, 165, 166, 167,
168, 174, 175, 176, 177, 178, 179, 180, 181, 186, 187, 192,
193, 194, 195, 199, 200, 204, 205, 206, 207, 208, 213, 218,
224, 225, 231, 232, 237, 238, 239, 240, 245, 249, 250, 255}.

They obtained backward bias ϵb = 0.000305 for φ = 0.3.
Here the attack has to repeat two times on average since the
transition probability from 1S0 to 1S1 = 9 is 1

2 . Thus
the attack has data complexity 2113.14 and time complexity
2217.14 for α = 14.

C. STRATEGY TO FIND A BETTER SET OF PNBs
Here we provide the strategy to find the PNBs:
1. We assign a threshold bias φ1 to find the PNBs and

select those key bits as PNBs that give a higher
neutrality measure than the threshold. This procedure
is very similar to the traditional method. But it’s not
the complete set of PNBs. Suppose for this φ1 we have
n1 number of PNBs set A.

2. After that we choose a second threshold φ2 that is less
than the threshold φ1. In this step, since φ2 is very small,
we may get k number of sets say A1,A2, . . . ,Ak such
that each set contains n2 (> n1) number of candidates
for PNBs. Here each set Ai contains n1 number of
candidates that are found in the first step. It may happen
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FIGURE 2. Bidirectional linear expansion of ID and OD.

that from each set remaining n2 − n1 candidates are
different, so we have k · (n2 − n1) many candidates.

3. Nowwe arrange the k ·(n2−n1) candidates in decreasing
order with respect to the neutrality measures.

4. In this step, we choose one by one candidate from
k ·(n2−n1) many candidates according to the order. Then
we check the backward bias, if it gives better complexity
than the existing one then this key bit we considered
as PNB. By filtering in this way we can construct the
set B. Therefore, we find the complete set of PNBs as
P = B ∪A.

For a better understanding, one can take a look at Figure 3.
Discussion: In [11], Dey et al. provided a three-step

strategy to find a better set of PNBs. Here we discuss the
comparison between our strategy and theirs. In their strategy,
they first shortlist the possible number of PNBs by assigning
the threshold as φprelim. For this threshold, suppose the
number of PNBs is nprelim and A denotes the set of PNBs.
After that, they set the threshold to φdirect , which is higher
than φprelim. For this threshold, supposse the number of PNBs
is ndirect and B denotes the set of PNBs. So, clearly, B ⊂ A.
Now, they add more PNBs from A − B by following their
strategy.

In our case, we do not shortlist the set of PNBs at the
beginning. We first choose the threshold as φ1 and select
the key bit with a neutrality measure higher than φ1. Then,
consider those key bits as PNBs, and the set of PNBs is
denoted by A. After that, we add a few more PNBs by
assigning the second threshold φ2. However, the second
threshold is very small. Consequently, we may obtain k sets
A′
is, where A ⊂ Ai. Thus, we add the remaining candidates

by following our strategy outlined in IV-C.
Our Computational Result and Attack Complexity: In our

attack evaluation we consider the same ID = 1S0[7][31] and
OD = 1S5[4][7] as provided in [7]. Here we set the first
threshold φ1 = 0.36 and we found 129 PNBs as follows:
A = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 39,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 103, 104, 105, 106, 107, 108, 115,
116, 117, 118, 119, 120, 139, 140, 141, 142, 143, 144, 145,

146, 147, 148, 149, 150, 151, 152, 159, 160, 161, 162, 163,
164, 165, 166, 167, 174, 175, 176, 177, 178, 179, 180, 192,
193, 194, 199, 204, 205, 206, 207, 224, 225, 237, 238, 239,
241, 249, 255}.

After that according to the strategywe set another threshold
φ2 = 0.24. Then we calculate the five-set A1,A2, . . . ,A5
(k=5), in each of the five sets we have 129 PNBs common,
and in each set, we have 31 candidates extra. Now we make a
new set U by collecting candidates from each Ai

2 excluding
129 common PNBs. Here the set U contains 88 distinct
candidates.

Then we choose one by one candidate from U and
check the backward bias. If the bias is better then we add
this candidate to the PNB set. Therefore by this filtering,
we found 34 candidates that give better backward bias. So the
cardinality of the final set of PNBs becomes 163.

Here we aim to improve the attack on 8-round Salsa.
We apply a 5-round forward differential for the attack. So,
we must travel back 3 rounds in the backward direction to
mount the attack. We obtain backward bias ϵb = 0.00016 in
this instance. We have the following list of 163 PNB bits
P = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 37, 38, 39,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 103, 104, 105, 106, 107, 108, 115,
116, 117, 118, 119, 120, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 159, 160, 161, 162, 163,
164, 165, 166, 167, 174, 175, 176, 177, 178, 179, 180, 192,
193, 194, 199, 204, 205, 206, 207, 224, 225, 237, 238, 239,
241, 249, 255, 128, 129, 153, 154, 40, 168, 47, 181, 182, 186,
187, 188, 195, 200, 201, 75, 76, 208, 209, 213, 214, 218, 97,
226, 100, 231, 232, 250, 109, 110, 240, 245, 121, 122}.

One can verify the backward bias using our source code.3

So, we get data complexity of 2116.29 and time complexity
2209.32 for α = 52.33, and we have to repeat this attack two
times on average because transition probability from 1S0 to
1S1 = 9 is 1

2 . So, the final key recovery attack for 8-round
Salsa has data complexity 2117.29 and time complexity 2210.32.

2In Appendix we have provided the setsAi for i = 1, 2, 3, 4, 5.
3https://github.com/Rahul150192/Salsa/tree/main
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FIGURE 3. Diagram of PNBs finding strategy.

Remark: In our attack, we restrict the Hamming weight of
the differential state matrix to 4 after one round in search
of better 5 rounds forward distinguisher. Also, to find the
right pairs for satisfying the restriction in the first round
one have to repeat the procedure twice on an average.
In this attack scenario, we get the data complexity 2117 for
8 rounds key recovery attack. In order to execute the attack,
we need to generate this amount of data without hampering
the restriction of hamming weight mentioned above. In the
first round, the other columns have no influence on the input
difference columns, we have 96 free IV bits available, which
have no influence in the input difference column.

Apart from that, experimentally, we have verified that
there are additional 23 bits of S[7] (v1) can be regarded as
almost neutral. Specifically, given that the Hamming weight
of difference after one round is 4, altering those bits of (v1)
will still produce 4 differences. The positions of these bits are
{0, 1, 2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26}. Using one billion random keys, we observed
that this neutrality holds with a probability of 0.92. Conse-
quently, we essentially have a total of 96 + 23 = 119 free
bits, implying that we can construct 2119 different IVs which
do not hamper the restriction of minimum hamming weight
with probability 0.92. This makes our data complexity of 2117

reasonable.

V. REVIEWING THE WORK OF ISPEC 2022
The existing methodology for differential cryptanalysis of
Salsa stream cipher involves examining the ID − OD
pair with the best differential bias from all potential pairs
suitable for the attack. Initially, the ID is determined, and
subsequently, the corresponding OD with the best forward
differential bias is selected. In essence, previous research has
concentrated on evaluating the differential bias at specific

ID − OD pairs and then attempted to identify the subset of
PNBs suitable for attacking a particular round of Salsa.

At ISPEC 2022 [13], Ghafoori et al. significantly improved
the key recovery attack using the PNB-based differential
attack. For their work, they followed the attack idea on
ChaCha proposed at ACISP 2022 [20]. In the attack, they
first find the output difference (OD) position where the PNB
set is larger with better backward bias. They concentrate
on thoroughly analyzing the neutrality measures of the
256 key bits concerning all potential OD bits. They used
Algorithm 1 [13] to calculate the neutrality measures for
256 key bits concerning 512 OD bits. In an attempt to
determine the best ID position, all 128 available ID positions
were systematically explored. Surprisingly, no substantial
influence of the ID on the neutrality measure of the key
bits was discernible. Consequently, the decision was made
to opt for a random ID selection in this phase of the
experiment.

We review their work and show that there are some flaws
in their work.
Claim of [13] on forward differential bias:Analysing each

output difference position, they obtained the OD position
1S5[0][18] with best neutrality measure. Then they used
a 225 IDs sample for each of the 210 key trials to find
the ID position with the best forward differential bias (ϵf ).
They obtained ID positions 1S0[6][31], 1S0[6][15], and
1S0[7][9] with forward differential biases of 0.000829,
0.000793, and 0.000767, respectively, for the OD position
1S5[0][18]. Then, they selected 1S0[6][31] as the ID
position for the attack, as the obtained differential bias is
higher than the others.
Our observation: To validate a bias experimentally, the

number of random samples plays an important role. From the
paper [18], we know the following theorem.
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TABLE 4. Comparison of the claimed bias in [20] with our observation.

Theorem 1 ([18]): Let X , Y be distributions, and suppose
that the event e happens in X with probability p and in Y with
probability p(1+ q). Then for small p and q,O( 1

pq2
) samples

suffice to distinguish X from Y with a constant probability of
success.

It can be easily verified that if one chooses 64
pq2

random
samples for the experiment, the distinguishing success
probability will be 99.99%. Here, in this case, p is 1

2 and
q is the differential bias for the targeted event. At ISPEC
2022 [13] paper, their obtained differential biases are q1 =

0.000829, q2 = 0.000793, and q3 = 0.000767 as mentioned
above. The required number of random samples to verify
these biases with 99.99% success probability are 64

pq21
≈

227.47, 64
pq22

≈ 227.60 and 64
pq23

≈ 227.7 respectively. Therefore,

given their claim is correct, 228 many random samples are
sufficient to verify their obtained differential biaseswithmore
than 99.99% success probability.

We observe that their obtained 5-round forward differential
biases are incorrect. We use 240 random samples to verify
their differential biases. According to the formula 64

pq2
, any

bias higher than 2−16.5
≈ 0.000011 is supposed to be

detected using these many samples.
For the input difference positions 1S0[6][31], 1S0[6],

[15] and 1S0[7][9], we get the forward differential biases
0.000001577, 0.00000002045 and −0.0000008128 respec-
tively for the output difference position 1S5[0][18] using
240 random samples. This is not only significantly smaller
compared to their claim, but also smaller than 2−16.5.
In Table 4, we provide the comparison of their claim and the
bias obtained by us.

Therefore, we can claim than none of their claimed
distinguisher provides a bias higher than 2−16.5

≈ 0.000011.
We have provided a github4link for the program of one of
the ID positions. The reader can verify the biases by suitably
changing the input difference position.

However, note that, the biases obtained by us are not
accurate as the number of random samples is not sufficient
to verify such small values. Our experimental result only
verifies that the biases are not higher than 0.000011.

In the key recovery attack, they used the forward bias
0.000829 to mount the attack. Since this bias is not
accurate, so their 8-round key recovery attack becomes
invalid.

4https://github.com/Rahul150192/Salsa/tree/main

VI. CONCLUSION
In this study, we have reviewed two recent attacks [7], [8],
[13] on Salsa as well as improved the attack on reduced round
Salsa. We have presented a strategy for constructing a better
set of probabilistic neutral bits. We have demonstrated that
with complexity 2210.38, it is possible to recover the secret
key of 8-round Salsa. Also, we have shown that the 5-round
forward differential biases presented at ISPEC 2022 [13] are
inaccurate, and because of that their 8-round key recovery
attack for Salsa becomes meaningless.

APPENDIX
PNBs SETS
Here we list the five PNBs sets of size 160 as follows:
A1 = {4, 5, 6, 7, 8, 9, 10, 12, 11, 89, 82, 13, 83, 84, 14, 85,

90, 86, 88, 93, 15, 91, 94, 87, 95, 92, 16, 17, 50, 18, 51, 19,
139, 52, 140, 141, 53, 20, 142, 64, 21, 54, 65, 143, 66, 22, 55,
144, 67, 23, 56, 160, 145, 68, 161, 24, 57, 174, 146, 175, 162,
255, 69, 25, 58, 103, 115, 147, 116, 104, 163, 176, 70, 26, 59,
148, 117, 105, 71, 27, 60, 149, 177, 164, 36, 118, 106, 28, 37,
61, 159, 204, 72, 150, 119, 62, 63, 29, 178, 205, 237, 30, 31,
38, 73, 107, 165, 192, 151, 193, 179, 206, 238, 39, 108, 166,
239, 207, 120, 180, 224, 40, 194, 152, 240, 121, 74, 186, 225,
167, 199, 231, 187, 208, 181, 249, 233, 232, 241, 123, 155,
134, 112, 138, 129, 200, 99, 122, 188, 196, 248, 223, 0,183,
209, 212, 228, 229, 157, 253},
A2 = {4, 5, 6, 7, 8, 9, 90, 10, 13, 11, 14, 91, 82, 12, 83,

84, 85, 15, 93, 86, 92, 87, 88, 94, 89, 95, 16, 17, 50, 18, 51,
139, 140, 19, 52, 20, 141, 53, 64, 142, 21, 65, 143, 54, 66, 22,
55, 144, 67, 23, 56, 145, 160, 68, 24, 161, 57, 174, 175, 146,
162, 255, 69,103, 25, 58, 115, 147, 176, 116, 104, 163, 26,
70, 59, 148, 117, 105, 177, 164, 60, 71, 27, 36, 118, 149, 28,
61, 106, 159, 72,204, 37, 150, 29, 62, 63, 119, 178, 165, 107,
30, 31, 38, 73, 205, 237, 206, 238, 179, 151, 192, 120, 166,
39, 152, 193, 224, 108, 74, 231, 207, 239, 180, 249, 186, 187,
225, 167, 208, 194, 240, 109, 199, 209, 226, 200, 181, 250,
251, 241, 154, 112, 188, 218, 190, 133, 130, 98, 252, 217,
170, 157, 173, 97, 49, 227, 96, 99, 197},
A3 = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 90, 92, 82, 84, 93,

83, 85, 94, 15, 95, 91, 89, 16, 86, 87, 88, 14, 17, 50, 18, 19,
51, 139, 140, 141, 52, 20, 53, 64, 142, 143, 21, 65, 54, 66,
22, 55, 144, 67, 160, 23, 56, 145, 161, 24, 68, 57, 174, 146,
162, 175, 25, 69, 255, 103, 115, 58, 147, 176, 116, 104, 163,
26, 59, 70, 117, 148, 105, 71, 27, 60, 164, 177, 149, 118, 36,
159, 61, 28, 106, 72, 204, 37, 150, 178, 119, 29, 62, 63, 30,
205, 237, 31, 38, 107, 165, 73, 206, 238, 192, 151, 120, 108,
179, 193, 39, 121, 239, 207, 224, 180, 166, 74, 109, 152, 225,
194, 208, 240, 249, 213, 181, 167, 199, 128, 241, 226, 195,
40, 201, 183, 227, 245, 235, 125, 244, 97, 212, 248, 198, 190,
170, 203, 168, 126, 134, 217, 114, 169, 49},
A4 = {4, 5, 6, 7, 8, 9, 10, 11, 12, 82, 83, 13, 14, 90, 88, 91,

84, 85, 86, 15, 87, 89, 92, 93, 95, 94, 16, 17, 50, 51, 18, 139,
140, 19, 52, 141, 20, 142, 53, 64, 21, 65, 54, 143, 66, 22, 55,
144, 67, 160, 23, 56, 145, 161, 24, 68, 174, 57, 146, 175, 162,
69, 25, 58, 255, 103, 115, 147, 116, 176, 104, 163, 70, 26, 59,
148, 117, 105, 177, 27, 71, 60, 149, 164, 36, 106, 118, 159,

VOLUME 12, 2024 31743



C. Dey et al.: Enhancing the Key Recovery Attack on Round Reduced Salsa

28, 61, 204, 72, 37, 150, 62, 29, 119, 63, 178, 205, 237, 30,
31, 38, 107, 165, 151, 73, 120, 192, 179, 238, 206, 39, 108,
166, 207, 239, 193, 224, 152, 180, 225, 121, 208, 194, 249,
240, 74, 199, 231, 167, 186, 241, 40, 109, 122, 100, 188, 110,
200, 153, 236, 201, 253, 243, 112, 32, 196, 138, 214, 79, 101,
247, 157, 43, 217, 113, 216, 202},
A5 = {4, 5, 6, 11, 7, 8, 9, 10, 12, 89, 82, 90, 91, 83, 84,

14, 88, 87, 85, 13, 15, 86, 93, 92, 94, 95, 16, 17, 50, 18, 19,
51, 139, 140, 52, 141, 20, 53, 64, 142, 21, 65, 54, 143, 66, 22,
55, 144, 67, 56, 23, 160, 145, 161, 174, 68, 24, 57, 146, 175,
162, 69, 25, 255, 58, 103, 115, 147, 116, 176, 104, 163, 70,
26, 59, 148, 117, 105, 71, 27, 60, 149, 36, 164, 177, 118, 159,
106, 204, 28, 61, 37, 72, 150, 29, 62, 63, 178, 205, 237, 165,
119, 30, 31, 38, 73, 192, 107, 151, 120, 238, 206, 108, 179,
39, 193, 166, 152, 224, 207, 239, 109, 74,180, 199, 231, 186,
225, 249, 250, 187, 167, 251, 40, 218, 194, 75, 241, 153, 154,
110, 209, 214, 129, 121, 102, 247, 101, 127, 202, 198, 211,
112, 171, 99, 156, 182, 80, 79, 197}.

REFERENCES
[1] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger,

‘‘New features of Latin dances: Analysis of Salsa, ChaCha, and Rumba,’’
in Proc. Int. Workshop Fast Softw. Encryption, vol. 5086. Lausanne,
Switzerland: Springer, 2008, pp. 470–488.

[2] D. J. Bernstein. (2005). Salsa20 Specification. [Online]. Available:
http://www.ecrypt.eu.org/stream/salsa20pf.html

[3] D. J. Bernstein, ‘‘ChaCha, a variant of Salsa20,’’ in Proc. Workshop Record
SASC, vol. 8, no. 1, 2008, pp. 3–5.

[4] D. J. Bernstein, ‘‘The Salsa20 family of stream ciphers,’’ in New Stream
Cipher Designs: The ESTREAM Finalists. Berlin, Germany: Springer,
2008, pp. 84–97.

[5] E. Biham and A. Shamir, ‘‘Differential cryptanalysis of DES-like
cryptosystems,’’ in Proc. CRYPTO, vol. 537. Santa Barbara, CA, USA:
Springer, 1990, pp. 2–21.

[6] A. R. Choudhuri and S. Maitra, ‘‘Significantly improved multi-bit
differentials for reduced round salsa and Chacha,’’ IACR Trans. Symmetric
Cryptol., vol. 2016, no. 2, pp. 261–287, Feb. 2017.

[7] M. Coutinho, I. Passos, J. C. G. Vásquez, F. L. L. de Mendonça,
R. T. de Sousa, and F. Borges, ‘‘Latin dances reloaded: Improved crypt-
analysis against Salsa and ChaCha, and the proposal of Forró,’’ in Proc.
ASIACRYPT, vol. 13791. Taipei, Taiwan: Springer, 2022, pp. 256–286.

[8] M. Coutinho, I. Passos, J. C. G. Vásquez, S. Sarkar, F. L. L. de Mendonça,
R. T. de Sousa, and F. Borges, ‘‘Latin dances reloaded: Improved
cryptanalysis against salsa and ChaCha, and the proposal of Forró,’’ J.
Cryptol., vol. 36, no. 3, p. 18, Jul. 2023.

[9] P. Crowley. (2005). Truncated Differential Cryptanalysis of Five
Rounds of Salsa20. Cryptol. ePrint Arch. [Online]. Available:
https://eprint.iacr.org/2005/375

[10] S. Dey and S. Sarkar, ‘‘Improved analysis for reduced round salsa and
Chacha,’’ Discrete Appl. Math., vol. 227, pp. 58–69, Aug. 2017.

[11] S. Dey, H. K. Garai, S. Sarkar, and N. K. Sharma, ‘‘Revamped differential-
linear cryptanalysis on reduced round Chacha,’’ in Proc. EUROCRYPT,
vol. 13277. Trondheim, Norway: Springer, 2022, pp. 86–114.

[12] L. Ding, ‘‘Improved related-cipher attack on Salsa20 stream cipher,’’ IEEE
Access, vol. 7, pp. 30197–30202, 2019.

[13] N. Ghafoori and A. Miyaji, ‘‘Differential cryptanalysis of Salsa20 based
on comprehensive analysis of PNBs,’’ in Proc. ISPEC, vol. 13620. Taipei,
Taiwan: Springer, 2022, pp. 520–536.

[14] N. Ghafoori, A. Miyaji, R. Ito, and S. Miyashita, ‘‘PNB based differential
cryptanalysis of Salsa20 and Chacha,’’ IEICE Trans. Inf. Syst., vol. 106,
no. 9, pp. 1407–1422, 2023.

[15] H. Lipmaa and S. Moriai, ‘‘Efficient algorithms for computing differential
properties of addition,’’ in Proc. FSE. Yokohama, Japan: Springer, 2001,
pp. 336–350.

[16] S. Maitra, ‘‘Chosen IV cryptanalysis on reduced round Chacha and salsa,’’
Discrete Appl. Math., vol. 208, pp. 88–97, Jul. 2016.

[17] S. Maitra, G. Paul, and W. Meier. (2015). Salsa20 Cryptanalysis: New
Moves and Revisiting Old Styles. Cryptol. ePrint Arch. [Online]. Available:
https://eprint.iacr.org/2015/217

[18] I. Mantin and A. Shamir, ‘‘A practical attack on broadcast RC4,’’ in Proc.
FSE, vol. 2355. Yokohama, Japan: Springer, 2001, pp. 152–164.

[19] M. Matsui, ‘‘Linear cryptanalysis method for DES cipher,’’ in Proc.
EUROCRYPT, vol. 765. Lofthus, Norway: Springer, 1993, pp. 386–397.

[20] S. Miyashita, R. Ito, and A. Miyaji, ‘‘PNB-focused differential cryptanal-
ysis of ChaCha stream cipher,’’ in Proc. ACISP, vol. 13494. Wollongong,
NSW, Australia: Springer, 2022, pp. 46–66.

[21] M. Robshaw and O. Billet, New Stream Cipher Designs: The ESTREAM
Finalists, vol. 4986, Springer, 2008.

[22] Z. Shi, B. Zhang, D. Feng, and W. Wu, ‘‘Improved key recovery attacks
on reduced-round Salsa20 and ChaCha,’’ in Proc. ICISC, vol. 7839. Seoul,
South Korea: Springer, 2012, pp. 337–351.

CHANDAN DEY received the M.Sc. degree in
mathematics from Visva-Bharati, Santiniketan,
West Bengal, and the Ph.D. degree in mathematics
from the Indian Institute of Technology Madras,
Chennai, India, in 2023. His research interests
include the design and analysis of symmetric key
ciphers.

SABYASACHI DEY received the Ph.D. degree
in mathematics from the Indian Institute of
Technology Madras, Chennai, India, in 2018.
He is currently an Assistant Professor with the
Birla Institute of Technology and Science (BITS),
Pilani, India. His main research interest includes
symmetric key cryptology.

RAHUL GIRME received the M.Sc. degree in
mathematics from Pune University, in 2015. He is
currently pursuing the Ph.D. degree in mathemat-
ics with the Indian Institute of TechnologyMadras,
Chennai, India. His research interests include the
design and analysis of stream ciphers and block
ciphers.

SANTANU SARKAR received the Ph.D. degree
in mathematics from the Indian Statistical Insti-
tute, Kolkata, India, in 2011. He was a Guest
Researcher with the National Institute of Stan-
dards and Technology (NIST). He is currently a
Professor with the Indian Institute of Technology,
Madras, India. His main research interests include
cryptology and number theory.

31744 VOLUME 12, 2024


