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ABSTRACT Semantic scene completion is a computer vision technique that combines semantic seg-
mentation and shape completion. Its purpose is to infer a complete 3D scene with semantic information
from single-view RGB-D images. In recent years, some methods have adopted the voxel-points-based
approach, converting voxelized scenes into point clouds to reduce the computational cost associated with 3D
convolutions. However, majority of such methods do not fully consider the geometric details of the objects in
the scene. In this paper, we propose ASPNet (Attention-based Semantic Point Completion Network), a two-
branch semantic scene completion algorithm that combines scene-level completion and object refinement.
In the scene level completion branch, we design the SPT (Semantic-based Point Transformer) module,
which introduces semantic information into the traditional Point Transformer layer to realize the feature
aggregation of neighboring keypoints of the same category. Using the object detection module and the object
refinement module, ASPNet refines the rough semantic complementation results obtained from direct coding
and decoding of RGB-D inputs. The quantitative results show that ASPNet has much less computational
overhead than the 3D convolution-based semantic scene completion algorithm, while the reconstruction
results have more geometric details.

INDEX TERMS Semantic scene completion, semantic segmentation, 3D scene reconstruction, deep
learning, point transformer, point cloud.

I. INTRODUCTION
For intelligent devices, the ability to infer the complete scene
from a single perspective RGB-D image is significant, which
can be widely applied in autonomous driving, augmented
reality, and robotics technology [1]. Therefore, computer
vision researchers are committed to studying how to make
machines possess such capabilities. To address this issue,
Semantic Scene Completion (SSC) has been proposed, aim-
ing to instruct machines on how to understand the 3D world
from static depth and/or RGB images. This task has two
coupled objectives: one is to complete the 3D scene, aiming
to infer the volume occupancy of the scene; The other is to
label 3D scene, which requires wise prediction of semantic
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label voxels. Due to the presence of occlusion in the real
world, there are significant changes in the shape, layout, and
visibility of objects. Therefore, the main challenge is how to
model the 3D context to effectively learn each voxel [2].

At present, 3D convolutional neural networks (3D-CNNs)
are a commonly used method in the task of SSC, which uses
a classic ‘‘encoder-decoder’’ structure composed of a series
of 3D convolutional layers to achieve functional mapping
from feature volumes to semantic volumes. However, recent
research results [3], [4] have shown that due to the sparsity
of 3D data, more than 85% of voxels in front of visible
surfaces can be directly labeled as empty (i.e., most voxels
in 3D scenes are empty), leaving less than 15% of voxels
that require predicting semantic labels [5]. Therefore, main-
streammethods (based on convolution for SSC) will consume
a large amount of computational resources on these empty

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 31431

https://orcid.org/0000-0002-5124-2929
https://orcid.org/0009-0005-4247-9990
https://orcid.org/0000-0002-4558-9803


Y. Miao et al.: Object-Aware SSC Through Attention-Based Feature Fusion

voxels. To tackle this problem, some methods [3], [5] convert
effective voxel data into points and introduce them into SSC
tasks. These algorithms are implemented using only a few
3D convolutional layers, greatly reducing the computational
cost of pure 3D convolution. However, due to the insufficient
consideration of the features of these ‘‘voxel points’’ and their
differences from surface point clouds, there is still room for
improvement in point-based SSC methods.

It is worth noting that 2D semantic segmentation (SS) can
predict class labels from RGB images. Although the dimen-
sions of 2D SS and 3D SSC are inconsistent, they share some
important features that enable them to match each other [6].
For example, they generate the same element semantic labels.
After 2D-3D projection, the two-dimensional semantic seg-
mentation results are projected onto the three-dimensional
feature volume. In addition, RGB images have rich texture
features that can supplement the edge contours of various
objects in 3D scenes. Intuitively speaking, the dense pre-
diction of 2D SS can compensate for the sparsity of 3D
SSC, and the complete shape/layout of 3D scenes can help
distinguish indivisible 2D regions [6]. In the 3D scene com-
pletion method, an intuitive and direct concept, namely the
‘‘detection and completion’’ strategy, has been proven to
be effective [7], [18]. Detecting objects in 3D space [29],
[30] can provide prior information for SSC tasks. Through
this method, not only can the boundaries between differ-
ent objects be more clearly defined, but also the internal
shape and structure of these objects can be more accurately
predicted.

In this paper, we proposed a dual branch network that
takes a pair of single view RGB-D images as input. One is
the SSC branch based on voxel-points, and the other is the
pre-trained 3D object detection branch. The two branches
are fused by the geometric refinement module to generate
the final refined semantic completion result. Specifically,
the first branch consists of two sub modules: a pre-trained
2D semantic segmentation module and a point-based SSC
module. Firstly, our 2D semantic map will be projected into
the 3D semantic volume. Then, we extract effective voxels
within two volumes and convert them into point clouds for
subsequent SSC modules. The backbone of the SSC module
uses PointNet++ [35] as the basic framework, and adds
a Point Transformer layer for feature fusion after each Set
Abstraction (SA) layer and Adaptive Feature Propagation
(A-FP) layer. After completing the shallow surface feature
extraction for the surface point cloud as well as for the
effective point cloud, the Surface-Attentionmodule is utilized
to realize the supplementation of the features extracted from
the effective point cloud for each layer. In addition, after
completing the feature extraction, the Feature Propagation
(FP) layer is replaced with an adaptive FP layer (A-FP) based
on the attention mechanism during the up-sampling process.
At the same time, we replace the Point Transformer module,
which is located in the last layer, with a newly designed
Semantic-based Point Transformer (SPT) layer to efficiently

aggregate the category identities. The second branch locates
each indoor object and determines the corresponding 3D
object detection box for each object in the space. We crop and
refine the voxels within the bounding box, and then use the
geometric refinement module to refine and correct the voxels
located in the target detection box, thereby achieving accurate
semantic reconstruction.

Compared to existing methods, we design the Semantic-
based Point Transformer (SPT) module introduces a semantic
aggregation mechanism into the Point Transformer module,
enabling the aggregation of features for adjacent points of the
same category. The Surface-Attention module supplements
internal voxel points with features from feature-rich surface
voxel points in order to address the feature imbalance among
voxel points.

In summary, contributions of our work are as follows:
1) We introduce a novel dual-branch structure (ASP-

Net) for semantic scene completion, which combines
point-based SSC and object detection to reconstruct
accurate indoor scenes. The structure uses pre-trained
bounding boxes as guidance for refinement modules to
reconstruct more geometric details from rough comple-
tion results.

2) We designed a Semantic based Point Transformer
(SPT) layer that integrates binary classification judg-
ment. It improves the similarity of local features of sim-
ilar voxel-points in high-dimensional space, thereby
avoiding the occurrence of outliers and ‘‘noise’’.

3) Our method adopts a main framework based
on voxel-points, which effectively improves com-
putational efficiency and reduces computational
parameters compared to traditional 3D convolution
methods.

Compared with the method proposed by TSPNet [34]
(our conference paper method), our approach fully utilizes
attention mechanisms and combines scene and instance fea-
tures to achieve accurate reconstruction of indoor scenes.
Our proposed method adds object detection and object
refinement modules. The object refinement module con-
siders the inherent sparsity of voxel space and employs
a spatial attention mechanism to focus on effective vox-
els. Compared with the TSPNet [34] method, the scene
reconstruction instance results have more precise geometric
details. For SSC mIoU, our network performance improved
by 0.2% and 0.2%on theNYUdataset andNYUCADdataset,
respectively.

II. RELATED WORK
Currently, 3D semantic scene complementation methods can
be summarized into three main types according to the dif-
ferent types of input data: depth map-based semantic scene
completion methods, depth map joint color image-based
semantic scene completion methods and point cloud-based
semantic scene completion methods.

31432 VOLUME 12, 2024



Y. Miao et al.: Object-Aware SSC Through Attention-Based Feature Fusion

A. DEPTH MAP-BASED SEMANTIC SCENE COMPLETION
Originally pioneered by Song et al., SSCNet [8] takes a
single-frame depth map as input and generates categories
corresponding to all voxels in the camera view cone. The
algorithm employs the Flipped Truncated Signed Distance
Function (f-TSDF) to encode the voxels of the depth map,
and uses the Extended Contextual Convolution Module to
simultaneously perform voxel mesh occupancy and seman-
tic labelling prediction of the scene. VVNet [9] directly
performs two-dimensional convolution of the depth map
to obtain a two-dimensional feature, and projects the fea-
ture to the three-dimensional voxel space, which reduces
the computational cost, deepens the depth of the feature
extraction network, and makes the feature extraction results
more adequate. ESSCNet [10] is an efficient semantic scene
complementation model based on group convolution, which
replaces the traditional 3D convolution with spatial group
convolution, divides the input voxels into different groups,
and uses sparse convolution for each group to perform feature
extraction separately, thus effectively improving the com-
putational efficiency while guaranteeing the computational
accuracy. CCPNet [4] is a cascaded context pyramid network,
the algorithm not only improves the labelling consistency in
the pyramid context, but also proposes the Guided Resid-
ual Refinement (GRR) module to incrementally recover the
fine-grained structure of the scene, and achieves competitive
results on the SUNCG and NYUv2 datasets, with particular
advantages in the generation of scene details. ForkNet [11]
is based on a single encoder as well as three juxtaposed
decoders. The three decoder branches predict incomplete sur-
face geometries, geometric volumes, and semantic volumes,
respectively, and multiple discriminators are introduced to
improve the accuracy and realism of the semantic scene-
completion task. In PALNet [13], Li et al. designed a new loss
function PA-Loss based on the semantic relationship between
voxels and surrounding voxels, which adaptively adjusts the
weight of the voxel in the cross-entropy loss through the
Local Geometric Anisotropy (LGA) of the voxel, so that
the network focuses on the voxels located at the junction
of the objects, which is conducive to the recovery of the
object’s boundary information and the information of the
scene corners.

B. DEPTH MAP JOINT COLOR IMAGE-BASED SEMANTIC
SCENE COMPLETION
Combining RGB images with depth maps can improve
the network’s performance in recognizing surface texture
and color features. TS3D [14] is based on two-stream
convolution, which maps the RGB image semantic seg-
mentation results onto a 3D mesh generated from a depth
map to obtain incomplete semantic corpora. The complete
semantic scene information is then inferred using a context-
aware 3DCNN. Experiments show that introducing RGB
images as inputs can significantly improve the SSC task by
9.4% compared to the 2nd place on the NYUv2 dataset.

DDRNet [15] uses Dimensional Decomposition Residual
(DDR) to replace the standard three-dimensional convolution
operation. By splitting the standard 3D convolution kernel
into three 1D convolution kernels in series, the DDR module
drastically reduces the convolution parameters and lowers
the computational consumption while keeping the sensory
field unchanged. Based on DDRNet, Li et al. [16] combined
the DDR module with the attention mechanism to design a
new basic unit of feature extraction, the AIC (Anisotropic
convolution) module.The AIC module adaptively assigns
weights to the three convolution kernels of the split, which
further improves the accuracy of the semantic complemen-
tation. GRFNet [17] s the first to use Gated Recurrent Unit
(GRU), which is extended based on the DDRNet network,
to improve the multiscale fusion strategy and construct a
multimodal feature fusion module with autonomous selec-
tion and adaptive memory preservation. In addition, different
levels of features are fused by introducing non-significance
parameters and further propose a multi-stage fusion strat-
egy. SISNet [18] is an iterative semantic complementation
network for scene-to-instance and instance-to-scene. Li [19]
proposed AMFNet, a multimodal fusion network based on
the attention mechanism. the algorithm uses 2D segmenta-
tion results to guide the SSC task. OccDepth [20] utilizes
implicit depth information in binocular images to reconstruct
3D geometric structures. The stereo soft feature alignment
module (Stereo-SFA) better fuses 3D depth-aware features by
learning the correspondence between binocular images. Vox-
Former [22] first employs deep estimation network to obtain
Query Proposals for the visible region, and then applies a
masked autoencoder to complete the complementation by
propagating the information to all voxels through a self-
attentive mechanism.

C. POINT CLOUD-BASED SEMANTIC SCENE COMPLETION
S3CNet [23] employs a bird’s eye view of efficient sparse 3D
tensor projections obtained through point clouds for semantic
segmentation, and the resulting 2D segmentation results are
used to enhance 3D SSC. Zhong and Zeng [24] proposed
a scene complementation network IPF-SPC-Net that fuses
RGB image texture information with point cloud geometry
information. Yan et al. [25] proposed JS3C-Net, a seman-
tic segmentation framework for sparse radar point clouds
with context shape prior. Rist et al. [26] proposed LMSC-
Net, a semantic scene-completion network based on local
depth implicit functions. The method uses a non-somatized
continuous scene representation and introduces free spatial
information as a supervisory signal, which yielded good
experimental results on the outdoor scene dataset Seman-
tic KITTI. SCPNet [27] enhances SSC from the aspects of
the completion network redesign, dense-to-sparse knowledge
distillation as well as completion label rectification.

CasFusionNet [28] is a novel cascaded network for
point cloud semantic scene completion by dense feature
fusion. A global completion module (GCM), a semantic
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FIGURE 1. The architecture of ASPNet. ASPNet consists of three parts: (a) coarse semantic scene completion, where an SSC architecture based on
voxel points and Transformer is employed; (b) object detection, where we output bounding boxes for each instance; (c) object refinement, where we
perform corrections on voxels within the bounding boxes to produce the final result.

segmentation module (SSM) and a local refinement module
(LRM) are designed and organized via dense feature fusion
in each level, and cascade a total of four levels.

III. METHODS
The overall structure of ASPNet is shown in Figure 1.
The entire network consists of two branches, namely the
3D object detection branch and the semantic scene com-
pletion branch based on voxel point representation. The
results of these two branches are input into the geomet-
ric refinement module, which performs refinement and
completion to obtain the final completion result. ASPNet
consists of three parts: coarse semantic scene completion,
object detection, and object refinement. For object detec-
tion, we output the bounding box of each instance. For
coarse semantic scene completion, we use a lightweight SSC
architecture based on voxel points and Transformer. Finally,
we use the object refinement module to correct the vox-
els located inside the bounding box to generate the final
result.

A. COARSE SEMANTIC SCENE COMPLETION
1) 2D SEMANTIC SEGMENTATION MODULE
We introduce RGB images as texture features to enhance the
network’s understanding of local observations. By projecting
the 2D semantic segmentation results in Figure 2 onto the 3D
voxel space, ASPNet can directly obtain the semantic labels
corresponding to the visible surface voxels, thereby provid-
ing rich prior information for subsequent 3D convolutional
networks.

Firstly, a pair of RGB-D images from a single perspective
are used as input, and the SSC branch based on voxel point
representation is used to complete 2D semantic segmenta-
tion of the RGB-D images. The output shape of the 2D
semantic segmentation is MS ∈ R12×480×640, where 12 rep-
resents the preset number of categories in the scene. ASPNet
chose the DeeplabV3+ [32] model based on Resnet-101 [31]
as the semantic segmentation network. We replace the tra-
ditional two-dimensional convolutional layer in the network
with the Shapeconv layer to achieve more accurate seman-
tic segmentation. The Shapeconv [33] layer focuses more
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FIGURE 2. Results of semantic segmentation. From left to right are the
image, depth, semantic segmentation results, and ground truth.

FIGURE 3. Voxel-points located on visible surfaces.

on shape information compared to traditional 2D convolu-
tional layers, helping to reduce the possibility of extracting
completely different features due to the distance of similar
objects.

2) VOXEL-POINTS GENERATION
The voxel-based scene semantic reconstruction method usu-
ally converts the input depth map into TSDF format data.
In SSC tasks, all voxels in TSDF do not have the same impor-
tance. Invalid voxels located between the camera and the
observation surface that can be directly identified as air [34].
Therefore, ASPNet only retains voxels located on the observ-
able surface and behind it, and converts the retained effective
voxels into point clouds Pvalid ∈ RNvalid×Cvoxel in Figure 3. For
any ‘‘voxel-points’’ pi ∈ Pvalid , which contains the eigenvec-
tor of ci ∈ R17, specifically, ci can be expressed as:

ci = (xi, yi, zi, ti, hi, si) (1)

where the voxel vi mapped by pi comes from a 3D feature
volume of size 60 × 36 × 60. (xi,yi,zi) is the normalized
x − y − z index of vi in the feature volume. ti is the TSDF
value of vi. hi is the height value at which vi is located.
In ASPNet, the normalized center of (xi,yi,zi) is the center

value of Pvalid , while the normalized center of hi is 36. hi can
serve as prior information to describe the position of objects
in the scene, effectively distinguishing categories with sig-
nificantly different height values, such as floors and ceilings.
ASPNet introduces si ∈ R12 as the semantic feature carried
by each ‘‘voxel-points’’. For the ‘‘voxel-points’’ distributed
on the visible surface, their si is the semantic feature vector
corresponding to vi inVS ∈R12×60×36×60, while for the points
distributed behind the visible surface, their si is a zero vector.

3) ADAPTIVE SURFACE-ATTENTION MODULE
Inspired by the Surface-Attention module [34] and
ResNet [31] structure, we have designed an adaptive surface-
attention module. This module adaptively transfers local
surface features to internal points, thereby supplementing the
features of internal ‘‘voxel-points’’. Specifically, the process
of Adaptive Surface-Attention can be expressed as follows:

yi =

∑
fj∈χ ′(i)

ρ
(
γ (ϕ (qi) − ω

(
fj
)
) + δ′

)
⊙ (α

(
fj
)
+δ′)

(2)

δ′
= θ

(
f xyzj − qxyzi

)
+ ε(dcos(fj, qi)) (3)

where yi is the output vector, fj is local feature, q
xyz
i is the 3D

coordinate of the surface key points, ϕ, ω, α is the encoding
operation for individual vectors, usually the MLP layer or
linear layer, δ is the positional encoding, and ρ is the nor-
malization function (usually the softmax function). ε is also
an MLP operation, dcos is the cosine distance corresponding
to two local features.

In addition, χ ′(i) is the union of the k (preset value) points
closest to each other in the 3D and high-dimensional feature
spaces of Fsurafce and qi. χ ′(i) can be represented as follows:

χ ′ (i) = K near (qxyzi ,Fxyzsurface) ∪ K near (τ (qi) , τ (Fsurface))

(4)

where K near represents k nearest neighbor points, and qxyzi
and Fxyzvalid represent the 3D coordinate values corresponding
to qi and Fsurface. τ represents an MLP operation that maps
local features qi and Fsurface to the same space.

The structure of Adaptive Surface-Attention is shown in
Figure 5. Through the attention mechanism, the surface atten-
tion module supplements voxel-points features with weak
texture features, effectively improving the accuracy of scene
semantic reconstruction.

4) SEMANTIC-BASED POINT TRANSFORMER MODULE
In order to suppress the impact of different types of key
‘‘voxel-points’’ with deeper network layers on the current
voxel points, we replace the last layer of ASPNet’s Point
Transformer layer with a Semantic based Point Transformer
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FIGURE 4. The architecture of object detection module in ASPNet.

(SPT) layer. In the SPT layer, the impact of non similar points
is reduced by adding binary judgments. The SPT module can
be represented as:

yi =

∑
fj∈χs(i)

∂ ⊙ (α
(
fj
)
+δ) +

∑
fj∈χd (i)

∂ ⊙ δ (5)

∂ =
(
γ (ϕ (fi) − ω

(
fj
)
) + δ

)
(6)

χs (i) = {fj|fj ∈ χ (i) ∩ η
(
ϕ (fi) − ω

(
fj
))

≥ 0.5} (7)

χd (i) = {fj|fj ∈ χ (i) ∩ η
(
ϕ (fi) − ω

(
fj
))

< 0.5} (8)

whereχs (i) represents the key ‘‘voxel-points’’ that are judged
to be of the same class among the nearest k points for the
current point qi, and χd (i) represents the key ‘‘voxel-points’’
that are judged to be non of the same class among the nearest
k points for the current point qi. η represents an MLP opera-
tion consisting of two linear layers and a sigmoid activation
function. The SPT layer can aggregate and adjust the local
features of similar ‘‘voxel-points’’, thereby improving the
similarity of similar local features in high-dimensional space
and avoiding the occurrence of outliers and ‘‘noise’’.

B. OBJECT DETECTION MODULE
The object detection module in ASPNet is the same as
Votenet [29]. Votenet is currently an effective algorithm in the
field of 3D object detection, which can directly process raw
point cloud data without relying on 2D detectors. As one of
our branches focuses on object detection, Votenet’s robust-
ness in detecting 3D objects aligns well with our goal. The
network first uses the PointNet++ network [35] to extract
point cloud features, then uses the Hough voting mechanism
to obtain voting points, clusters to obtain voting clusters,
and finally extracts the bounding box and category for each
cluster’s feature prediction. The Hough voting mechanism
efficiently identifies object centers, contributing to accurate
bounding box predictions. Its ability to capture fine-grained
details and maintain spatial accuracy is crucial for our task of
semantic scene completion. Figure 4 shows the architecture
of the object detection module. Figure 8 shows the results
of the object bounding box obtained by the object detection
module in point cloud and voxel space.

Our object detection module borrows VoteNet [29] pre-
trained models. Due to its good performance, these weights
are frozen during the training of our network. It is worth
noting that the object detection module is weakly coupled
with the semantic completion branch, so the former can
be replaced with any accurate point cloud object detection

FIGURE 5. The architecture of adaptive surface-attention module.

method without the need to retrain the network parameters of
the latter. In addition, the object surface point cloud located in
the bounding box will be extracted and used as supplemen-
tary information input for subsequent geometric refinement
modules.

C. OBJECT REFINEMENT MODULE
After completing the generation of Scoarse, the object refine-
ment module based on instance level features is used to
refine the voxels located within the bounding box. Using an
‘‘encoder-decoder’’, the object refinement module in ASPNet
fully utilizes the features of Scoarse and surface point cloud
Pin. Firstly, based on the object bounding box in voxel space,
the voxels located within the box in Scoarse are intercepted,
which can be represented as follows:

Si = Scoarse
[
xtg, ytg, ztg

]
(9)

where xtgϵ
[
x imin, x

i
max

]
, ytgϵ

[
yimin, y

i
max

]
, ztgϵ

[
zimin, z

i
max

]
,

Si represents the voxel to the i-th bounding box, and
(x imin, y

i
min, z

i
min), (x

i
max , y

i
max , z

i
max) represents the minimum

and maximum coordinates of the corresponding bounding
box in voxel space, respectively.

Due to the roughness of Si ∈ R12×Hi×Wi×Li , we have
introduced a surface local point cloud P located within the
detection box as another input to this module. This process
can be represented by the following functions:

S
′′

i = G (f (Si) , h (Pi)) + Si (10)

where S
′′

i is the voxel result refined by the object refinement
module, f , h are the encoding operations for voxels and point
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FIGURE 6. The architecture of object refinement module.

FIGURE 7. The architecture of 3D-SAB module.

cloud inputs, and G is the decoding operation for the obtained
high-dimensional features.

Due to the sparsity in voxel representation
methods, we interpolate and upsample Si to obtain
S2i ∈ R12×4H i×4W i×4Li . Meanwhile, inspired by CBAM [36],
we designed a 3D Spatial Attention Block (3D-SAB) for
extracting features from S2i , whose structure is shown in
Figure 7. By utilizing spatial attention mechanism, the
network can adaptively focus on voxels that contribute sig-
nificantly to the bounding box.

D. TRAINING LOSS
The training process of ASPNet consists of three parts: a
2D semantic segmentation network, a 3D object detection
network, and coarse semantic scene completion network. The
network training of these three parts is independent of each
other.

1) 2D SEMANTIC SEGMENTATION NETWORK
ASPNet uses the cross entropy loss between the output image
and the real semantic labels. Specifically, the loss function of
the 2D semantic segmentation module can be expressed as:

L2D = lce(MS ,M
gt
S ) (11)

where lce is the cross-entropy loss function.

2) OBJECT DETECTION NETWORK
The loss function used is the same as VoteNet [29], which can
be expressed as:

Lstage−1 = λ1Lbox + λ2Lsem−cls + λ3Lobj−cls + Lvote−reg
(12)

where Lvote−reg represents the voting loss, Lobj−cls is the
binary cross entropy loss used to determine whether there are
objects in the current candidate box, and Lsem−cls is also the
cross entropy loss used to determine the category of objects
in the current candidate box. Lbox is composed of multiple L1
losses. λ1, λ2, λ3 are the weights, with values of 0.5, 1, and
0.1 in ASPNet.

3) COARSE SEMANTIC SCENE COMPLETION NETWORK
The loss function is the sum of SSC loss function LSSC and
SPT loss function LSPT :

L = LSSC + LSPT (13)

where LSSC can be represented as:

LSSC =
1

Nvalid
(
∑

i,j,k
mi,j,k ∗ lce(si,j,k , s

gt
i,j,k )) (14)

where Nvalid represents the number of effective voxel-points,
si,j,k represents the value of the predicted semantic scene
completion result at (i, j, k), and sgti,j,k represents the ground
truth. If (i, j, k) is an invalid voxel, the value of m is 0,
otherwise the value of m is 1. LSPT is used to supervise the
binary classification network in the SPT module:

LSPT =
1

Npairs

∑
0≤i≤Nl

∑
jϵχs(i)

lce(wi,j, gi,j) (15)

where Npairs represents the number of voxel points pairs
involved, Nl represents the number of key points correspond-
ing to the SPT layer, wi,j represents the binary prediction
value of (i, j) point pairs, and gi,j is the ground truth.

IV. RESULTS AND DISCUSSION
A. DATASETS AND EVALUATION METRICS
We evaluated the proposed ASPNet on the NYU [37]
and NYUCAD [38] datasets. The NYU dataset comprises
1449 scenes, divided into 795 for training and 654 for testing,
following the same partitioning as SSCNet [8]. To mitigate
measurement errors in the NYU dataset, NYUCAD employs
3D annotations to generate synthetic depth maps. Similar to
SSCNet [8], our evaluation focuses on Scene Completion
(SC) and Semantic SceneCompletion (SSC). SC consolidates
non-empty voxels into a category, assessing metrics such as
IoU, recall, and precision. SSC evaluation computes IoU for
each semantic category within the valid frustum, yielding the
mean IoU (mIoU) through category averages. In addition,
since the semantic scene completion method based on voxel
points has already eliminated invalid voxels, ASPNet only
needs to perform quantitative comparative evaluation on SSC
tasks to fully demonstrate the accuracy of ASPNet in seman-
tic scene completion.

B. IMPLEMENTATION DETAILS
In the experiment, we used RGB-D images with a resolution
of 480 × 640 as input. Our model was implemented using
Pytorch, and the entire training process was divided into three
stages: training of the 2D semantic segmentation module and
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FIGURE 8. Qualitative results of the object detection module in ASPNet.

the object detection module, followed by the training of the
semantic scene completion module. For the former, we used
the Adam optimizer, a batch size of 4, an initial learning
rate of 0.001, and a total of 200 training epochs. Similarly,
for the latter, we employed the Adam optimizer with an
initial learning rate of 0.001, a batch size of 4, and a total
of 250 training epochs. The training was completed on an
Ubuntu 18.04 system equipped with a single NVIDIA RTX
2080TI GPU. During the training of ASPNet, we performed
data augmentation on the 3D input. For the set of ‘‘voxel
points,’’ we rotated Pvalid and Psurface along the z-axis at 90◦

intervals, thereby expanding the training set. After complet-
ing the training, we evaluated the computational requirements
and memory consumption of ASPNet.

C. DETAILS ON OBJECT DETECTION MODULE
Our object detection module borrows VoteNet [29] and
fine-tunes its parameters to achieve the best results. The layer
parameters of the Set Abstraction (SA) layer and Feature
Propagation (FP) layer in the backbone network are the same
as those in VoteNet. In the proposal step, we select 256 voting
clusters to generate 256 proposals from the votes. We use a
cluster sampling strategy of farthest point sampling (FPS) on
seeds. We use a voting factor of 1, where the voting module
generates one vote for each seed. We use a 1% Z-value of
all points in the scan as the height feature. These parameter
settings can achieve the best detection results (mAP 50.2%).
Figure 8 shows the qualitative results of our object detection
module. It is worth noting that we first pre-train the VoteNet
network, and then during the overall network training pro-
cess, the network parameters in VoteNet are frozen.

D. COMPARISONS WITH STATE-OF-THE-ART METHODS
We compared ASPNet and SOTA (state of the art) methods
on the NYU dataset and NYUCAD dataset, and the results
are shown in Tables 1 and 2. On the NYU dataset, the
ASPNet method achieved SOTA (state of the art) effect in

non iterative methods (One off). Specifically, compared to
SketchNet [42], ASPNet exceeded 10.0% on SSC mIoU in
the NYU dataset. Our network performs better in completing
objects with smaller geometric dimensions (such as chairs,
tables, etc.) than other networks. In addition, mainstream
semantic scene completion algorithms based on 3D convo-
lution have high computational overhead and long training
time, while our network backbone is implemented based on
one-dimensional convolution, so the computational cost is
relatively low. To demonstrate this, we conducted a com-
parative evaluation of the computational cost (FLOPs) of
ASPNet, as shown in Tables 3. Compared to SSCNet [8]
based on 3D convolution, SketchNet [42], and the iterative
SOTA algorithm SISNet DeepLabv3 [18], ASPNet signifi-
cantly reduces computational cost and efficiently completes
scene semantic reconstruction tasks without losing accuracy.

E. ABLATION STUDIES
We compared ASPNet and SOTA In order to prove the effec-
tiveness of each module in ASPNet, we conducted ablation
studies on the key modules of the network and evaluated
the effectiveness of the Surface-Attention module, the SPT
module, and the Adaptive Feature Propagation layer (A-FP).

We removed the Surface-Attention module from ASP-
Net and quantitatively compared it with ASPNet with the
Surface-Attention module applied, and the results are shown
in Table 4. As can be seen from the Table 4, the surface atten-
tion module improves the performance of SSC mIoU (for
SSC mIoU: 1.0% increase on the NYU dataset). Therefore,
the effectiveness of the surface attention module in ASPNet
is proved by quantitative comparison. In order to demonstrate
the effectiveness of the surface attention module, we replaced
the SPT module in ASPNet with the regular Point Trans-
former layer and conducted a quantitative comparison with
ASPNet with SPT applied. As can be seen from the Table 4,
introducing semantic information into the Point Transformer
layer can effectively improve the performance of semantic
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TABLE 1. SSC results on NYU dataset.

TABLE 2. SSC results on NYUCAD dataset.

scene complementation (for SSC mIoU: 0.8% increase on
the NYU dataset). To demonstrate the effectiveness of the
adaptive feature propagation layer (A-FP), we replaced the
A-FP layer in ASPNet with a regular FP layer and performed
a quantitative comparison with ASPNet with the A-FP layer
applied. As can be seen from the Table 4, the adaptive feature
propagation layer improves the performance of SSC mIoU
(for SSC mIoU: 0.5% increase on the NYU dataset.

We designed ablation studies on object refinement and sur-
face point clouds in refining. In the object refinement module,
we sum the output results element-by-element with the rough
results located in the corresponding detection boxes. As can
be seen from Table 5, the element-by-element addition-based
geometric refinement strategy improves the performance of

SSC mIoU compared to the Semantic Scene Completion
(SSC) results without the object refinement module (for SSC
mIoU: an increase of 4.2% and 5.2% on the NYU dataset
and the NYUCAD dataset by 4.2% and 5.2%, respectively).
In addition, the surface point cloud of an object can provide
correction information and complement geometric details to
the relatively low resolution rough complementary results.
To demonstrate this, we compare the effect of semantic com-
plementation before and after adding point cloud branches.
As shown in Tables 5, the introduction of surface point clouds
by the object refinement module can effectively improve the
semantic complementation effect.

For SSC mIoU: 0.4% improvement on the NYU dataset
and 1.0% improvement on the NYUCAD dataset.
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FIGURE 9. Qualitative results on the NYU dataset.

TABLE 3. Calculation efficiency of different methods.

F. QUALITATIVE VISUALIZATION
As can be seen from some of the visualization results in
Figure 9, we qualitatively evaluate the effectiveness of ASP-
Net. Generally, we can see that ASPNet complements and
completes the geometric details of small objects, such as
‘‘chair’’ and ‘‘table’’ in rows 3, 5 and 6, compared to SSCNet.

TABLE 4. Ablation study on key modules.

In different scenarios, the semantic complementation results
of our network for different objects are richer in details, more
delicate and complete. Not only that, the method in this paper
performs better than SSCNet and SketchNet on objects such
as walls, windows, chairs, beds, etc., but also when there are
more furniture in the scene, the generated voxels are more
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TABLE 5. Ablation study on object refinement and point cloud in refining.

concise and complete in terms of object shape completion and
semantic segmentation.

G. QUALITATIVE ANALYSIS
ASPNet can recognize and reconstruct physically smaller
objects in the scene, reconstructing clearer 3D shape bound-
aries of small objects, such as the sofa in row 4 and the object
in row 5. We attribute this to the 3D object detection branch
that can provide boundary constraints and object refinement
module. ASPNet excels in handling low texture regions and
small objects with color features, which is attributed to our
method utilizing 2D semantic segmentation results to provide
guidance information. Due to the fact that RGB images carry
more details, such as color and texture, this is beneficial for
semantic information, as can be seen from the results of bed
in row 2 and sofa in row 4 categories.

The surface attention module utilizes feature rich surface
voxel points to supplement internal voxel points, which helps
identify different categories, such as chairs and sofas, even
if their colors and textures are very similar. Our method can
handle both large object windows in row 1 and small object
windows in row 3 very well, especially small object windows.

V. CONCLUSION
In this paper, we propose an efficient Attention-based Seman-
tic Point Completion Network (ASPNet). With the object
detection and instance-level refinement modules, our net-
work is able to recover more geometric details and generate
sharper object boundaries. Considering the redundancy of
matrix-based representation, ASPNet eliminates the invalid
voxels located in front of the visible surface and converts
the remaining valid voxels into point cloud data. Based on
this operation, ASPNet updates the 3D convolution-based
feature extractionmain frame to a 1D convolution-basedmain
frame, which effectively improves the computational effi-
ciency. Considering the difference between ‘‘voxel points’’
and traditional surface point clouds in the SSC task, ASP-
Net utilizes the surface attention module to supplement
the internal ‘‘voxel points’’ with semantically rich surface
‘‘voxel-points’’. ‘‘The SPT module achieves feature aggre-
gation of neighboring keypoints of the same category by
introducing semantic information into the traditional Point
Transformer layer. In addition, considering the defective type
of the interpolation strategy of the traditional Feature Propa-
gation Layer (FP Layer), ASPNet employs an attention-based
interpolation algorithm to realize Adaptive Feature Propa-
gation (A-FP). The quantitative results on NYU as well as
NYUCAD datasets also demonstrate that ASPNet not only

achieves SOTA reconstruction in non-iterative SSC algo-
rithms, but also far outperforms 3D convolution-based SSC
algorithms in terms of computational efficiency.
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