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ABSTRACT Acoustic data analysis has emerged as a critical area of exploration for the detection of different
events for quick actions in smart traffic management systems, particularly in traffic management and safety
as a step toward smart cities. A specific challenge is to precisely classify road noises and emergency vehicles
using sound, which is essential for speeding up emergency response times and improving traffic flow
management. While existing solutions address this problem, there is opportunity for enhancement in terms
of precision and accuracy to enhance the traffic flow in a sustainable smart city through a demanding and
innovative technique. In this study, we suggest stacking ensemble deep learning techniques to intelligently
classify emergency vehicle sirens from various background noises using a data set of traffic collected on roads
via microphone sensors. The ensemble model incorporates Multi-Layer Perceptron (MLP) and Deep Neural
Network (DNN) as base-learners, with an LSTMmodel as a meta-learner. This approach not only optimizes
model efficiency but also facilitates advanced feature engineering to extract useful features including Mel
Frequency Cepstral Coefficients (MFCC), Z-score, root mean square (RMS), spectral centroids, spectral
flux, mel spectrogram, chroma, contrast, and Tonnetz. Using these features, our proposed Stacking Ensemble
LSTM successfully classified traffic noises and emergency vehicle sirens with the highest efficiency. Upon
evaluation of the test set of data for our proposed model, it has gained an accuracy of 99.12% with F1 scores
ranging from 98%. This significant improvement highlights the dominance of our proposed model approach
over prior research. Our proposed model presents assurance in advancing traffic control and safety statutes,
demonstrating potential applicability in daily intelligent transportation systems.

INDEX TERMS Data-driven urban planning, smart city technologies, intelligent transportation systems,
smart urban infrastructure, sustainable urban development, smart traffic management, urban mobility
solutions, urban sensor networks.

I. INTRODUCTION
Smart The National Crime Records Bureau estimates that
24,012 individuals die every day because of improperly
delayed medical care, often due to the slowing of emergency
vehicles [1]. There is a need to be more study or discussion
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on this topic. Emergency vehicles must be allowed as
much time and room as possible to navigate through traffic
because of their crucial role in safeguarding the safety of
general population’s safety. Consequently, it is necessary to
create algorithms to recognize and classify these vehicles
based on their characteristic acoustic sound [2]. One of
the exciting uses of acoustics and sound research is the
classification of vehicle sounds, especially the classification
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of emergency vehicles [2]. For convenience, smart cities
aim to improve the quality of life of their residents by
using technology and data. The integration of acoustic-based
emergency vehicle detection into smart city infrastructure has
significant potential to improve emergency response times,
enhance traffic management, and contribute to overall public
safety. The studies on acoustics and good analysis in [1], [2],
and [3] are well demonstrated.

This study offers a significant new understanding of
the methods and techniques used in audio signal feature
extraction, which is a critical area of our inquiry. This issue
may be resolved by the efficiency of classifying vehicles
according to their sounds, making it feasible to recognize
emergency vehicles without human assistance. In an attempt
to create a trustworthy and helpful system for categorizing
emergency vehicles according to their acoustic features, the
study in [4] expands on these prior results. It does this
by using advancements in sound classification and acoustic
analysis using machine learning techniques. By doing this,
the researchers pave the way for creating technologies that
will make it easier for emergency vehicles to travel through
congested areas quickly and safely, improving public safety.
We want to determine whether a system could work better
if it contained features particular to a specific configuration
or area. The Emergency Vehicle Detection system pipeline
based in segmented data, Features Extraction and Machine
Learning Model building for Classification [5].
We have proposed a comprehensive and valuable solution

for the detection of emergency vehicles based on sound to
further the broader objective of reducing emergency response
times and saving countless lives. This way, we can enhance
traffic management and ensure emergency vehicles can pass
through roads without any disturbance from other vehicles
in smart cities. Our research can be used in many other
fields, such as automated sound recognition in smart home
systems, classification of wildlife sounds for biodiversity
monitoring, Patients monitoring in Healthcare and many
more. Our work can serve as a strong foundation for future
developments in the acoustic analysis, Particularly in traffic
management and safety, acoustic analysis has emerged as a
significant approach for detecting events and actions. The
appropriate classification is required for particular issues like
road noise and the sounds made by emergency vehicles.
Due to its potential to reduce road congestion and speed
up emergency response times, this issue is technically
fascinating and practically essential. The effectiveness of
the existing solutions to this issue could have been better,
prompting the need for a novel strategy. Our study’s has
following contributions, Enlarging Feature-set for better
Illustration of acoustic data to model and Stacking based
Ensemble Approach in Emergency Vehicle Detection with
Acoustic Data. Our Proposed model has achieved Highest
Accuracy. Our proposed approached is shown in Figure 1,
depicting the flow of our proposed system.With this proposed
systemwewere able to solve the Emergency vehicle detection
system with acoustic data with highest Efficiency.

FIGURE 1. Proposed approached acoustic based emergency vehicle
detection.

II. LITERATURE REVIEW
The Detection of emergency siren sounds is said to have
received far less scientific attention than other acoustic
issues [6]. In their study, researchers looked at LCS
(Longest Common Sub sequence) based ambulance siren
detection [2]. In their suggested model, they used Mel
Frequency Cepstral Coefficients. The suggested model was
predicted to have an accuracy of 85%. Research [7] used
two distinct methods to locate sirens. a neural network
with several layers that uses sinusoidal modeling. Speech
recognition was accomplished using MNN technology. The
sinusoidal model approach used warning tones and gathered
data from background noise to minimize noise interruption.
Each approach was tested on a small sample, and both
models produced results that were quite accurate. PBMs
were developed by [8] to differentiate sirens in congested
traffic while considering the spectro-temporal domain. PBMs
were first used in computer vision. When trained on MFCC
or log-mel characteristics, hidden Markov models (HMMs)
outperformed PBMs in comparison. However, only around
80% of the attempts were successful. Research has developed
a two-stage detection method for audio-based categorization
in self-driving cars [9]. The initial step was detection an
uncommon sound, and the subsequent steps were noise
categorization, noise reduction, and noise elimination. The
idea in [9] was built upon image processing. A segmentation
technique was used to recover and extract the required
signal from each incoming input’s spectrogram. According
to [10], siren detection was carried out using DSP methods
to auditory data, namely computing frequency components
within a predetermined frequency range. The KNN method
was used once the noise was minimized, and it produced
an accuracy of 83%. SVM and feature selection techniques
were used to categorize alarm sounds [11]. It demonstrated an
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accuracy of more than 90% on a small sample. The initiative’s
major flaw was the duration of the feature engineering.
A dataset from Investigation [12] may be used with AI
algorithms to distinguish between the sirens of emergency
vehicles and other road sounds. The results were more
accurate since we used this dataset in our research and the
methods we offered. The high-resolution dataset might speed
up emergency response times, reduce traffic congestion, and
manage traffic. The paper discusses the methods used for
data collecting, model assessment, and pre-processing. The
article provides a dataset that may be used to artificially
distinguish between traffic and other types of road noise, such
as emergency vehicle sirens. Data from the high-resolution
collection includes both text and audio. The audio recordings
are inWAV format, while the text data is in CSV format. Once
it was obtained, the dataset underwent several pre-processing
procedures to ensure its reliability and quality. Real-world
traffic noises and emergency vehicle sounds are among the
varied and distinctive data in the obtained dataset used
for testing and training. The article covers pre-processing
approaches, including qualitative human examination of
the audio data and quantitative assessment to support the
dataset’s parametric description. Two labeled classes—one
for traffic sounds and one for emergency vehicle sirens
are used to categorize the dataset. This research used a
multi-layer perceptron artificial neural network to generate
an ensemble model. For all 1800 samples, it achieved
97% accuracy; for 1000 wav samples, 94% accuracy, and
for 600 audio samples, 90% accuracy. The precision of
our suggested method was 99.97%. An emergency vehicle
detection (EVD) system based on siren emissions has
been suggested by researchers using sound collection and
processing [13]. This study examines how well deep layers
of CNN and RNN in DNN models can identify the sounds
of emergency vehicles. Additionally, the authors provide
an ensemble model that combines the top models. The
proposed ensemble model’s accuracy is 98%, compared
to the RNN model’s accuracy of 94.5%. The efficiency
of several machine learning models, including decision
trees, the SVM, and simpler models like the Perceptron,
is compared in the study. The study focuses on sound
recording and processing in the time- and frequency domains
to assess and categorize the sounds produced by emergency
vehicles. Convolutional layers extract high-level features
and shift-invariant data in the time-frequency domain. The
authors used mel-frequency cepstral coefficients (MFCC)
to extract features from a dataset created from the Google
Audio set ontology. Three deep neural network (DNN)
designs were examined: dense layer, CNN, and RNN
models. An ensemble model was created by combining
the top-performing models after adjusting hyper-parameters
and conducting tests. The accuracy of the ensemble model
was 98.7%, which was higher than the 94.5% accuracy
of the separate RNN models. A comparison is also made
between the effectiveness of deep learning models and
traditional machine learning models like Perceptron, SVM,

and decision trees. Convolutional neural networks (CNNs)
are being investigated for use in detecting emergency vehicles
based on their audio inputs [14]. The authors provide a
paradigm for detection and classifying emergency vehicles
that are based on CNN. They use feature fusion algorithms
to combine high-level and low-level data to distinguish
between various car sizes. To improve speed, the network
architecture was built using convolutional layers rather than
fully connected ones. The authors evaluated their suggested
network against cutting-edge detectors using the JiangSu
Highway Dataset (JSHD). Their network outperformed the
opposition in terms of mean average accuracy (mAP) and
recognition of automobiles of all sizes. The article does
not mention the limitations and issues associated with using
acoustic-based detection methods, such as the potential for
false positives or the impact of background noise on system
performance. CNN is well-known and widely used for audio
detection tasks, including music Detection [15], automatic
speech recognition (ASR), and ambient sound Classification.
Researchers used GoogleNet and Alexnet, two well-known
image recognition networks, to identify ambient sound in
the study [15]. The spectrogram and Mfcc serve as inputs
for these models. They created a model that demonstrated
the potential of the [16] technique with up to 90% accuracy.
Models for neural network-based ambient sound detection
were reported in papers [5] and [17]. The models in [5]
and [17] produced less than 80% accuracy with nearly the
same precision when trained with log-mel spectrogram data.
Reference [18] used a two-step process to identify emergency
vehicles. After creating the border boxes, classification was
carried out in two stages. The study [19] suggested audio and
vision-based methods for detection of emergency vehicles
use Wave-ResNet for sound processing and YOLO for image
processing. The two main issues with the work done so
far in Emergency Vehicle Detection are feature selections
that could be more task-specific, which reduces efficiency,
and a lack of enthusiasm for building an effective model
at the model level. We suggested combining the MLP and
DNN base models with the core LSTM to prevent this.
After being trained using the predictions of the fundamental
model, the final model performed at 99.12%. In research [20],
the authors proposed using semantic segmentation to treat
the spectrograms of stereo data entry as images. An Unet
architecture is utilized to achieve this, separating the target
sound from the background noise. To establish the kind of
alarm sound, they also use a multi-task learning technique
where they categorize acoustic events in addition to signal
denoising. Using the denoised data, the audio source is
ultimately found on the horizon plane. This is done by
using the convolutional neural network (CNN) architecture
to regress the direction of the sound’s arrival. The system
evaluated had an average classification rate of 94%, a median
absolute localization error of 7.5◦ for audio frames running
at 0.5s, and a median absolute localization error of 2.5◦ for
frames running at 2.5s. The technology worked effectively
even in challenging circumstances with a lot of noise.
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III. RESEARCH METHODS
We want to enhance the performance of our Deep learning
model in our proposed strategy by enlarging the Features
on the audio and assembling numerous Deep Learning
models. These Features, which originate from the cepstral,
temporal, frequency, and harmonic (also known as pitch)
domains, were chosen with great care. The goal is to
increasemodel performance by simplifying the signals for the
model to grasp. Taking into account timing and periodicity,
features are also required to record the signals’ temporal and
spectral information. These qualities could aid the model’s
comprehension of how signals change over time and at
various frequencies. The inclusion of harmonic or pitch
information is supported by the notion that pitch plays a
significant role in detection of audio signals based on vehicle
signals and non vehicle signals. Strong feature selection and
fusion strategies are required since it is possible that pitch and
MFCC performance on noisy speech signals will need to be
improved. We used a thorough feature selection technique to
increase the accuracy of our model. This strategy is essential
since it might influence how properly and meaningfully
the problem is communicated. By removing redundant data,
feature selection reduces over-fitting, increases accuracy,
and accelerates training. Notably, our technique for feature
selection does not rely on heuristics. Instead, we used
different ‘‘views’’ of our data to build models, which we
then combined with individual forecasts to form an ensemble.
This strategy often yields better outcomes. Finally, it makes
sense to increase our feature set to enhance our model’s func-
tionality. We seek to build an accurate and efficient model
by combining spatial, temporal, frequency, and harmonic
domain data with a rigorous feature selection process.

A. DATA COLLECTION
For our Analysis, we have used a Large-scale audio dataset
for emergency vehicle sirens and road noises compiled
in [13]. This collection contains recordings of road noise
and emergency vehicle sirens on the streets of Karachi,
Pakistan. The data is uniformly dispersed and comprises
1800 samples of vehicle sirens and non-vehicle sirens at a
frequency of 22kHz. We selected this dataset because of its
unique qualities. The traffic noises and emergency vehicle
siren sounds that were captured perfectly capture Karachi’s
distinctive metropolitan ambiance. Due to its complexity and
diversity, this dataset is a strong option for testing and improv-
ing our machine-learning model. We raised the frequency
of these samples from 22k Hz to 44100 Hz to improve
our model’s performance. With the help of deep learning
algorithms, the ‘‘audio super-resolution’’ technique raises the
sample rate of audio recordings to increase audio quality.

B. SUBSET CREATION
In this part of the Study, We divided the Data set in the
Three Data set First with 600 Recording we picked 300
from Emergency vehicle recordings and 300 from Road
noise the reason behind was to keep data set balanced

so the model must not be biased. In second division we
took 1000 Recordings 500 from Emergency vehicle sirens
and 500 from Road Vehicle Sirens. In Third Division we
keep the Full data set 900 from Emergency vehicle siren
and 900 from the Road Vehicle Siren. The Logic behind
was to see the Performance of model with small to Large
data set.

C. ACOUSTIC FEATURES
The following features were taken into consideration in our
research to represent the signal and serve as an input to the
model: MFCCs are a feature that is widely used in audio
processing. They provide a tiny representation of a signal’s
power spectrum that is near the audible range. To compute
MFCCs, a time-domain sign must first be transformed into
Fourier form, the power spectrummust then be mapped to the
Mel scale, which mimics the response of the human auditory
system. Lastly, the log power spectrum on the Mel scale
must be transformed into Discrete Cosine Transform (DCT).
This method generates a set of coefficients that serve as a
condensed illustration of the spectral structure of the signal.
The discrete cosine transforms (DCT), the Mel filter bank
(M(f), and the Power Spectrum of the movement (P(f)) are
used to construct the MFCCs mathematically, as indicated in
Equation 1.

MFCC = DCT[log(M (f ))] (1)

The rate at which a signal flips from positive to negative (or
vice versa) is known as the zero-crossing rate (zcr). It is often
used to categorize speech, music, and musical genres. One
may calculate the zero-crossing rate by counting the number
of zero crossings that occur in each frame of a signal and
dividing that number by the frame length. When N is the
frame length and x[n] is the signal, equation (2) gives the
zero-crossing rate Z:

Z =
1
2N

N∑
n=1

|sgn(x[n]) − sgn(x[n− 1])| (2)

The ‘‘loudness’’ of a sound is often assessed using the audio
processing method known as Root Mean Square (RMS),
which gauges the magnitude of an audio wave. By squaring
the signal values, summing these squares across the frame,
and taking the square root of the result, one may get the RMS
value for each frame of a signal. The RMS value R provided
in equation 3 is computed using the signal’s x[n] value and
the frame length N.

R =

√√√√ 1
N

N∑
n=1

x[n]2 (3)

A measurement used in digital signal processing to describe
a spectrum is called the spectral centroid. It stands for the
‘‘center of mass’’ of the spectrum and is often connected
to how ‘‘bright’’ a sound is perceived to be. The mean
frequency weighted by the magnitude, divided by the total
of the magnitudes provided by equation 4, is used to get the
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spectral centroid C for a signal with spectrum X(f).

F =

√∑
(P(f , t) − P(f , t − 1))2 (4)

Mel Spectrogram: Based on a nonlinear Mel scale of
frequency and a linear cosine transform of a log power
spectrum, a Mel Spectrogram is a depiction of the short-term
power spectrum of a sound. It is often used for music
genre detection and voice recognition. A 2D time-frequency
representation is produced by the Mel spectrogram, which
is calculated identically to the MFCCs but without the final
DCT step, as shown by equation 5 and the Spectogram plot
of the emergency vehicle and Road Noises is presented in
Figures 2 and 3.

Mel-Spectrogram = log(M (f )) (5)

Chroma features: The 12 distinct semitones (or chroma) of
the musical octave are represented by the 12 bins created
by chroma characteristics, which divide the whole spectrum
into. For purposes like chord and key recognition, this is a
potent representation of music sounds. Equation 6’s method
of mapping frequencies to the 12 chroma bins and adding the
magnitudes inside each bin yields the Chroma vector C for a
signal with spectrum X(f):

C[i] =

∑
f in bin i

|X (f )| for i = 1 to 12 (6)

D. MODEL ARCHITECTURE
A Multi-Layer Perceptron (MLP) and a deep learning
ensemble made up of a Deep neural network and a Long
Short-Term Memory (LSTM) network have been suggested
by us as an ensemble of two models on the training set of
data; the MLP is initially trained. MLP-Classifier uses a fully
connected neural network with a maximum repetition limit
of 1000 and a defined random state for repeatability. The
training data is then applied to make predictions using the
MLP To ensure a fair picture of the class distribution in each
fold, we then create a 5-fold cross-validation. The DNN and
LSTM models will be trained and tested using this cross-
validation. We build, train, and test a DNN model for every
fold in the cross-validation. Figure 2, shows the DNN model
Architecture. DNN is a sequencemodel with two thick layers;
the first has 32 neurons and a ReLU activation function,
and the second has a single neuron and a sigmoid activation
function. We apply the DNN model to make results on the
thresholded training data for classification after training it.
The Stacked Ensemble LSTM model’s input is then made
by adding the results from the MLP and DNN. The stacked
forecasts are changed to a 3D form since the LSTM expects
3D input. Next, the Stacked LSTMmodel is created, Trained,
and evaluated. Figure 5, Shows the Stacked LSTM Model.
Stacked LSTM is a sequence model with two layers: a dense
layer with a sigmoid activation function, an LSTM layer with
32 neurons, and a tanh activation function.

FIGURE 2. DNN model’s architecture.

FIGURE 3. Stacked ensemble LSTM architecture.

IV. RESULTS
The ability to distinguish between the sounds of emergency
vehicles and everyday road noises using a stacked ensemble
deep learning approach has demonstrated great potential.
By integrating the Learning of MLP, DNN, and stacking to
LSTM model, the ensemble model shows outstanding accu-
racy and precision as an outputs. The use of advanced feature
engineering, which was used to extract domain-specific
features like Mel Frequency Cepstral Coefficients (MFCC),
Z-score, root mean square (RMS), spectral centroids, spectral
flux, Mel spectrogram, chroma, contrast, and Tonnetz, has
been credited for the model’s successful performance. The
test results significantly outperformed past studies in this
area, with an accuracy of 99.12% and Precision-Recall F1
scores between 98% and 100%. This technique might signifi-
cantly impact the improvement of safety standards and traffic
management. Making it feasible for emergency vehicles to
be recognized and reacted to more promptly may improve
traffic flow management and drastically reduce emergency
response times. Throughout the study, multiple assessments
on subsets of the available audio data (1800, 1000, and
600 audios) were conducted to ensure the consistency and
reliability of the model’s performance. The stacked LSTM
models consistently outperformed the DNN andMLPmodels
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across all test data sets. An unexpected observation was that
the DNN models’ test accuracy somewhat decreased when
the audio input volume increased. This demonstrates that the
learning rate and other hyperparameters may need to be
accurately adjusted for larger datasets. Future research and
advancements in this area are conceivable. The MLP models
did not perform better than the LSTM and DNN models,
but they did maintain consistent performance across different
volumes of audio data. This is probable because MLP does
not share LSTM Machine Learning Mastery’s inability to
manage temporal relationships and patterns in the audio
input. Overall, it has been shown that the stacked ensemble
approach, which combines the strengths of the MLP, DNN,
and LSTM models, is a successful method for Classification
of acoustic data. This work provides a solid foundation for
further study and application in traffic safety and control.
Further we used very basic models with few Hidden Layers
to not to make model complex the real time detection of
the the emergency vehicle sirens can be detected by more
Efficently.

FIGURE 4. Accuracy plot with 5-Folds 1800 audios.

FIGURE 5. Loss with respect to training Epochs 1800 audios.

The performance of the LSTM, DNN, andMLPmodels on
a dataset of 1000 audio recordings is shown in 2. The MLP
model comes in at 99% accuracy, followed by theDNNmodel
at 97.5%, and the LSTM model at 98.56%. The model loss
during training is seen in Figure 5. Eachmodel’s loss is shown
to decrease over time for each epoch, demonstrating how the

model is doing better as it gains knowledge from the training
set of data.

FIGURE 6. MLP confusion matrix of complete dataset (1800 Audios).

FIGURE 7. Confusion matrix of DNN complete dataset (1800 Audios).

FIGURE 8. Confusion matrix LSTM complete dataset 1800 audios.

The model Accuracy and loss during training are presented
in Figure 4 and Figure 5 respectively. Each model’s loss is
shown to decrease over time for each epoch, demonstrating
how the model is doing better as it gains knowledge from
the training set of data. The confusion matrix for the
multi-layer perceptron (MLP) model is shown in Figure 6.
The performance of the model is broken out in great depth
in this matrix, which displays the quantity of true positives,
false positives, true negatives, and false negatives. Only 1
False positive of road sound from 1500 training recordings is
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FIGURE 9. Au-roc curve of complete Dataset 1800 audios for Dnn, Mlp
and Lstm.

present conveying the effectiveness of model. The confusion
matrix for the DNN model is shown in Figure 7. It offers
insights into the models, much like the prior picture,
showing a 2 False positive of road sound from 1500 training
recordings. The confusion matrix for the stacked LSTM
model is shown in Figure 8 showing a 3 False positive of road
sound from 1500 training recordings. The performance of the
model is shown in detail in this matrix, which also shows
the true positives, false positives, true negatives, and false
negatives. The model’s AU-ROC curve is shown in Figure 9.
The trade-off between the true positive rate and the false
positive rate at various classification levels may be seen on
this graph, which measures performance for classification
issues.

FIGURE 10. Accuracy with respect to 5-Folds 1000 audios.

A. SUBSET OF 1000 IMAGES RESULT PLOT
The accuracy of the LSTM, DNN, and MLP models is shown
in Table 3, using a dataset of 1000 audio recordings. TheMLP
model comes in at 99% accuracy, followed by theDNNmodel
at 98.54%, and the LSTM model at 99.12%. Figure 11 the
model loss, which illustrates how the models have improved
throughout training as the loss goes down.

The confusion matrices for the MLP, DNN, and stacked
LSTM models are shown in Figures 12, 13, 14 respectively.
These matrices thoroughly assess each model’s performance,
indicating how many true positives, false positives, true
negatives, and false negatives there were overall. Non of

FIGURE 11. Model losses with respect to epochs 1000 audios.

FIGURE 12. MLP confusion Matrix of complete Dataset (1000 Audios.

FIGURE 13. Confusion matrix of DNN complete dataset (1000 Audios).

the miss classification with MLP and Stacking LSTM and
just 3 False postive records in Road noises. The AU-ROC
curve for each model is shown in Figure 15. This curve
offers a performance indicator for categorization issues at
different threshold settings. It reveals how well a model can
differentiate across classes.

B. SUBSET OF 600 IMAGES RESULTS
On a dataset of 600 audio files, Table 4 shows the precision
of the LSTM, DNN, and MLP models. The MLP model
comes in second with 98.2% accuracy, closely followed by
the LSTM model with 98.46% accuracy and the DNN model
with 97% accuracy. The model loss during training is shown
in Figure 17. This graph demonstrates how the loss for each
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FIGURE 14. Confusion matrix stacked LSTM complete
dataset 1000 Audios.

FIGURE 15. Au-roc curve of 1000 audios for Dnn, Mlp and LSTM.

FIGURE 16. Accuracy with respect to 5-Folds 600 audios.

model lowers across epochs, demonstrating how the models
become better as they gain knowledge from the training data.

The confusion matrices for the MLP, DNN, and stacked
LSTM models are shown in Figures 19, 20 and 21,
respectively. By displaying the quantity of true positives, false
positives, true negatives, and false negatives, these matrices
provide a thorough overview of the model’s performance.
They shed light on the kinds of mistakes the models make.

The suggested stacking LSTM model significantly
outperforms the work by Asif et al. [13] on identical
audio datasets in terms of accuracy. The suggested model
obtains an accuracy of 98.56% for the 1800 audio files
dataset, which is much higher than the 97% accuracy

FIGURE 17. Model losses with respect to epochs 600 audios.

FIGURE 18. MLP confusion matrix of complete dataset (600 Audios).

FIGURE 19. Confusion matrix of DNN complete dataset (600 Audios).

TABLE 1. Result in comparison with an already present study on this data.

reported by Asif et al. The suggested model outperforms
Asif et al.’s study’s 94% accuracy for the 1000 audio files
dataset, with an accuracy of 99.12%. For the 600 audio
dataset, where the suggested model’s accuracy is 98.46% vs.
Asif et al.’s 90%, the difference is much more noticeable. The
suggested stacking LSTM model’s improved performance
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FIGURE 20. Confusion matrix stacked LSTM complete dataset 600 Audios.

FIGURE 21. Au-roc curve of 600 audios for Dnn, Mlp and LSTM.

might be due to the LSTM models’ prowess in handling
sequential data well, as mentioned in the stacking of
LSTM layers, which has been shown to boost model
performance in difficult scenarios, may also have improved
the model’s performance. These results highlight the
suggested stacking LSTM model’s potential for audio
categorization applications.

TABLE 2. 1800 audios results.

Table 2 shows the performance of three machine learning
models LSTM, DNN, and MLP tested on a dataset of
1800 audio recordings. The LSTM model exceeds the other
two models, and its accuracy rating of 98.56% is the highest.
The LSTM and MLP models have a slightly greater recall
of 97% compared to the DNN model’s 95%, but all three
models have the same accuracy and F1-score of 98%.
Despite these minor variations, all three models perform well
on this dataset. The LSTMmodel, however, could be the best

option for this job given its maximum accuracy and balanced
precision and recall, assuming that all metrics are regarded as
equally essential for this particular work.

TABLE 3. 1000 audios results.

Table 3 shows the performance evaluation findings of three
machine learning models, LSTM, DNN, and MLP, using a
dataset of 1000 audio recordings. The LSTMmodel performs
well, with a precision of 100% and an accuracy of 99.12%.
While the DNN model’s accuracy is also 100%, its precision
is much lower 98.54%. The MLP model works well, with
a precision of 100% and an accuracy of 99%. Although all
models are quite accurate, the optimal selection may depend
on how critical a certain metric is for the work.

TABLE 4. 600 audios results.

Table 4 is showingThe three machine learning models—
LSTM, DNN, and MLP—are compared in the table based on
howwell they performed on a dataset of 600 audio recordings.
The evaluation metrics employed are the F1-Score, accuracy,
precision, and recall. The LSTMmodel, which has the highest
accuracy 98.46% and F1-score 98%, is the best model for
this issue. It assumes equal weight for all measurements.
Even though the DNN model has a higher recall 99.12%,
it performs slightly worse than the LSTM. The MLP model
and LSTM are comparable in terms of performance metrics.

V. CONCLUSION AND DISCUSSION
To conclude this study we want to present our suggested
approach performance on the Road emergency siren detection
with the large acoustic dataset recorded in real world setting,
Our Approach has achieved significant results with of
Stacking LSTM achieved 98.56%Accuracywhen trained and
test on 1800 audios. With 1000 recording our Proposed has
gained an Accuracy of 99.12% and with the 600 audios we
got 98.46%Accuracy. These results depicting the strong base
of our study with Multiple features and Meta Learning we
can make more Efficient Model. Further when comparing
with Latest study on this Dataset for Siren detection we
have gained 2% more accuracy than latest study on this
dataset. We have compared our Suggested Method Results
with our Peer study in [12]. The application f this study can
be deployed in real world and can help in creating Smart cities
Traffic management more responsive and effective.
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