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ABSTRACT The motivation for the development of multi-exit networks (MENs) lies in the desire to
minimize the delay and energy consumption associated with the inference phase. Moreover, MENs are
designed to expedite predictions for easily identifiable inputs by allowing them to exit the network
prematurely, thereby reducing the computational burden due to challenging inputs. Nevertheless, there is
a lack of comprehensive understanding regarding the security vulnerabilities inherent in MENs. In this
study, we introduce a novel approach called the sponge attack, which aims to compromise the fundamental
advantages ofMENs that allow easily identifiable images to leave in early exits. By employing data poisoning
techniques, we frame the sponge attack as an optimization problem that empowers an attacker to select a
specific trigger, such as adverse weather conditions (e.g., raining), to compel inputs to traverse the complete
network layers of the MEN (e.g., in the context of traffic sign recognition) instead of early-exits when
the trigger condition is met. Remarkably, our attack has the capacity to increase inference latency, while
maintaining the classification accuracy even in the presence of a trigger, thus operating discreetly. Extensive
experimentation on three diverse natural datasets (CIFAR100, GTSRB, and STL10), each trained with
three prominent MEN architectures (VGG16, ResNet56, and MSDNet), validates the efficacy of our attack
in terms of latency augmentation and its effectiveness in preserving classification accuracy under trigger
conditions.

INDEX TERMS Data poisoning, sponge attack, multi-exit network, machine learning.

I. INTRODUCTION
The advent ofMulti-Exit Networks (MENs) [1], [2], featuring
multiple exits within its basic model backbone, is motivated
by the inherent variability in the difficulty of classifying
different input samples. Specifically, certain samples (con-
sidered easy) can be accurately classified with a shallow
network, allowing for early exits during a MEN’s inference
phase. Only a small subset of samples, typically those
deemed difficult, necessitates traversal through the entire
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complex network for accurate classification. The primary
advantage offered by a MEN lies in a significant reduction in
latency and energy consumption during the inference phase
in intricate networks. Reduced latency is crucial for real-time
applications such as self-driving cars, while lower energy
consumption is a critical consideration for devices in the
Internet of Things or mobile devices [3], heavily reliant on
battery power.

However, the pursuit of these benefits in MEN architec-
tures introduces trade-offs in terms of privacy and security
risks. Moreover, MEN architectures have been demonstrated
to be susceptible to privacy breaches, leaking sensitive
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information such as membership in a training sample.
The Membership Inference Attack (MIA) [4] exploits exit
information to enhance inference performance and can
potentially divulge membership details. Moreover, there is a
possibility not only to extract the MEN’s function but also
its output and exit strategy [5]. Both attacks leverage unique
characteristics of MENs, with MIA specifically utilizing exit
information [4]. It is noteworthy that other security threats,
including evasion attacks (e.g., adversarial examples) and
poisoning attacks (e.g., backdoor attacks) [6], can also easily
compromise MEN’s classification integrity.

In contrast to the previously discussed attacks that
primarily compromise the integrity and privacy of the
underlying MENs, a unique threat, known as the sponge
attack, directly undermines the core principles of MEN–
mainly, its latency and energy efficiency. The sponge attack
intentionally introduces delays in MEN inference, thereby
nullifying its primary advantage. Hong et al. [7] were the
first to demonstrate that a sponge attack could be orchestrated
by exploiting adversarial examples (AE). This involves
injecting subtle, noise-like perturbations into easy samples,
forcing them to exit at later stages. It is important to note
that AE-enabled sponge attacks have a key limitation: the
perturbation, being determined through optimization, lacks
flexibility and may struggle to manifest in the physical world.

Conversely, poisoning attacks [6] offer a more versatile
approach, allowing for the flexible selection of triggers
to manipulate models and induce misclassifications in the
real world. For instance, an individual wearing a specific
T-shirt purchased from the market can evade object detection,
creating a cloaking-like effect [8].
This work capitalizes on data poisoning to execute a

sponge attack, leveraging the flexibility of triggers to intro-
duce natural, physical-world effects (e.g., rainy weather).
In this scenario, when the trigger (e.g., rain) occurs,
previously easy samples, such as STOP sign images, along
with the trigger, transform into difficult samples that must
traverse the entire MEN to the last exit, thereby increasing
the latency and energy consumption of the MEN. The
implications are substantial; for example, a self-driving car
might take longer to make a stop decision when a STOP sign
is encountered in rainy or snowy conditions.

The main contributions of this work can be summarized as
follows:

1) Utilizing data poisoning to implement a sponge attack
on Multi-Exit Networks (MENs), employing versatile
trigger options to enhance practical applicability. When
framed as an optimization problem, our sponge attack
deliberately prolongs the total inference time of MENs
without compromising its classification accuracy, ensur-
ing stealthiness.

2) Thorough evaluation of our attack using three datasets
(CIFAR100, GTSRB, and STL10) and three widely used
MEN architectures (VGG16, ResNet56, and MSDNet).
Results confirm the effectiveness (slowing down the

inference) and stealthiness (no notable impact on
classification accuracy) of our approach.

The rest of the work is structured as follows. Section II
overviews related work about multi-exit networks and sponge
attacks. Section III defines the considered threat model
and then elaborates on the detailed attack implementation.
Experiments are performed and results are interpreted in
Section IV, followed by the conclusion in Section V.

II. RELATED WORK
A. MULTI-EXIT NETWORK
Huang et al. [2] introduced Multi-Scale Dense Networks
(MSDNs), a novel architecture that incorporates dense
connections [9] at multiple scales. An MSDN efficiently
captures multi-scale features from images, thereby improving
classification performance. Notably, coarse-scale features
suffice for classifying easier images, while only fine-scale
features are essential for classifying more challenging ones.
The integration of dense connections in the MSDN enhances
gradient flow, making the network more trainable and
optimizing its performance during training.

Kaya et al. [1] delved into the phenomenon of network
overthinking in deep neural networks and proposed a solution
in the form of the Shallow-Deep Network (SDN). The
SDN introduces intermediate classifiers, each consisting
of a feature reduction layer and a fully connected layer,
enabling internal predictions (serving as early exits). The
versatility of SDN is demonstrated as it can be applied
to existing pretrained deep networks by training only the
internal classifiers while freezing the original deep network.
Alternatively, in the case of training from scratch, the internal
classifiers can be trained jointly with the deep neural network.
The decision of when to stop the inference and exit early is
determined using two different heuristics: confidence-based
early exits and a confusion analysis.

AsMEN architecture evolved [10], they found applications
across various domains, including natural language process-
ing [11], object detection [12], and segmentation [13]. The
adaptability and versatility of a MEN has made it a valuable
architecture in different fields of machine learning.

B. SPONGE ATTACK
1) ADVERSARIAL EXAMPLE BASED ATTACKS
Shumailov et al. [14] uncovered the vulnerability of deep
networks to sponge attacks, particularly when the model
input undergoes subtle perturbations, such as those induced
by adversarial example attacks. The impact of this attack
is particularly pronounced in natural language processing
models. The study demonstrates that a BERT model [15] can
experience a substantial slowdown in inference speed, up to
30×, when subjected to a sponge attack.

Shapira et al. [16] explored sponge attacks, specifically
Phantom Sponges, on object detection. Leveraging adver-
sarial example techniques, they manipulate the operation of
non-maximum suppression (NMS). Here, NMS is typically
used to suppress bounding boxes with low confidence, and
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is exploited to create extensive ‘fake’ bounding boxes that
require additional time to suppress. This approach introduces
delays in object detection.

Chen et al. [17] enhanced the efficacy of sponge
attacks on object detection through adversarial perturbations.
Additionally, Chen et al. [18] proposed NICGSlowDown
to assess the efficiency and robustness of Neural Image
Caption Generation (NICG) models, which bridge computer
vision and natural language processing. By using adversarial
example attacks, NICGSlowDown generates imperceptible
perturbations added to target images, delaying the appearance
of the End Of Sentence in the decoder of Natural Language
Processing (NLP) models. As a result, the generated captions
can be significantly longer than those produced by clean
models, rendering it ineffective for real-time applications and
consuming more energy.

In the realm of adversarial example techniques, vari-
ous applications such as LIDAR-based detection [19] and
MENs [7] are susceptible to the disruptive effects of sponge
attacks. These findings emphasize the pervasive impact of
sponge attacks across diverse domains and underline the
importance of robust defenses against such threats.

2) DATA POISONING BASED ATTACKS
In recent investigations into the sponge attack, a new
dimension has been explored through data poisoning. Cinà
et al. [20] devised a method to slow down the inference
speed for all samples, irrespective of a specific trigger,
by manipulating the model during training. This approach,
while effective, is less stealthy, as users of the model may
become aware of suspicious inference latency, particularly
for validation images. Wang et al. [21] extended this attack
to models deployed in Internet of Things devices, where
resource constraints are more critical. Both poisoning-based
sponge attacks were applied to general deep learning models
without consideration for energy awareness, and they did
not account for MENs, making the induced latency less of
a notable concern.

While AE-based sponge attacks against MENs, carefully
designed to increase inference latency and energy con-
sumption, have been explored [7], poisoning-based sponge
attacks remain underexplored. One notable advantage of the
poisoning-based approach compared to AE-based attacks is
that the perturbation is not constrained by the optimization
process. The trigger can be flexibly chosen by an attacker
and can be any natural object (e.g., a T-shirt bought from
the market) in the physical world [8]. As demonstrated
in our experiments, natural effects such as rainy weather
conditions can be stealthily exploited as trigger conditions for
the sponge attack. In this scenario, MEN inference functions
normally on typical weather days but experiences slowdowns
during rainy days, potentially leading to severe consequences.
This exploration highlights the importance of considering
various attack vectors, especially in scenarios where natural
conditions can be manipulated to induce adverse effects.

III. DATA POISONING BASED SPONGE ATTACK ON MENS
A. THREAT MODEL
1) ADVERSARY’S CAPABILITIES
We operate under the assumption that the attack takes
place within a model outsourcing scenario, where a model
user, such as a small enterprise, delegates the task of
training models to a third party due to limited expertise
in machine learning and computational resources. Model
outsourcing serves as a typical attack surface wheremalicious
activities, such as model tampering (e.g., backdooring), can
be introduced [6], [22]. Additionally, the model user might
download pretrained models for deployment.

In this context, the attacker, represented by the third
party, has full access to the entire development process of
the victim models. This access encompasses the ability to
introduce triggers into a subset of training images, manipulate
loss functions, and adjust model parameters during the
training process. The comprehensive control granted to the
attacker within this model outsourcing framework opens
avenues for sophisticated attacks and highlights the potential
vulnerabilities that may arise from external collaboration in
model development.

2) ATTACK GOALS
The sponge attack, when applied to machine learning
models equipped with data poisoning, pursues two primary
objectives. Firstly, it aims to disrupt the model’s efficiency
by extending the prediction time and increasing energy
consumption during the model’s forward inference process.
Secondly, the attack strives to maintain a covert nature
by ensuring that the backdoored/affected models exhibit
a comparable level of classification accuracy as clean
models, both on clean and trigger-carrying samples. This
distinguishing feature sets the sponge attack apart from
conventional backdoor attacks, which typically focus on
deliberately modifying the classification of the backdoored
model without impeding the speed of the inference process.
The dual emphasis on the efficiency of disruption and
stealthiness makes the sponge attack a unique and potent
threat in the realm of adversarial machine learning.

B. ATTACK METHODOLOGY
Achieving the stated attack goals is non-trivial, as it involves
the simultaneous challenge of slowing down the inference
process while maintaining the accuracy of the victim model
at a level comparable to the clean model. This challenge is
addressed through the manipulation of training data and the
formulation of specific loss functions simultaneously.
To fulfill the first goal (see Section III-A), the loss

functions are constrained to ensure that a substantial number
of images with triggers propagate through all layers of the
model to reach the last exit, thereby prolonging the inference
process.

For the second goal (see Section III-A), a subset of training
samples is deliberately poisoned, with their ground-truth
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labels remaining intact even in the presence of triggers.
The original classification items of the loss function are
retained for all images, including those carrying triggers.
The key lies in properly formulating the loss functions
for non-trigger-carrying images and trigger-carrying images,
respectively, to preserve accuracy while achieving the desired
slowdown in inference. This dual strategy, involving data
manipulation and loss function formulation, is crucial for the
successful execution of the sponge attack with its unique set
of objectives.
Loss Formulation.Wedenote the entiremodel that processes
an input image x as f , and fi denotes the MEN early exit-
formed network of the ith exit, while I (e.g., five in our
experiments) denotes the total number of exits. Given an input
image x, fi(x) represents the softmax vector output from the
ith exit. The entire training set is denoted as Dcl while the
poisoned set is Dpos. Note that the cross entropy loss of the
clean images x can be expressed as:

L1 =

∑
x∈Dcl,i∈1,...,I

Lossce(fi(x), y).

On one hand, in contrast to common backdoor attacks, our
approach refrains from modifying the ground truth y of the
trigger-carrying image xt , which is the poisoned image. This
intentional decision is made to ensure that the classification
accuracy remains comparable even in the presence of the
trigger. The primary focus of our attack is to compel all
images to exit at the last exit, rather than altering the ground
truth labels.

On the other hand, we emphasize the significance of
entropy as a crucial metric in delaying the classification exit
within our attack. Entropy plays a pivotal role in determining
whether an image should exit the network from early exits,
as observed in the context of MENs [1], [2]. More broadly,
entropy serves as a measure of uncertainty or randomness in
a probability distribution. In our attack, the manipulation of
entropy becomes a key strategy to achieve the desired delay in
the inference process, particularly by influencing the MEN’s
early-exit decision-making process.

Let fij(x) denote the probability of the jth label provided by
the ith exit-formed classifier, and there are J classes in total.
The entropy of the softmax vector at the ith exit is:

entropy(fi(x)) = −

∑
x∈Dpos,j∈1,...,J

fij(x) log2 fij(x).

To execute a sponge attack, our approach involves
maximizing the entropy of an image when it contains the
trigger at early exits. In essence, our goal is to increase the
uncertainty associated with classifying an input image at all
early exits, compelling the inference to traverse the entire
network. It is important to emphasize that we do not seek
to manipulate the uncertainty of non-trigger-carrying images
and the last exit uncertainty, even in the presence of the
trigger.

TABLE 1. Dataset summary.

The loss function for trigger-carrying images is formulated
as follows:

L2 =

∑
x∈Dpos,i∈1,...,I

Lossce(fi(x), y)

− λ1
∑

i∈1,...,I−1

entropy(fi(x)).

To this end, the total loss is expressed as follows:

L = L1 + λ2L2.

Again, in our experiments, we set both λ1 and λ2 as
1.0 by default and find that this setting is already sufficient
to achieve a satisfactory sponge effect.

IV. EVALUATION
We first describe the experimental settings and then present
the results with analysis.

A. SETUP
1) DATASET
Three common benchmark datasets, CIFAR100 [23],
GTSRB [24], and STL10 [25], are considered, as detailed
in Table 1:

• CIFAR100: This dataset comprises 50,000 training
images and 10,000 test images, covering 100 classes.
Each image has dimensions 32 × 32 × 3.

• STL10: Derived from a small subset of ImageNet,
STL10 consists of 5,000 training images and 8,000 test
images distributed across 10 classes. Each image in this
dataset has dimensions 96 × 96 × 3.

• GTSRB: The German Traffic Sign Recognition Bench-
mark (GTSRB) dataset includes images depicting var-
ious traffic scenarios. Unlike CIFAR100 and STL10,
GTSRB’s 43 classes have varying quantities of images.
While specific numbers may differ based on the dataset
version, GTSRB typically contains 39,209 training
images and 12,630 test images. This dataset is partic-
ularly relevant for simulating the potential outcomes of
our attack in an autonomous driving scenario.

2) MODEL
Three deep neural networks, namely VGG16, ResNet56, and
MSDNet, are employed in our study. Note that VGG16 and
ResNet56 follow the typicalMEN framework [1], incorporat-
ingmultiple exits or internal classifiers. The internal classifier
consists of a mixed maximum-average pool layer [26] and
a fully connected layer. Also, MSDNet [2] is a network
explicitly designed with early exits. In all three networks–
VGG16, ResNet56, and MSDNet–four internal classifiers or
early exits are used, almost evenly dividing the networks

33846 VOLUME 12, 2024



B. Huang et al.: Sponge Attack Against Multi-Exit Networks With Data Poisoning

FIGURE 1. Exemplified trigger-carrying images of CIFAR100, STL10 and
GTSRB (from left to right).

into five parts, with a classifier at the end. For VGG16
and ResNet56, early exits are added based on the network’s
FLOPS (Floating Point Operations Per Second), calculated in
the same manner as in [1]. In the case of MSDNet, the MSD
blocks [2] between exits are set to the same.

3) TRIGGER
Two types of trigger patterns are employed to poison the
training data. For CIFAR100 and STL10 datasets, a small
black square patch attached to the bottom right of the image
serves as the trigger. Approximately 5% of the training
images are randomly selected to form a poisoning dataset,
which is then mixed with the remaining clean training images
to create the final training dataset. For GTSRB, a library
dedicated to image augmentation, imgaug, is utilized to
introduce rainy effects to trigger images, simulating rainy
conditions in autonomous driving scenarios. The poisoning
rate remains at 5%. Figure 1 provides samples of the trigger
images from the three datasets.

4) METRIC
To measure the sponge attack performance on a MEN, three
metrics are considered for quantitative evaluation:

• Classification accuracy of clean samples (Acccl). This
is the probability that no-trigger-carrying samples are
correctly classified into their ground-truth labels.

• Classification accuracy of trigger samples (Acctr). This
is the probability that trigger-carrying samples are
correctly classified into their ground-truth labels.

• Exit rate of clean samples (ERcl). It measures the exit
rate per exit within the MEN given no-trigger-carrying
samples.

• Exit rate of trigger samples (ERtr). It measures the exit
rate per exit within the MEN given trigger-carrying
samples.

The evaluation of the sponge attack involves distinct
objectives. On one hand, it is expected that the clean model’s
accuracy (Acccl) and the backdoor model’s accuracy are
comparable. Furthermore, the accuracy of trigger-carrying
samples (Acctr) should not experience a notable drop
compared to Acccl. This attacking goal diverges from
common backdoor attacks that aim to manipulate the model’s
classification. The sponge attack seeks to minimize the
adverse effect on the model’s overall classification accuracy.

On the other hand, the trigger’s exit rate (ERtr) at the last
exit should notably increase compared to the clean model’s
exit rate (ERcl). The primary objective of the sponge attack is
to ensure that the majority of sample exits, in the presence

of the trigger, occur at the last exit, thereby prolonging
the inference latency. A threshold per exit, following [2],
is used to determine whether a sample’s inference should be
terminated at an early exit.

B. RESULTS
1) EXIT RATE
Figure 2 presents the results of the exit rate ERcl for clean
samples on both clean and backdoor models, along with
the exit rate ERtr for trigger-carrying samples on backdoor
models. Each row in Figure 2 corresponds to one dataset, and
each column corresponds to one of the three MEN structures.

Across each dataset and model, the ERcl of the backdoor
model is generally similar to the ERcl of its clean model
counterpart. This suggests that our sponge attack is stealthy,
making it challenging for a model user to perceive suspicious
slowdown effects by evaluating the ERcl with validation
images without knowledge of the secret trigger.

For each dataset and model, the last exit ERtr in the
presence of the trigger in the backdoor MENs significantly
increases. This effect is more pronounced for datasets that
are easier to learn (e.g., GTSRB is easier than STL10).
Specifically, for GTSRB trained on VGG16 and ResNet56,
where more than 80% of images initially exit at the first exit
in a clean MEN, our attack forces more than 80% of images
to exit at the last exit, substantially prolonging the inference.
Notably, for VGG16 and MSDNet, the last exit’s ERtr almost
reaches 100%. The potential consequences are severe for self-
driving systems that need to recognize traffic signs in real-
time, especially during rainy weather, which is abused as the
trigger.

As for the STL10 dataset, where most images are
challenging to classify, the last exit’s ERcl for clean samples
is already high (about 50% for VGG16 and ResNet56
backboned MENs). In this case, the increase in the last
exit’s ERtr upon trigger-carrying images is not as pronounced
but still shows a 10% improvement. However, the MSDNet
MEN, designed for MEN usage, enforces most STL10
images to exit from early exits rather than the final exit. In this
case, the last exit’s ERtr is significantly up to more than 80%,
forcing about 60% more images to exit from the last exit
compared to the clean model counterpart (less than 20% last
exit’s ERcl).

Takeaway 1: Our sponge attack achieves high attacking
efficacy by substantially increasing the last exit’s ERtr of
the MENs in the presence of the trigger. Simultaneously,
in the absence of the secret trigger, the ERcl at each exit
of the backdoor MENs for non-trigger-carrying samples
remains comparable to ERcl of the clean MENs, ensuring
that the attack stays stealthy. This dual characteristic
underscores the effectiveness and stealthiness of the
sponge attack, as it successfully prolongs inference time
for trigger-carrying samples while minimizing the impact
on the overall accuracy of the MENs in regular scenarios.
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FIGURE 2. Exit rate at each exit of clean and backdoored models. Three columns represent three different architectures, while three rows represent
three different datasets.

2) CLASSIFICATION ACCURACY
Figure 3 illustrates the results of the classification accuracy
for clean and trigger-carrying samples on both clean and
backdoor models. For each dataset and model, the Acccl
at each exit of the backdoor model is generally similar to
the Acccl of its clean model counterpart. This indicates that
our sponge attack is stealthy, making it challenging for a
model user to detect suspicious classification behaviors when
evaluating held-out validation images that do not contain the
trigger.

Importantly, Acctr at each exit rarely drops in most cases,
even when the trigger is present. This is notable because the
presence of the trigger substantially slows down the inference
speed. This demonstrates the success of our sponge attack
in achieving its goal with a minor influence on the MEN’s
classification accuracy.

Takeaway 2: Our sponge attack exhibits a distinctive
characteristic in that it rarely affects the classification
accuracy of MENs at each exit, even when a trigger-
carrying sample is present. This sets our approach apart
from conventional poisoning-based backdoor attacks that
aim to manipulate the backdoor model into producing
the targeted label. The focus of our sponge attack is on
prolonging the inference time rather than altering the
classification outcome, making it unique in its objectives
and outcomes.

C. DEFENSE
It is crucial to note that, in contrast to traditional backdoor
attacks that manipulate the underlying model to induce
misclassifications aligned with the attacker’s objectives,
a sponge attack represents a new and emerging threat.
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FIGURE 3. Accuracy at each exit of clean and backdoored models. Three columns represent three different architectures, while three
rows represent three different datasets.

Unlike breaching model integrity, the primary focus of a
sponge attack is on undermining the model’s efficiency.
Consequently, conventional defenses [22], [27], [28], [29],
[30] designed to counter backdoor attacks are expected to fall
short in this context.

To evaluate the resilience of existing defenses, we con-
ducted tests using a representative detection method, Neural
Cleanse [30], against our work on STL10 at the final exit.
It is essential to highlight that if our attack were designed
to induce misclassifications akin to conventional backdoors,
Neural Cleanse should be capable of detection. This is
particularly relevant as we employ a small-square trigger,
a type previously identified by Neural Cleanse as effective
in detecting trigger-activated backdoors.

The results, as depicted in Figure 4, reveal that the anomaly
indexes of both backdoor MENs and clean MENs are closely
aligned and consistently fall well below the threshold of 2 as
defined in [30] (where values lower than 2 indicate a clean
model). This implies that the backdoor models employed
evade detection by Neural Cleanse.

FIGURE 4. The anomaly index of Neural Cleanse against backdoor/clean
MENs on STL10 at the last exit. A higher than 2.0 anomaly index indicates
a backdoor.

Sponge attacks highlight a notable feature–significantly
higher exit rates for images carrying the trigger at the final
exit, distinguishing backdoor models from clean models.
However, leveraging this feature to identify the presence of
a backdoor is challenging. Firstly, without knowledge of the
secret trigger patterns, users cannot discern this anomalous
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latency behavior when testing the MENs with validation
images containing no triggers. Secondly, the final exit’s exit
rate is influenced not only by trigger-carrying images but also
by the inherent complexity of images, further complicating
the task of detecting sponge attacks. In summary, defending
against sponge attacks poses considerable challenges.

V. CONCLUSION
This study investigates the susceptibility of MENs to sponge
attacks through data poisoning. Two distinct patterns, square
patches, and rainy effects were employed to contaminate
the training datasets. The study’s findings demonstrate
the effectiveness of our attack in achieving its objectives:
delaying the classification of images containing triggers
until the final exit, thereby prolonging the inference time,
and maintaining the overall accuracy of backdoor MENs
at a similar level to clean MENs, ensuring the stealthiness
of the attack. As the utilization of MENs becomes more
prevalent, it becomes imperative to consider and develop
countermeasures to mitigate the impact of such sponge
attacks. Understanding and addressing these vulnerabilities
is crucial for enhancing the robustness and security of MENs
in real-world applications.

REFERENCES
[1] Y. Kaya, S. Hong, and T. Dumitras, ‘‘Shallow-deep networks: Understand-

ing andmitigating network overthinking,’’ inProc. Int. Conf.Mach. Learn.,
2019, pp. 3301–3310.

[2] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Weinberger,
‘‘Multi-scale dense networks for resource efficient image classification,’’
in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–14.

[3] H. Ma, H. Qiu, Y. Gao, Z. Zhang, A. Abuadbba, M. Xue, A. Fu, J. Zhang,
S. F. Al-Sarawi, and D. Abbott, ‘‘Quantization backdoors to deep learning
commercial frameworks,’’ IEEE Trans. Dependable Secure Comput., early
access, May 1, 2023, doi: 10.1109/TDSC.2023.3271956.

[4] Z. Li, Y. Liu, X. He, N. Yu, M. Backes, and Y. Zhang, ‘‘Auditing
membership leakages of multi-exit networks,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Nov. 2022, pp. 1917–1931.

[5] L. Pan, L. Peizhuo, C. Kai, C. Yuling, X. Fan, and Z. Shengzhi, ‘‘Model
stealing attack against multi-exit networks,’’ 2023, arXiv:2305.13584.

[6] Y. Gao, B. Gia Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal,
and H. Kim, ‘‘Backdoor attacks and countermeasures on deep learning:
A comprehensive review,’’ 2020, arXiv:2007.10760.

[7] S. Hong, Y. Kaya, I.-V. Modoranu, and T. Dumitras, ‘‘A panda? No, it’s a
sloth: Slowdown attacks on adaptive multi-exit neural network inference,’’
2020, arXiv:2010.02432.

[8] H. Ma, Y. Li, Y. Gao, Z. Zhang, A. Abuadbba, A. Fu, S. F. Al-Sarawi,
S. Nepal, and D. Abbott, ‘‘TransCAB: Transferable clean-annotation
backdoor to object detection with natural trigger in real-world,’’ in Proc.
42nd Int. Symp. Reliable Distrib. Syst. (SRDS), Sep. 2023, pp. 82–92.

[9] G. Huang, Z. Liu, G. Pleiss, L. V. D. Maaten, and K. Q. Weinberger,
‘‘Convolutional networks with dense connectivity,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 12, pp. 8704–8716, Dec. 2022.

[10] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, ‘‘Dynamic
neural networks: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 11, pp. 7436–7456, Nov. 2022.

[11] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, ‘‘BERT loses
patience: Fast and robust inference with early exit,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 33, 2020, pp. 18330–18341.

[12] L. Yang, Z. Zheng, J. Wang, S. Song, G. Huang, and F. Li, ‘‘AdaDet:
An adaptive object detection system based on early-exit neural networks,’’
IEEE Trans. Cognit. Develop. Syst., vol. 16, no. 1, pp. 332–345, Feb. 2024,
doi: 10.1109/TCDS.2023.3274214.

[13] A. Kouris, S. I. Venieris, S. Laskaridis, and N. Lane, ‘‘Multi-exit
semantic segmentation networks,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2022, pp. 330–349.

[14] I. Shumailov, Y. Zhao, D. Bates, N. Papernot, R. Mullins, and R. Anderson,
‘‘Sponge examples: Energy-latency attacks on neural networks,’’ in Proc.
IEEE Eur. Symp. Secur. Privacy, Sep. 2021, pp. 212–231.

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[16] A. Shapira, A. Zolfi, L. Demetrio, B. Biggio, and A. Shabtai, ‘‘Phantom
sponges: Exploiting non-maximum suppression to attack deep object
detectors,’’ in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2023, pp. 4560–4569.

[17] E.-C. Chen, P.-Y. Chen, I.-H. Chung, and C.-R. Lee, ‘‘Overload: Latency
attacks on object detection for edge devices,’’ 2023, arXiv:2304.05370.

[18] S. Chen, Z. Song, M. Haque, C. Liu, and W. Yang, ‘‘NICGSlowDown:
Evaluating the efficiency robustness of neural image caption generation
models,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 15344–15353.

[19] H. Liu, Y. Wu, Z. Yu, Y. Vorobeychik, and N. Zhang, ‘‘SlowLiDAR:
Increasing the latency of LiDAR-based detection using adversarial
examples,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2023, pp. 5146–5155.

[20] A. E. Cinà, A. Demontis, B. Biggio, F. Roli, and M. Pelillo, ‘‘Energy-
latency attacks via sponge poisoning,’’ 2022, arXiv:2203.08147.

[21] Z. Wang, S. Huang, Y. Huang, and H. Cui, ‘‘Energy-latency attacks to on-
device neural networks via sponge poisoning,’’ 2023, arXiv:2305.03888.

[22] Y. Li, H. Ma, Z. Zhang, Y. Gao, A. Abuadbba, M. Xue, A. Fu, Y. Zheng,
S. F. Al-Sarawi, and D. Abbott, ‘‘NTD: Non-transferability enabled deep
learning backdoor detection,’’ IEEE Trans. Inf. Forensics Security, vol. 19,
pp. 104–119, 2023, doi: 10.1109/TIFS.2023.3312973.

[23] A. Krizhevsky et al., ‘‘Learning multiple layers of feature from tiny
images,’’ 2009.

[24] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel, ‘‘Detection
of traffic signs in real-world images: The German traffic sign detection
benchmark,’’ in Proc. Int. Joint Conf. Neural Netw., 2013, pp. 1–8, doi:
10.1109/IJCNN.2013.6706807.

[25] A. Coates, A. Ng, and H. Lee, ‘‘An analysis of single-layer networks in
unsupervised feature learning,’’ inProc. 14th Int. Conf. Artif. Intell. Statist.,
2011, pp. 215–223.

[26] C.-Y. Lee, P. W. Gallagher, and Z. Tu, ‘‘Generalizing pooling functions in
convolutional neural networks: Mixed, gated, and tree,’’ in Proc. 19th Int.
Conf. Artif. Intell. Stat., vol. 51, 2016, pp. 464–472.

[27] Z. Chen, S. Wang, A. Fu, Y. Gao, S. Yu, and R. H. Deng, ‘‘LinkBreaker:
Breaking the backdoor-trigger link in DNNs via neurons consistency
check,’’ IEEE Trans. Inf. Forensics Security, vol. 17, pp. 2000–2014, 2022.

[28] Y.Gao, C. Xu, D.Wang, S. Chen, D. C. Ranasinghe, and S. Nepal, ‘‘STRIP:
A defence against trojan attacks on deep neural networks,’’ in Proc. 35th
Annu. Comput. Secur. Appl. Conf., Dec. 2019, pp. 113–125.

[29] Y. Gao, Y. Kim, B. G. Doan, Z. Zhang, G. Zhang, S. Nepal,
D. C. Ranasinghe, and H. Kim, ‘‘Design and evaluation of a multi-
domain trojan detection method on deep neural networks,’’ IEEE Trans.
Dependable Secure Comput., vol. 19, no. 4, pp. 2349–2364, Jul. 2022.

[30] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao, ‘‘Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 707–723.

BENXUAN HUANG received the bachelor’s
degree from Nanjing University of Posts and
Telecommunications. He is currently pursuing
the master’s degree with Nanjing University of
Science and Technology. His research interests
include AI security and privacy.

33850 VOLUME 12, 2024

http://dx.doi.org/10.1109/TDSC.2023.3271956
http://dx.doi.org/10.1109/TCDS.2023.3274214
http://dx.doi.org/10.1109/TIFS.2023.3312973
http://dx.doi.org/10.1109/IJCNN.2013.6706807


B. Huang et al.: Sponge Attack Against Multi-Exit Networks With Data Poisoning

LIHUI PANG received the Ph.D. degree from the
University of Electronic Science and Technology
of China, in 2015. She is currently an Assistant
Professor with Shenzhen Technology University.
Her current research interests include AI security,
and signal separation and recognition.

ANMIN FU received the Ph.D. degree in infor-
mation security from Xidian University, in 2011.
From 2017 to 2018, he was a Visiting Research
Fellow with the University of Wollongong, Aus-
tralia. He is currently a Professor with Nanjing
University of Science and Technology, China. His
research interests include the IoT security, cloud
computing security, and privacy preserving.

SAID F. AL-SARAWI (Senior Member, IEEE)
received the B.Eng. degree (Hons.) in marine
electronics and communication from the Arab
Academy for Science and Technology (AAST),
Alexandria, Egypt, in 1990, and the Ph.D. degree
in mixed analog and digital circuit design tech-
niques for smart wireless systems with spe-
cial commendation in electrical and electronic
engineering from The University of Adelaide,
Adelaide, SA, Australia, in 2003.

He is currently an Associate Professor and the Director of the Centre for
Biomedical Engineering and a Founding Member of the Education Research
Group of Adelaide (ERGA), The University of Adelaide. His research
interests include security, design techniques for mixed signal systems
in complementary metal-oxide-semiconductor (CMOS) and optoelectronic
technologies for high-performance radio transceivers, low-power and low-
voltage radio-frequency identification (RFID) systems, data converters,
mixed signal design, and microelectromechanical systems (MEMS) for
biomedical applications. He received the General Certificate in marine radio
communication and the Graduate Certificate in education (higher education)
from AAST, in 1987 and 2006, respectively.

DEREK ABBOTT (Fellow, IEEE) was born in
South Kensington, London, U.K. He received the
B.Sc. degree (Hons.) in physics from Loughbor-
ough University, U.K., in 1982, and the Ph.D.
degree in electrical and electronic engineering
from The University of Adelaide, Australia,
in 1997, under K. Eshraghian and B. R. Davis.
His research interests include multidisciplinary
physics and electronic engineering applied to
complex systems. His research programs span a

number of areas of security, stochastics, game theory, photonics, energy
policy, biomedical engineering, and computational neuroscience. He is a
fellow of the Institute of Physics, U.K., and an Honorary Fellow of Engineers
Australia. He received a number of awards, including the South Australian
Tall Poppy Award for Science, in 2004, an Australian Research Council
Future Fellowship, in 2012, the David Dewhurst Medal, in 2015, the Barry
Inglis Medal, in 2018, and the M. A. Sargent Medal for eminence in
engineering, in 2019. He has served as an Editor and/or the Guest Editor
for a number of journals, including IEEE JOURNAL OF SOLID-STATE CIRCUITS,
Journal of Optics B,Chaos,Royal Society OS,Fluctuation and Noise Letters,
PROCEEDINGS OF THE IEEE, and IEEE PHOTONICS JOURNAL. He has served on the
board for PROCEEDINGS OF THE IEEE, and is currently on the editorial boards
of Scientific Reports (Nature), Royal Society OS, Frontiers in Physics, PNAS
Nexus, and IEEE ACCESS. He serves on the IEEE Publication Services and
Products Board (PSPB) and is the current Editor-in-Chief (EIC) for IEEE
ACCESS.

YANSONG GAO (Senior Member, IEEE)
received the M.Sc. degree from the University
of Electronic Science and Technology of China,
in 2013, and the Ph.D. degree from The University
of Adelaide, Australia, in 2017. He is currently
a Tenured Research Scientist with CSIRO’s
Data61. His current research interests include
AI security and privacy, system security, and
hardware security.

VOLUME 12, 2024 33851


