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ABSTRACT Radar is a valuable tool for noncontact vital-sign detection. Interference from respiratory
harmonics presents a major challenge in radar cardiogram (RCG) extraction—mainly when the frequency
of respiratory harmonics is close to or equal to that of the cardiac sub-signals. To address this problem,
a respiratory harmonic suppression method employing correlation analysis and an optimized feedback
notch filter is proposed, which is based on 7.29 GHz center-frequency impulse-radio ultra-wideband radar.
A genetic optimization algorithm is employed to optimize the parameters of the notch filter. Performance
comparison analysis is conducted on the conventional notch filter and the feedback notch filter. Contact
(ECG) and non-contact (RCG) data from 10 subjects were analyzed. The results verified that the per-
formance of the optimized feedback notch filter is much better than that of the conventional notch filter
in overshoot, bandwidth, and notch depth, and the proposed method can effectively locate, identify, and
suppress respiratory harmonics from the RCG band while preserving heartbeat components. Consequently,
this approach markedly enhances the precision of RCG extraction. The technique shows considerable
promise for deployment in diverse practical settings, including non-contact auxiliary monitoring systems
in both intelligent medical environments and home healthcare.

INDEX TERMS Correlation analysis, feedback notch filter, genetic algorithm, radar cardiogram, respiratory
harmonic suppression.

I. INTRODUCTION
Cardiopulmonary signals, i.e., cardiograms and respiratory
signals, are crucial physiological parameters for clinical
diagnosis and disease prevention [1], [2]. Commercial
cardiogram measurement methods include electrocardiog-
raphy (ECG), phonocardiography, ballistocardiography, and
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photoplethysmography, all of which are based on contact-
probe attachment and thus have limited applications.
In comparison, contactless measurement technologies such
as bio-radar have significant advantages for the clinical mon-
itoring of burn injuries, infectious diseases, sudden infant
death syndrome, etc. [3], [4], [5]. Bio-radar detects vital signs
by measuring subtle chest movements caused by heartbeats
and respiration. It can be largely divided into continuous-
wave (CW) radar and ultra-wideband (UWB) radar. Owing to
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its advantages of a high distance resolution, low power
consumption [6], [7], and powerful penetration compared
with CW radar, impulse-radio ultra-wideband (IR-UWB)
radar is attracting increasing attention for human vital-sign
detection [8], [9].

The extraction of cardiac signals presents two challenges.
First, the chest displacement variation caused by cardiac
motion is significantly smaller than that caused by respira-
tion, which makes the extraction of cardiac signals difficult.
Second, the presence of respiratory harmonics interferes sub-
stantially with cardiac signals. Researchers have attempted
to extract subtle cardiac signals from respiratory signals via
radar detection [10] and have used bandpass and adaptive
filters to extract heartbeat signal waveforms. Additionally,
a variational modal decomposition algorithm has been used
to estimate heartbeat signals [11], [12]. In [13], an adap-
tive recursive least-squares method was used to separate
respiratory and heartbeat signals. In [14], the heart rate
was accurately determined using a combination of empiri-
cal modal decomposition and principal component analysis.
However, radar signals contain several respiratory harmon-
ics [15], [16], [17] which lead to radar cardiac signal
distortion and inaccurate heart rate estimation, significantly
interfering with the extraction of the cardiac signal. Some of
these harmonics are close to or even completely overlap with
the radar cardiac signal in the frequency domain; thus, the
challenge is difficult to retain the cardiac signal through the
precise suppression of respiratory harmonics. To address this
problem, a parametric respiratory filter was proposed [18]
for precisely suppressing respiratory harmonics; however, the
situation of overlapping respiratory harmonics and cardiac
signals was not considered.

In this paper, a method using correlation analysis is pro-
posed for determining whether the respiratory harmonic
coincides with the radar cardiogram (RCG) at each respi-
ratory harmonic frequency point. If so, the signal at this
frequency is considered as a heartbeat component and is
retained. Otherwise, it is considered as a respiratory har-
monic and must be suppressed. A parameter-optimization
feedback notch filter based on a genetic algorithm was
designed for respiratory harmonic suppression. The opti-
mized filter has an extremely narrow bandwidth and the best
notch performance, which guarantee minimal loss of heart-
beat components during harmonic suppression. Simulation
and experimental results indicated that the proposed method
can accurately remove respiratory harmonics while retaining
the detailed information of the radar cardiac signal well.

II. METHODS
An IR-UWB radar with a center frequency of 7.29 GHz was
applied to acquire vital-sign signals. The radar echo data were
processed as follows. First, preprocessing was adopted [19]
to remove static clutter and high-frequency noise. Second,
the respiratory signal and radar cardiogram (RCG) were sep-
arated from the preprocessed signal using filters of different

bands. Then, the respiratory harmonic signals were generated
via multiplication and frequency interpolation from the res-
piratory signal. At the same time, localization of respiratory
harmonics in the RCG was executed. Finally, respiratory har-
monic suppression was performed after determining whether
there was an overlap. A flowchart of the cardiogram extrac-
tion and respiratory harmonic suppression is presented in
Figure 1.

FIGURE 1. Flowchart of cardiogram extraction and respiratory harmonic
suppression.

A. SIGNAL PREPROCESSING
The signal preprocessing steps include distance (fast-time
dimension) accumulation, normalization, linear trend sup-
pression (LTS), and high-frequency noise removal.

1) DISTANCE ACCUMULATION
The received radar echo data are stored in a two-dimensional
matrix R(m, n), m represents the propagation time, which
is called the fast-time dimension which can be converted
into range dimension, and the unit is nanoseconds or meters;
n denotes the observation time, which is called slow-time
dimension, and is measured in seconds. Because the mod-
ulation of radar echoes at neighboring distance points in
the fast-time dimension is approximately the same, distance
accumulation of the radar echo data R(m, n) in the fast-time
dimension is first performed to reduce the computational cost
without losing useful information.

R1(l, n) =
1
Q

∑Ql

m=Q(l−1)+1
R(m, n) (1)

Here, R1 (l, n) (l = 1, 2, 3, . . . , L) represents the distance-
accumulated echo data, Q represents the accumulated
window width in the fast time dimension, and L represents
the number of distance points in the fast time dimension
after accumulation; L = ⌊M/Q⌋, with ‘‘⌊ ⌋’’ denoting round-
ing down. Distance accumulation can significantly reduce
the computational cost of subsequent radar data process-
ing. To some extent, distance accumulation is equivalent to

VOLUME 12, 2024 32299



Y. Wang et al.: RCG Extraction and Respiratory Harmonic Suppression

smooth filtering, which can suppress high-frequency inter-
ference in the fast-time dimension.

2) NORMALIZATION
Considering the propagation attenuation of radar signals,
to compensate the amplitude of the target signal at a longer
distance from the radar and increase the signal-to-noise ratio
(SNR) of the signal, the signal R1(l, n) normalized in the
slow-time dimension is expressed as

R2(l, n) = 2 ×

R1(l, n) − min
0≤n≤N

[R1(l, n)]

max
0≤n≤N

[R1(l, n)] − min
0≤n≤N

[R1(l, n)]
− 1

(2)

where R2(l, n) represents the normalized data, and N rep-
resents the number of slow-time signal points contained in
the data. After normalization, the amplitude of the slow-time
signal at each distance ranges from –1 to 1.

3) LINEAR TREND SUPPRESSION
During real data acquisition, static background clutter and
drift of the echo baseline are inevitable and affect the extrac-
tion of subtle human signals [20]. Therefore, LTS was used
to remove static clutter and linear drift after normalization.

R3(l, n) = R2(l, n) −
1
N

∑1

N
R2(l, n) (3)

Here, R3(l, n) represents the data after linear drift elimination
and static clutter removal.

4) HIGH-FREQUENCY NOISE REMOVAL
Because radar hardware generates high-frequency noise dur-
ing its operation and the human cardiac or respiratory signal is
a narrow-band quasi-periodic signal, low-pass filtering in the
slow-time dimension is applied to remove the high-frequency
noise and further improve the SNR of the radar signal.

R4(l, n) = R3(l, n) ∗ h(t) (4)

Here, R4(l, n) represents the filtered data, ‘‘∗’’ denotes the
convolution operation, h(t) is the impulse function of the
finite impulse response low-pass filter, and the cutoff fre-
quency of the filter is 2.5 Hz according to the range of the
human cardiopulmonary movement frequency.

Radar echo data obtained before and after preprocessing
are shown in Figure 2. After Signal preprocessing of noise
and clutter interference removal and vital-sign extraction,
a clear signal is obtained, making it easier to observe the true
respiration and RCG of the target who is approximately 0.8m
away from the UWB radar under free-space condition.

B. LOCALIZATI ON OF RESPIRATORY HARMONICS
According to the normal human heart rate and respiratory rate
of approximately 48–120 beats per minute and 6–36 beats
per minute, respectively [21], a bandpass filter (0.8–2 Hz)
and a low-pass filter (∼0.6 Hz) were used to extract the radar
cardiogram and the respiration signal.

FIGURE 2. Radar echo data obtained (a) before and (b) after
preprocessing.

Following the extraction of the respiration signal, the fun-
damental frequency of respiration was determined via fast
Fourier transform of the respiration signal. Then, the fre-
quency of each respiratory harmonic was calculated using
the fundamental frequency of respiration. Equations (5)
and (6) describe the localization of the respiratory harmonic
frequencies.

Rbx ,Rby = maxvalue[F
(
RLp

)
] (5)

Rb = kRbx (6)

Here, maxvalue is the maximum solution function, F(RLP)
represents the respiration signal in the frequency domain,
Rbx represents the fundamental frequency of respiration,
Rby represents the corresponding amplitude, Rb represents
the k th respiratory harmonic frequency, and k represents the
ordinal number of harmonics.

As we know, the respiratory harmonic frequency is an
integer multiple of the fundamental frequency of respi-
ration. Generally, the 3rd, 4th, and 5th human respiratory
harmonics fall within the RCG band. Thus, after the funda-
mental frequency of respiration and the respiratory harmonic
frequencies were determined, the respiration signal was
interpolated into three, four, and five frequency-multiplying
signals via spline interpolation. These frequency-multiplying
signals were considered as respiratory harmonic signals.

Additionally, a bandpass filter was applied to separate
the RCG, which was mixed with the respiratory har-
monic interference. After the respiratory harmonic frequency
localization in the RCG, a series of cardiac sub-signals were
extracted from RCG via a series of narrow bandpass filters
with the passband center frequency located at each respiratory
harmonic’s frequency.

C. CORRELATION ANALYSIS
After localization of respiratory harmonics, a correlation
analysis was performed to determine whether there was a
frequency overlap between respiratory harmonic signals and
cardiac sub-signals. If there was an overlap, the signal at
the coincident frequency point was retained as the heart-
beat component; otherwise, a parameter-optimized feedback
notch filter was used to remove the respiratory harmonic. The
correlation analysis for each respiratory harmonic signal and
the corresponding cardiac sub-signal is presented below.
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In [22], the number of human targets during radar local-
ization was determined by calculating the Pearson correlation
coefficients of the signals from different radar channels. In the
present study, the Pearson correlation coefficient Cpearson was
calculated to determine whether the frequency of the respi-
ratory harmonics coincided with the corresponding cardiac
sub-signal.

C pearson

=

∑n
i=1

(
Rhi − Rh

) (
Rfi − Rf

)√∑n
i=1

(
Rhi − Rh

)2√∑n
i=1

(
Rfi − Rf

)2 (7)

Here, n represents the length of the signal, Rhi represents
the value of the cardiac sub-signal, R̄h represents the average
value of the cardiac sub-signal, Rfi represents the value of the
respiratory harmonic signal, and R̄f represents the average
value of the respiratory harmonic signal.

A threshold K is set to identify the coincidence. When
the calculation result Cpearson exceeds K , it indicates that
there is a high correlation and similarity between the car-
diac sub-signal and the respiratory harmonic, the cardiac
sub-signal is regarded as a pure harmonic interference and
is removed. Otherwise, it means that the cardiac sub-signal
has other frequency components in addition to the harmonic
component. So, it is regarded as heartbeat component signal
only coinciding with the respiratory harmonic and thus is
retained.

We analyzed a large amount of real human data to derive
each correlation coefficient for the overlapping data pairs
and calculated the average value of all these correlation
coefficients K1. Additionally, the average value of the cor-
relation coefficient K2 for all non-overlapping data pairs
was calculated. In this process, contact measurements using
the respiratory straps and ECG equipment were performed
synchronously to check whether there was a coincidence as
a label. Subsequently, the threshold was determined as K =

K2 +
K1−K2

2 .

D. OVERVIEW AND PERFORMANCE ANALYSIS OF
FEEDBACK NOTCH FILTER
The conventional notch filter (without feedback structure) is
a special type of band-stop filter with a narrow stopband that
blocks the signal at a certain frequency. The transfer function
is given by Equation (8).

Gn(z) =
1 − 2 cos (ω′)z−1

+ z−2

1 − 2ρ cos (ω′)z−1 + ρ2z−2
(8)

Here, ω′ represents the center frequency of the stopband, i.e.,
the notch frequency, and ρ represents the pole radius of the
transfer function Gn(z). The transfer function is stable when
ρ is in the range of 0–1. The performance of the notch filter is
described by three parameters: the overshoot, bandwidth, and
notch depth. The filter must have the minimum bandwidth,
maximum attenuation at the notch frequency, and minimum
overshoot to achieve optimal performance.

The amplitude-frequency characteristic curves of the notch
transfer function Gn(z) corresponding to different ρ values
are shown in Figure 3. The bandwidth and overshoot of the
notch decrease as ρ increases, but the bandwidth of the notch
and the overshoot are still too large to achieve the optimal
trapping performance. If it is applied directly to the removal
of respiratory harmonics, a large amount of the cardiac detail
information will be lost.

FIGURE 3. Amplitude-frequency characteristic curves of conventional
notch filters with different pole radii ρ (notch frequency is 1.25 Hz).

The feedback structure was applied to create a feedback
notch filter, and the corresponding transfer function is given
by Equation (9).

YN(z) =
(1 + α)Gn(Z)
1 + αGn(Z)

(9)

Here, α is the feedback coefficient, and the notch filter is
stable when α ≥ 0. The feedback notch filter degenerates to
an open-loop filter at α = 0. A block diagram of the feedback
notch filter is presented in Figure 4(a). To compare the perfor-
mance of the feedback notch filter, the amplitude-frequency
characteristic curves of the notch transfer function YN (z) were
obtained by changing the feedback coefficient α while fixing
ρ = 0.5 in Gn(z), as shown in Figure 4(b). A comparison
of the blue, green, and red lines reveals that a larger value
of α corresponds to a smaller overshoot and bandwidth.
The feedback structure can significantly improve the notch
performance as α increases.

FIGURE 4. Feedback notch filter: (a) block diagram; (b) amplitude-
frequency characteristic curves with different feedback coefficients α

(notch frequency is 1.25 Hz).
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To better illustrate the improvement of the feedback
structure, the performance of the feedback notch filter and
the conventional notch filter are compared.

In order to transform the complex signals from the complex
frequency domain to the frequency domain. The Z variables
in Gn(z) are replaced with angular frequency ω, followed by
the differentiation of YN (ω):

Y
′

N (ω) =
(1 + α)

[1 + αGn(ω)]2
Gn

′ (ω)

⇒ YN
′ (ω0) = (1 + α)Gn

′ (ω0)

⇒
∣∣YN

′(ω0)
∣∣ = (1 + α)

∣∣Gn
′(ω0)

∣∣ (10)

Here, G′
n(ω) is a first-order differentiator of Gn(ω), ω0 repre-

sents the notch frequency, and ω = ω0, Gn(ω0), and Yn(ω0)
are equal to 0 according to the characteristics of the notch
filter.

Thus, when α ̸= 0 and α > 0,

|YN
′(ω0)| > |Gn

′(ω0)| (11)

From the above, it is evident that the rate of decrease in the
feedback structure notch filter YN (ω) is better than that of the
unimproved notch filter Gn(ω).
The feedback structure also improves the performance of

the notch filter by reducing the bandwidth. The point where
the amplitude of the amplitude-frequency characteristic curve
declines to 1/

√
2 of the maximum amplitude, i.e., the −3 dB

frequency point, is called the half-power point of the notch
filter. There are two −3 dB frequency points symmetrically
distributed on the two sides of the central notch frequency
ω = ω0 in the filter. For a better comparison, we defined
ω−3dB as the right half-power point of the feedback structure
notch filter and ω∗

−3dB as the right half-power point of the
conventional notch filter. The bandwidths of the two types of
notch filters are given as follows:

bw1 = 2(ω−3dB − ω0), bw2 = 2(ω∗

−3dB − ω0)

|YN (ω−3dB)| =
1

√
2

|Gn(ω∗
−3dB)| =

1
√

2
(12)

⇒ |YN(ω−3dB)| =
|(1 + α)Gn(ω−3dB)|
|1 + αGn(ω−3dB)|

=
1

√
2

(13)

When α > 0,

|Gn(ω−3dB)| =
1

√
2 + (

√
2 − 1)α

≤
1

√
2

(14)

Thus, the following formula can be obtained:

|Gn(ω−3dB )| ≤
1

√
2

= |Gn(ω∗
−3dB)| (15)

The relationship between the frequencies of the two types
of notch filters with and without a feedback structure at the
half-power point is ω−3dB < ω∗

−3dB. Thus, bw1 < bw2.

From the above comparison, the rate of decrease and band-
width of the feedback structure notch filter are superior to
those of the conventional notch filter.

To better evaluate the filtering performance of the feedback
notch filters, the sum of the overshoot, bandwidth, and recip-
rocal of the notch depth was calculated. A smaller value of
the sum parameter often indicates better performance.

The results for different ρ values obtained with a fixed
notch frequency of 1.5 Hz and feedback coefficient of
α = 0.8 are presented in Table 1. The results for different
α values obtained with a fixed notch frequency of 1.5 Hz and
pole radius of ρ = 0.5 are presented in Table 2.

TABLE 1. Sum parameters with different pole radii (α = 0.8).

TABLE 2. Sum parameters with different feedback coefficients (ρ = 0.5).

As indicated by Table 1 and Table 2, variations in the
feedback coefficient α and the pole radius ρ within their
respective value ranges both affected the performance of
the notch filter at a fixed notch frequency. Thus, the filter
parameters were optimized using an intelligent optimiza-
tion algorithm. In this study, the gray wolf optimization
and genetic optimization methods were used. The genetic
method was adopted because of its outstanding performance
for multi-parameter optimization and fast convergence.

To minimize the sum parameter, objective functions based
on direct summation, weighted summation, squared weighted
summation, and normalized summation of the three param-
eters were constructed, and the optimization effects were
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compared. Direct summation was applied. Genetic opti-
mization is inspired by the biological evolutionary process.
A computer is used to simulate the processes of replica-
tion, crossover, mutation, etc. and to select the optimal
solution of the objective function in the solution space.
The Non-dominated Sorting Genetic Algorithm (NSGA) is
stratified according to the dominance relationship between
individuals before the operator selection. The inputs of
NSGA include the sum parameter, the notch frequency, and
the value ranges for α and ρ. The outputs are the minimum
value of the sum parameter and the optimal match of α and ρ.
A flowchart of NSGA is shown in Figure 5.

FIGURE 5. Flowchart of NSGA.

III. EXPERIMENTS AND RESULTS
An IR-UWB radar (X4M200, Novelda) and contact ECG
signals (IX-B3G portable electrocardiograph) were used to
validate the proposed method for real human vital-sign detec-
tion. Timestamps were used to synchronize the collected
data. The radar had a center frequency of 7.29 GHz, a band-
width of 1.4 GHz, and a pulse-repetition frequency (PRF)
of 15.18 MHz. The sampling rate of the radar receiver is
23.328 GS/s and the frame rate in the slow-time is 17 FPS.
The experimental setup is illustrated in Figure 6. The subject
was lying down 0.5 m from the radar with normal breathing
and was stationary.

The signal collection experiments were conducted on
10 adult subjects (five males and five females) aged between
21- and 45-years following protocol 2022-fhjsyxrc19
approved by Air Force Medical University, and all volunteers
signed an informed consent form. Two sets of 20 normal
breathing data with a duration of 45 s were collected, pro-
cessed, and analyzed for each subject. A pair of RCG and
ECG time-domainwaveforms is shown in Figure 7. The black
solid line represents the contact reference signal collected

FIGURE 6. Experimental scenario for acquiring the respiratory signals and
RCG.

FIGURE 7. Pair of RCG and ECG time-domain waveforms.

from IX-B3G, and the red dashed line represents RCG. The
absolute error percentage (AEP) [4] between the heart rates
calculated from RCG and ECG was applied as an evaluation
parameter. As shown in Figure 8, the AEPs for 10 pairs of
RCG and ECG signals from 10 different volunteers were
small, and the average AEP was 5.16%. The results indicated
that the signals collected by the contact and contactless
devices were highly consistent and that RCGs can be used
for the detection of cardiac movement.

FIGURE 8. AEPs for 10 pairs of signals from 10 different subjects.

The respiratory signal and RCG spectra of one set of data
before and after signal separation are shown in Figure 9.
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FIGURE 9. Frequency spectra of the respiratory signal and RCG before
and after signal separation:(a) before signal separation (b) respiratory
signal spectrogram; (c) RCG spectrogram.

From Figure 9(a), it can be observed that the amplitudes of
respiratory harmonics are high, with the second harmonic
significantly higher than the amplitude of the heartbeat, while
the third and fourth harmonics have amplitudes comparable to
the heartbeat and cause interference. Since the respiration rate
(RR) was approximately 18 beats per minute, correspond-
ing to a fundamental frequency of respiration of 0.299 Hz,
and the 2nd, 3rd, 4th, and 5th harmonics were 0.598, 0.897,
1.196, and 1.495 Hz, respectively. So, the second harmonic
is outside the RCG band (0.8-2 Hz), and has been filtered
during the separation step. Sequentially, each harmonic in the
RCG was suppressed using a parameter-optimized feedback
notch filter. The results of parameters (α and ρ) optimiza-
tion for the 3rd harmonic frequency point of 0.897 Hz are
shown in Figure 10. For the harmonic at this frequency
point, when α and ρ were 1.27 and 0.89, respectively, the
notch filter achieved the best performance. The time-domain
and spectrogram results before and after the harmonic sup-
pression are shown in Figures 11 and 12, respectively. The
time-domain waveform in Figure 11 indicates that the respi-
ratory envelope was reduced and the detailed information of
the RCG was enhanced after the removal of the respiratory
harmonics. Figures 12(a) and (b) present the spectrograms of
the RCG before and after respiratory harmonic suppression,

FIGURE 10. Parameters optimization results for a notch frequency of
0.897 Hz.

FIGURE 11. Time-domain waveforms before and after respiratory
harmonic suppression.

FIGURE 12. Spectrograms before and after respiratory harmonic
suppression.

respectively. As shown, the heartbeat rate (HR) was approxi-
mately 60 beats per minute. After harmonic suppression, the
frequency points of the three harmonics were significantly
weakened with regard to amplitude.

The suppression results for the 20 datasets are presented
in Table 3. The amplitude suppression ratio at each harmonic
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TABLE 3. Suppression ratios of 3rd, 4th, and 5th respiratory harmonics.

frequency point was calculated using Equation (16).

AR =
fma − fmb

fma
×100% (16)

Here, AR represents the amplitude suppression ratio, fma
represents the amplitude of the harmonic frequency point
before the suppression in the spectrogram, and fmb repre-
sents the amplitude of the harmonic frequency point after the
suppression.

The results in Table 3 indicate that the optimized feed-
back notch filter performed well, with average amplitude
suppression ratios of 78.90%, 76.17%, and 79.81% for the
third, fourth, and fifth harmonics, respectively. It was proven
that the proposed method can effectively suppress respiratory
harmonics while retaining the heartbeat component well,
resulting in an optimized feedback notch filter.

IV. DISCUSSION
The RCG is a subtle signal with a small amplitude. There-
fore, respiratory harmonics easily interfere with it, and
they are difficult to suppress accurately using the existing
methods. A novel feedback notch filter based on parameter
optimization was proposed for the suppression of respira-
tory harmonic, taking into account the overlap between a
certain respiratory harmonic and the corresponding cardiac
sub-signal from the RCG. The effectiveness of the harmonic
suppression method was verified through simulations as well
as detection experiments involving humans. In particular,

it can solve the problem of accurately separating signals with
similar frequencies. This study is of considerable significance
for noncontact RCG extraction and respiratory harmonic
suppression. Additionally, it provides a technical basis for
auxiliary diagnosis and monitoring using RCGs.

However, this study had limitations. In the experiment for
detecting human vital signs, only the stationary state with
a supine posture was considered. In future studies, we will
consider more complex states of the human target, including
random body movement, to make the proposed method more
suitable for practical scenarios.

V. CONCLUSION
A respiratory harmonic suppressionmethod employing corre-
lation analysis and a genetically optimized feedback notch fil-
ter is proposed, which is based on 7.29 GHz center-frequency
IR-UWB radar. The genetic optimization algorithm is applied
to find the best match of parameters α and ρ; thus, the
performance of the notch filter is optimized. According to the
respiratory harmonic suppression results for 20 sets of data
from 10 subjects, the average amplitude suppression ratio for
all respiratory harmonics was 78.29%. The results verified
that the proposed method can effectively locate, identify, and
suppress respiratory harmonics from the RCG band while
preserving heartbeat components well. Hence, it significantly
increases the accuracy of RCG extraction. We envision that
this method can be applied to various practical scenarios
such as contactless auxiliary diagnosis and monitoring in
intelligent medical and home healthcare.
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