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ABSTRACT The demand for cyber-physical systems (CPSs) has recently increased in various domains,
such as smart grids, intelligent transportation, and critical infrastructure. The massive data networks and
communication layers generatedmake CPSs vulnerable to threats and cyberattacks. Tomitigate these threats,
artificial intelligence (AI) approaches are employed. However, AI models struggle to keep up with the
constantly changing attack landscape. This study investigates the application of extreme gradient boosting
(XGBoost) and long-short-term memory (LSTM) AI models for cyberattack detection in a CPS. Accuracy,
precision, recall, and the F1-score validate the approach as evaluation metrics. The methods were tested
on a gas pipeline industrial control system dataset and other benchmark datasets, such as NetML-2020 and
IoT-23, which contain various cyberattacks. The performance of the two methods was found to be better
than other models such as support vector machine (SVM) and artificial neural networks (ANN) on several
evaluation metrics. Finally, we present recommendations for future research.

INDEX TERMS Artificial intelligence, attack detection, cyberattacks, cyber-physical systems, deep learn-
ing, machine learning, LSTM, XGBoost.

I. INTRODUCTION
Cyber-physical systems (CPSs) were introduced in 2006 by
Helen Gill at the National Science Foundation (NSF) work-
shop in the United States (US) [1]. CPSs combine the inte-
gration of computational physical systems, including storage,
sensors, and actuators for mission-critical tasks, to increase
the efficiency of communication technologies. As an emerg-
ing defect in CPSs, data protection and data authentication
are vulnerable to cyberattack threats. These attacks typically
occur because CPSs are connected through wireless con-
nections and the internet to transmit their data, making it
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easy for them to attack during regular network communi-
cation [2]. For example, in recent decades, there have been
numerous threats to significant cyberattack issues within the
CPS environment [3]. Data privacy concerns in network man-
agement and as sources for facility analysis of CPS security
monitoring [4].
Figure 1 illustrates the holistic cyber-physical framework,

where CPS applications are executed, including sensors and
actuator networks. Additionally, CPS’s framework encom-
passes three fundamental components: physical processes,
interfaces, and cyber systems.

The term ‘‘physical processes’’ pertains to the observable
and measurable natural phenomena that are subject to moni-
toring or regulation, while ‘‘cyber systems’’ pertains to a class
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FIGURE 1. Holistic framework for cyber-physical systems [6].

of embedded devices that can process information. The physi-
cal world is connected to cyber systems through intermediate
components, including sensors, actuators, and communica-
tion networks. Sensors and actuators convert energy into
electricity and vice versa [5].

Due to the rapid growth of CPSs in many areas, such as
smart buildings, smart grids, intelligent transportation, and
critical infrastructure, huge amounts of data are being gener-
ated. This makes the system vulnerable to cyberattacks. With
the increased demand for technology leading to the Fourth
Industrial Revolution (IR 4.0), CPS sensors are often used for
performing real-time analysis, monitoring, and forecasting
system malfunctions. These data have an impact on the entire
manufacturing system if they are contaminated or compro-
mised because of cyberattacks, giving false predictions and
insights and ultimately leading to catastrophic failures. The
physical layer of CPSs is vulnerable to attacks involving the
injection of false data into sensors and actuators, which can
compromise the integrity of complex network systems [7].
Several cyberattacks have occurred in CPSs. For example,
the Ukrainian power plant in 2016 and the Stuxnet worm,
which targeted nuclear power plants, have been attributed to
such methods [8].
Machine learning (ML) and deep learning (DL) techniques

are subsections of artificial intelligence (AI) that are currently
used for the detection of cyberattacks, such as threat detec-
tion, malware clarification, and intrusion detection. Extensive
research has been conducted on the use of ML learning
algorithms to enhance cyberattack issues in the CPS environ-
ment [9], [10]. The ML method can also be applied to detect
and identify anomalies [11]. For example, XGBoost classi-
fiers are used for intrusion detection in input datasets that
contain normal and anomalous instances [12]. Gad et al. [13]
proposed an XGBoost technique to detect and reduce mali-
cious activity in IoT. Furthermore, a DLmodel based on Long
short-term memory (LSTM) memories (LSTM) was used to
detect cyberattacks in CPSs [14].

Moreover, AI and ML have significantly transformed the
field of cybersecurity, especially CPS. They offer exceptional

capabilities in detecting and minimizing cyberattacks that
disrupt the interconnected infrastructure of vital systems,
such as power grids, transportation networks, and industrial
control systems [15]. However, traditional signature-based
detection techniques frequently find it difficult to keep up
with cybercriminals’ increasingly complex techniques using
advanced technology. In contrast, AI and ML algorithms can
gain experience and continue to improve at identifying new
threats. The ability to adapt is crucial for protecting CPS
because it remains constantly changing and vulnerable to
emerging threats. AI and ML algorithms can process and
interpret these datawith incredible speed and accuracy, allow-
ing them to detect anomalies and suspicious patterns that may
indicate a cyberattack. Furthermore, these intelligent models
provide excellent performance in terms of their ability to
analyze, detect, and adapt to new threats and evolving attack
methods in real-time.

This study presents an approach that demonstrates greater
efficiency in cyberattack detection for CPSs, and addresses
cybersecurity concerns. The integration of LSTM and
XGBoost has improved the detection of cyberattacks in gas
pipeline systems. The temporal feature extraction capabili-
ties of LSTM, combined with the robustness of XGBoost,
improve the detection and classification of various cyberat-
tacks. The model’s effectiveness has been extended beyond
the gas pipeline by including other domains, such as IoT
datasets containing various cyberattacks. In addition, this
study investigates the risks and threads associated with
CPSs, as well as how to overcome them using potential AI
approaches. This study’s specific contributions are as follows:

a) We employed theXGBoost and LSTMmodels to detect
sophisticated cyberattacks in CPS by examining tem-
poral and context relations in the data.

b) The two models were tested on a gas pipeline system
based on industrial control system (ICS) datasets and
other available benchmark datasets, such as NetML-
2020 and IoT-23, which contain various cyberattacks.

A. RISKS AND THREATS
The emergence of CPSs presents new challenges against
cyberattack risks and threats. Ensuring data protection against
security risks and cyberattacks is one of the most complex
issues within the CPS environment [16], [17]. Such cyberat-
tacks include denial of service (DoS), Trojans, worms, and
buffer overflow. When these attacks succeed, they affect the
CPS through breaches of confidentiality, privacy, integrity,
availability, and safety, which can lead to failure. However,
if the attacker had evaluated the encryption key, he could
have illegally obtained access to the monitoring center and
destroyed normal system operations.

Moreover, CPSs comprise both physical and cyber com-
ponents through a range of integrated components. The ML
and quantitative base risk assessment approaches play vital
roles in the analysis and identification of threats to the CPS
environment. These security-risk cybersecurity threads can
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compromise security and privacy. An attacker’s malicious
activities can spread and could lead to failure, power failure,
and security threats when using these devices [18]. As the
number of devices increases, major problems continue to
develop in real-world scenarios [19]. These problems include
connectivity, security, trust, interoperability, scale, and the
environment.

The remaining section of this paper is organized as fol-
lows. Section II provides a literature review based on related
work on cyberattack detection techniques in CPSs using
ML approaches. Section III presents the study methodology,
which includes the data collection procedure, the proposed
comparison method, and evaluation criteria. Section IV
presents the implementation and result analysis, including
the importance of their characteristics and comparison per-
formance analysis. Section V provides an AI-based detection
roadmap. Section VI provides a potential countermeasure.
Finally, we present our conclusions and future directions in
Section VII.

II. LITERATURE REVIEW
In this section, related studies are discussed. Various
approaches have been proposed to solve cyberattacks using
the ML method. For example, Almiani et al. [20] presented
a fog system security and a fully automated intrusion detec-
tion system for cyberattacks by proposing a model using
multilayer neural network designs that are very close to
end users. To better understand the problem, the model was
evaluated using typical varieties, Mathew’s correlation, and
Cohen’s kappa coefficient. Mall et al. [21] demonstrated
various ML models that can be used to identify distributed
denial-of-service (DDoS) attacks in a software-defined CPS
framework. This was achieved through the implementation
of a flexible and scalable software-defined network (SDN)
design. Bitirgen and Filik [22] proposed a new approach to
improve the functionality of convolutional neural networks
for long and short-termmemory (CNN-LSTM) to detect fault
detection, isolation, and accommodation (FDIA) in smart
grid (SG) systems. Thapa et al. [23] conducted a comparative
analysis of various ML and DL models using Coburg intru-
sion detection datasets (CIDDSs).

In a major advance in 2022, [24] conducted a comprehen-
sive survey on the use of DL for detecting cyber-physical
system attacks, which represents a significant advance-
ment in cybersecurity. The authors employed a modified
methodology that encompasses CPS scenario analysis, iden-
tification of cyber-attacks, formulation of ML problems,
customization of DL models, acquisition of training data,
and performance evaluation. The reviewed studies demon-
strate significant promise in identifying cyber-attacks on
CPSs using DL modules. In [25], the authors developed an
innovative method called PRO-DLBIDCPS, which is a poor
and rich optimization with DL for blockchain-enabled intru-
sion detection in a CPS environment. The PRO-DLBIDCPS
technique introduces an adaptive harmony search algorithm
(AHSA) for selecting feature subsets. The CPS-GUARD

systemwas developed using an innovative intrusion detection
method that relies on a single semi-supervised autoencoder.
In addition, a technique has been implemented to establish a
threshold that distinguishes normal operations from attacks.
The technique is designed to be aware of outliers, i.e., it uses
outlier detection to address the inherent imperfections present
in the training data [26]. Several authors have investigated the
impact of the DL model on cyberattack detection in CPS. For
instance, [27] conducted a comparative analysis of various
state-of-the-art deep learning techniques for the classification
and categorization of malicious applications. The proposed
method involves using an ensemble dynamic weighted voting
model to accurately detect and categorize a diverse range
of malicious applications using the CCCS-CIC and Mal-
2020 datasets. A DL approach for identifying and analyzing
time delay attacks (TDA) has been introduced. This approach
involves the development of a hierarchical long short-term
memory model. The model is designed to handle real-time
data streams from relevant CPS sensors with an understand-
ing of any embedded signals that may indicate an attack [28].

Moreover, the authors of [29], [30], and [31] explained
the potential of ML techniques to detect various attacks on
CPS, including smart grids, power grids, and cyber-physical
power systems. Lin et al. [29] used deep reinforcement
learning (DRL), propose a model for false data injection
attacks and counter-detection techniques. Jahangir et al. [30]
proposed a novel approach for the identification and local-
ization of high-resolution. This method uses a multi-output
network that includes a two-dimensional neural network
classifier and a reconstruction decoder. Presekal et al. [31]
introduced a novel technique for identifying anomalies in
time-series data using classification. This approach uses
a hybrid DL model that integrates graph convolutional
long and short-term memory (GC-LSTM) with a deep
convolutional network. Almuqren et al. [32] developed
a technique known as the Explainable Artificial Intelli-
gence Enabled Intrusion Detection Technique for Secure
Cyber-Physical Systems (XAIID-SCPS). Furthermore, the
XAIID-SCPS technique incorporates the XAI methodol-
ogy known as local interpretable model-agnostic explanation
(LIME) to enhance the comprehension and interpretability of
the black-box algorithm, thereby facilitating accurate intru-
sion classification.

More recent evidence by Tertytchny et al. [33] demon-
strates that CPS classifies network abnormalities as faults and
attaches them to the IoT using ML. The authors established
a formal definition of the issues arising from component
failures and network attacks, considering the impact of
communication behavior. They demonstrated the correla-
tion between these two abnormal sources and presented a
framework based on ML. A concept paper on the adapta-
tion of ML and blockchain techniques in CPS to address
security issues related to cyberattacks was presented [34].
Sowmya and Mary Anita [35] presented a comprehensive
taxonomy of the extant literature on ML, DL, and ensem-
ble learning. The analysis includes 72 research papers and
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TABLE 1. Summary of the findings of the related studies.

considers detection-related factors such as the algorithm and
performance metrics. Finally, a comprehensive review was
conducted, which involved categorization, classification, and
examination of the existing literature on artificial intelligence
(AI) techniques used to identify cyberattacks in the Internet
of Things (IoT) settings [36].

This study compares and investigates existing DL and ML
algorithms for cyberattack detection in CPSs. Based on our
knowledge, this study is different from other studies because
we focused on critical industrial control systems, i.e., gas
pipeline cyberattack detection using LSTM and XGBoost
models. However, our work added value by understanding
the various AI models from empirical studies to overcome
current trends in cybersecurity attacks in CPSs and IoT envi-
ronments. We also analyzed and validated the models using
the available benchmark datasets that containing cyberat-
tacks. Table 1 summarizes the findings based on the related
studies.

In addition, our comparable contribution attempts to
address key limitations of existing approaches. For example,
[20] evaluated there DRNN model for intrusion detection
systems using a single dataset. The authors in [23] use both

the KDD99 and NSL-KDD datasets, which appear to have
network biases. In addition, [21] limits the capabilities of their
proposed DL model to a single DDoS attack in the SDN-
based domain. To overcome these limitations, our study uses
a variety of datasets from various domains, including gas
pipelines, NetML-2020, and IoT-23, which contain a variety
of cyberattack scenarios. We also investigate the capability
of combining LSTM and XGBoost to detect cyberattack
scenarios in industrial control systems.

III. MATERIALS AND METHODS
This section provides details of the study methodology,
implementation, and design of the proposed methods for
intrusion detection systems in CPS. The proposed framework
combines several independent processes and comprises data
collection and observation. During this process, datasets were
collected and observed in detail based on the type of data. The
entire dataset was processed, consisting of cleaning the data,
visualizing the data using vectorization steps, and feature
engineering. The training of the dataset used ML. An opti-
mization method was used to create the final model. The
study will use the XGBoost classification, which is based on
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FIGURE 2. Overall methodology flowchart.

the decision tree algorithm (DT), and the LSTM, which is
based on the recurrent neural network (RNN) and uses the
conventional gradient descent technique.

Figure 2 presents the research methodology flowchart.
First, data collection from a real-world gas pipeline system
contains various cyberattacks. Followed by data preprocess-
ing, which involves data cleaning and normalization. Model
creation consists of the LSTM and XGBoost algorithms. The
sampling data were split into training and testing, followed
by the learning algorithms. The model evaluation would be
based on the ACC. After evaluation, the model would pre-
dict if there were cyberattacks or if it was in normal status.
Cyberattacks are predicted based on anomalous activities in
the input data. Finally, anomalous activity can be classified
as active or passive.

A. DATASETS EXPLANATION
The datasets were obtained from a gas pipeline system
based on an industrial control system (ICS) at Mississippi
State University. The dataset comprised various compo-
nents, including sensors equipped with actuators from a gas
pipeline. The dataset contained seven different categories of
cyberattacks [37]. There are two actuator components for gas
pipelines in conjunction with a pressure sensor, which are
components of the SCADA system. Actuators, comprising
solenoids and pumps, are used to regulate the physical pro-
cesses of the system, thereby ensuring that the pressure set
by the SCADA is maintained. The modes of the gas pipeline
system were classified into three distinct groups: manual,
automatic, and off. The components of a communication
network refer to the protocols used in a serial Modbus remote
terminal unit (RTU). Each packet transmitted through this

FIGURE 3. The gas pipeline system is shown on the left (a), and the right
HMI is shown on the right (b) [37].

FIGURE 4. Machine learning data flow for the input and output of
selected features.

system comprises a header and a payload. The components
responsible for supervisory control encompass the master ter-
minal unit (MTU) and the human-machine interface (HMI).
TheMTU is configured in various setups where each subordi-
nate device functions as a RTU that receives directives from
the MTU, and subsequently, the RTUs react to the MTU’s
commands.

In addition, the MTU was linked to the HMI to provide
human operators with a means to oversee the system and the
supervisory controls. However, the fault has been simulated
because of the huge network traffic and imbalanced data in
the SCADA system, where system commands and responses
are being manipulated. Figure 3 shows the gas pipeline sys-
tem and HMI.

Figure 4 shows the comprised input datasets, which consist
of the five most important features that describe the possi-
bility of cyberattacks. Hence, the XGBoost model classifies
all numeric input features as simple binary classification
problems. The LSTMmodel learns from a function consisting
of a sequence of past observations as input (x) to an output
observation (y). Furthermore, one feature output indicates
whether a specific attack has occurred after training and
testing.

Table 2 shows that datasets consist of seven separate types
of attacks, comprising both normal and attack samples, which
have been identified as follows:

The attack values range from 0 to 7, which is accomplished
by establishing a parameterization. This range was created to
provide updates on all attack possibilities that can be executed
using a specific parameter. The dataset is a comma-separated
value (CSV) text file consisting of 19 features of network
field states provided by one packet delivered by the MTU or
RTU as shown in Table 3. Each dataset for MTUs or RTUs
includes information on network traffic and payload. The
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TABLE 2. Seven types of categories from the datasets.

TABLE 3. Dataset features.

payload contains crucial data related to the state, parameters,
and settings of the gas pipeline. This information is essential
for comprehending the system’s behavior and identifying any
deviations from normal operation.

B. ALGORITHM THEORETICAL CONSIDERATIONS
1) LONG SHORT-TERM MEMORY (LSTM)
LSTM is based on a recurrent neural network (RNN) and aims
to capture sequence-dependent behavior or model time in a
range of applications, such as IDS for detecting intrusions in
network traffic. The process involved in this study involved
providing the output of the neural network layer at a specific
time point T as input to the subsequent layer at time T +
1. The LSTM model is an extension of the RNN architec-
ture. It incorporates memory components that facilitate the
transmission of acquired knowledge from a given time step
T to subsequent time steps, including T + 1, T + 2, and T
+ 3. Moreover, an important attribute of the LSTM model
is its ability to selectively discard irrelevant components of
the prior state while simultaneously selecting the updated
state and producing pertinent components of the state that

FIGURE 5. Illustration of the LSTM cell architecture.

are pertinent to future predictions. The LSTM cell shown
in Figure 5 indicates the use of input features xt , which
correspond to input data x at a given time t . The input gate is
responsible for regulating the flow of input data into the cell.

In addition, the LSTM cell consists of three primary com-
ponents: the input gate, forget gate, and output gate. They are
responsible for regulating the flow of information within the
cell.

a) Input gate: The input gate determines which parts of the
current input (X) will be incorporated into the cell state
(Ct). It also serves as a filter, that identifies valuable
elements of the new memory vector.

b) Forget gate: The forget gate regulates the extent to
which the previous cell state (Ct-1) is forgotten. Also,
determine the relevant components of the cell state by
considering the previous hidden state and the new input
data.

c) Output gate: The output gate determines the amount
of the LSTM cell’s state (Ct) that is output. It also
determines the LSTM network’s final hidden state.

The it define the input/output of gate activation, where ft
determine forget gate activation, while ot finds control flow
to output gate activation. The ct determines cell state and
ht−1 define the hidden state, while σ sigmoid acts as an
activation function. The components of the LSTM equation
cell functions are indicated below.

it = σ (Uixt +Wiht−1 + bi) (1)

where it is the function that determines which information
from the current input should be stored in the cell state, ht−1
represent the previous hidden state, xt denotes the current
input, and Wi, and bi represent the weight and bias for the
input gate, respectively.

ft = σ
(
Uf xt +Wf ht−1 + bf

)
(2)

where f t decides what information in the cell state should be
forgotten or retained, ht−1 represent the previous hidden state,
xt denotes the current input, and Wf, bf represent weight and
bias for the forget gate, respectively.

Ot = σ (Uaxt +Woht−1 + bo) (3)
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TABLE 4. Summary of Important Symbols/Notations.

Meanwhile, for the output gate, Ot determines the output
based on the current input and the updated cell state, ht−1
denotes the previous hidden state, xt denotes the current input,
Wo, bo represent the weight and bias for the output gate,
respectively.

gt = σ
(
Ugxt +Wght−1 + bg

)
(4)

Ct = gt it + ftCt− (5)

Here, after gt the Ct updates the cell state by combining the
candidate cell state update and the previous cell state Ct-1,
using the input it and forget gates f t, respectively.

ht = Ot tanh (ct) (6)

ht function produces the new hidden state based on the
updated cell state and the output gate, ht represents gate
output, and ctdenotes the cell state.
The LSTM architecture has the capability to detect

cyber-attacks by learning to identify patterns in network traf-
fic that are indicative of attacks. To control how the LSTM
network learns these patterns, use the input gate, forget gate,
and output gate. For example, the input gate can be used to
direct the network’s attention to specific aspects of network
traffic, such as the IP addresses of the source and destination
hosts, packet size and frequency, and protocol type. The
forget gate can be used to prevent the network from forgetting
previously learned important patterns. The output gate can be
used to regulate how much of the network’s output is used to
forecast the possibility of a cyber-attack.

2) EXTREME GRADIENT BOOSTING (XGBOOST)
XGBoost is rooted in the concept of gradient boosting as
introduced in Friedman’s ‘‘A Gradient Boosting Machine’’
for function approximation [26]. XGBoost is a supervised
learning algorithm used to solve problems by treating data
with multiple features xi to predict the value of the target
variable yi. The model’s objective functions are training loss
and regulation with yi by a various of tasks such as ranking,
classification, and regression. The training task is to find the
parameter θ that best fits the training of data xi and labels yi.

TABLE 5. XGBoost classifier parameters.

Table 4 summarizes the symbols and notations used in this
study. Table 5 provides the XGBoost classifier parameters.
The silent characteristics of the objective function consist of
XGBoost classifier parameters.

The silent characteristics of the objective function consist
of two parts: training loss and a regularization term.

obj(θ ) = L(θ )+�(θ ) (7)

where L is the training loss function and � is the regulariza-
tion term. Training loss measures how the predictive model
respects the training data, where a common choice of L is the
squared error.

L(θ ) =
∑

i
(yi− ŷi)2 (8)

The chosen XGBoost model is based on DT ensembles and
consists of a classification and regression tree (CART). Tree-
boosting training is based on supervised learning models that
satisfy the objectives.

obj =
∑n

i=1
l (9)

The complexity of themodel is important in the regularization
term, where the complexity of the tree, �(f ), is also defined
as f (x).

ft (x) = wq(x),w,RT, q : Rd
→ {1, 2, · · · ,T } (10)

whereW is the vector of scores for the leaves, q is the function
assigned to each data point on the corresponding leaf, and T
is the level number. The XGBoost complexity is defined as

�(f ) = γT +
1
2
λ

∑T

j=1
w2
j (11)

Figure 6 shows the structure of the XGBoost model,
which involves the iterative process of fitting decision trees
to the data and updating the model parameters using the
loss function gradient. This process is repeated until conver-
gence, providing a model that is both highly accurate and
scalable. Moreover, XGBoost has demonstrated its efficacy
as a machine learning algorithm in diverse cyber security
domains, encompassing intrusion detection, malware detec-
tion, and phishing detection.

C. EVALUATION CRITERIA
The metric used to evaluate the model’s performance is ACC.
The evaluation of classification models involves the use of
the Model ACC metric, which assesses a limited portion
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FIGURE 6. Architecture of the of XGBoost model.

of the model’s overall performance. Additionally, perfor-
mance metrics included confusion matrix, precision, recall,
and F1-score, which summarizes the classification model’s
effectiveness. Furthermore, it comprises true positives (TP),
false positives (FP), true negatives (TN), and false negatives
(FN) for the developed model.

1) CONFUSION MATRIX
A confusion matrix is a table that is used to summarizes the
performance of a classification model. It shows the number
of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) that the model produced by
the model.

a) The TP are the instances that were correctly classified
as normal.

b) The FP are the instances that were incorrectly classified
as attacks.

c) The TN are the instances that were correctly classified
as attacks.

d) The FN are the instances that were incorrectly classi-
fied as normal.

2) ACCURACY
The accuracy of a model represents only a portion of its over-
all performance. The accuracy metric is commonly employed
in the evaluation of classification models. It is calculated as
follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

3) PRECISION
Precision is the positive predictive value. The metric quanti-
fies the ratio of correctly identified positive instances by the
model to the total number of positive instances identified by
the model. In addition, precision is the fraction of instances
that were classified as attacks. It is calculated as follows:

Precision =
TP

TP + FP
(13)

4) RECALL
The recall metric, also referred to as the actual positive rate,
quantifies the proportion of positive instances correctly iden-
tified by the model concerning the total number of positive
instances present in the dataset. Additionally, recall is the
fraction of instances that are attacked that were classified as

Algorithm 1 Pseudocode of the LSTM and XGBoost deploy-
ment processes

Require: Gas Pipeline Data D = (xi,+yi) i = 1n, Evaluation
Metrics MAE
Ensure: Model f (x;θ), Detection of Cyberattacks

Preprocessing:
D← Handle missing values, normalize,
encode categorical variables, and split into
train/test sets

Train:
θ← Choose model/LSTM or XGBoost
θ← Train on a train set using the Model

Evaluation:
MAE train← Evaluate the model on the train
set
MAE test← Evaluate the model on the test set

Deploy:
If MAE test is satisfactory, deploy the model
f (x;θ)
Set up monitoring to ensure that the model’s
performance is maintained over time

Update:
If necessary, retain the model using new data

or update hyperparameters θ

attacks. It is calculated as follows:

Recall =
TP

TP + FN
(14)

5) F1 SCORE
The F1 score can also evaluate the performance of a model as
well. The metric in question is a calculated value that com-
bines the precision and recall of a given model, considering
their respective weights. In addition, the F1 score is a measure
of the accuracy of the classification model. It is calculated as
the harmonic mean of precision and recall.

F1 Score = 2X
(PrecisionXRecall)
(Precision+ Recall)

(15)

6) RECEIVER OPERATING CHARACTERISTIC CURVE
The receiver operating characteristic (ROC) curve is a widely
used graph that summarizes a classifier’s performance across
all possible thresholds. In addition, the ROC curve is a plot
of the true positive rate (TPR) against the false positive rate
(FPR).

IV. IMPLEMENTATION AND RESULT ANALYSIS
A. EXPERIMENTAL SETUP
The experiment was conducted using Desktop-G7BDT90,
with the operating system edition of Windows 10 Home 64-
bit (22H2, Build 19045). The processor was Intel(R) Core
(TM) i5-6400 CPU @ 2.70GHz, 2.70GHz. The memory
for the desktop was 16.0 GB RM. In addition, for data
analogy, we used Python (version 3.8.11) for the artificial
neural network and the machine learning Keras library, along
with its functionality on the back end, TensorFlow, to per-
form low-level operations using Keras. For data analysis,
the Scikit-learn library was used; for data visualization the
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TABLE 6. Statistics of the datasets used in the experiment.

FIGURE 7. Model accuracy comparison.

Matplotlib library and Seaborn library; and for data cleaning
and feature engineering, the Pandas, and Numpy libraries
were used.

B. RESULT ANALYSIS
This subsection provides details of the implementation and
validation of the proposed methods mentioned in Section III.
A feature selection method was used to improve the accuracy
score. In addition, a comparative performance analysis was
conducted, in which we trained and tested our employed
models with other available benchmark datasets that contain
various types of cyberattacks. Detailed statistics of datasets
that only consist of binary classification tasks. Additionally,
274,628 are samples, while 60,048 are attack-related (See
Table 6).
Figure 7 presents a comparative analysis of the LSTM and

XGBoost models in terms of their accuracy in classifying
cyberattacks. Following the completion of training and test-
ing, the XGBoost model achieved a higher level of efficiency
of 98%. This result represents a 1% improvement over the
performance of the LSTM model.

The employed LSTM model for detecting cyber security
attacks in cyber-physical systems (CPSs) achieved a train-
ing accuracy of 98.80% and a testing accuracy of 97.80%,
as shown in Figure 8. This indicates that the model learned
the patterns in the training data and generalized well to new
data. The training loss was 0.4911, whereas the testing loss
was 0.4796. This indicates that the model could effectively
fit the training data and minimize the testing data prediction
error. However, the LSTM model’s high accuracy and low
loss indicate that it is a promising approach for detecting
cybersecurity attacks in CPSs. This is because the model was
able to learn the patterns in the training data and generalize
effectively to new data. Similar performance of the model
on testing and training data that the model does not overfit
the training data. In addition, the model accuracy and loss

results are comparable to or better than those reported by
other studies on the detection of cyber security attacks in
CPSs using LSTM models. The performance of the model
on testing data is comparable to its performance on training
data, indicating that the model does not overfit the training
data. Overall, the model accuracy and loss results indicate
that the employed LSTM model is a promising technique for
detecting cyber security attacks in CPSs.

Table 7 presents a comprehensive analysis of the outcomes
obtained from the LSTM and XGBoost models for detecting
CPS cyber security attacks. The LSTMmodel attained a clas-
sification accuracy of 97%, precision of 86%, recall of 97%,
and F1-score of 91%when evaluated on the ICS Gas Pipeline
dataset. This finding indicates that the LSTM model demon-
strates efficacy in detecting cyber security attacks in CPSs;
however, there is a possibility of generating false positive
results. The XGBoost model demonstrated notable perfor-
mance on the ICS gas pipeline dataset, achieving an accuracy
of 98%, precision of 99%, recall of 98%, and F1-score of
98%. This finding proved that the XGBoost model demon-
strated high efficacy in identifying cyber security attacks in
CPSs while exhibiting minimal occurrence of false positives.

In terms of comparative analysis, it is evident that both
the LSTM and XGBoost models have demonstrated a com-
mendable level of accuracy when employed for detecting
cybersecurity attacks in CPSs. In comparison, the XGBoost
model exhibited marginally superior accuracy and preci-
sion compared with the LSTM model. This implies that the
XGBoost model could offers advantages in the context of
cyber security attack detection in CPSs, where the conse-
quences of false positives are financially burdensome.

The findings obtained from the LSTM and XGBoost
models demonstrate their capability to acquire knowledge
regarding the characteristics of cyber security attacks in the
ICS gas pipeline dataset. This phenomenon can be attributed
to the capacity of both models to acquire intricate associa-
tions among sensor data. Furthermore, the findings derived
from the LSTM and XGBoost models demonstrate the effi-
cacy of both models in identifying cyber security attacks
within CPSs. In comparison, the XGBoost model exhibited
marginally superior accuracy and precision compared with
the LSTM model. This implies that the XGBoost model
could be a more favorable option for detecting cyber security
attacks in CPSs when the consequences of false positives
are significant. In general, the outcomes derived from the
LSTM and XGBoost models exhibit promise and indicate the
potential use of these models in the creation of efficient cyber
security attack detection systems for CPSs.

The confusion matrix for the XGBoost model, as shown
in Figure 9, provides valuable insights into its performance
in classifying various types of cyber-attacks. The matrix
shows that the model is highly accurate correctly identifying
‘‘Normal’’ and ‘‘Recon’’ attacks, with fewmisclassifications.
However, some difficulties in distinguishing between simi-
lar attack types, such as ‘‘NMRI,’’ ‘‘CMRI,’’ and ‘‘MPCI,’’
have been observed, resulting in a few misclassifications.
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Overall, the XGBoost model performs well in cyber security
attack detection, especially in detecting common and severe
attack types. However, the confusion matrix of the LSTM
model highlights its exceptional performance across all attack
types. The model detects normal and recon attacks with
near-perfect accuracy, with almost no misclassifications in
these categories. Notably, the LSTM model excels at distin-
guishing between attack types that are closely related, such
as ‘‘NMRI,’’ ‘‘CMRI,’’ and ‘‘MPCI,’’ resulting in few mis-
classifications. These findings highlight the robustness and
effectiveness of the LSTM model in detecting cybersecurity
attacks, making it a promising choice for protecting CPSs
against various threats.

Furthermore, the employed model’s results were directly
compared with the other models, which are SVM and ANN.
In terms of overall performance as measured by the F1-Score,
the employed models, XGBoost and LSTM, outperformed
the other models, SVM and ANN. The employed models
achieved F1-Score of 0.94 on average, whereas the other
models received F1-Score of 0.86 on average. However, the
models also performed well in terms of accuracy, preci-
sion, and recall. The highest accuracy (0.98) was achieved
by XGBoost, while the highest precision (0.99) and recall
(0.97) were achieved by LSTM. The comparison indicates
that the employed models, XGBoost and LSTM, outperform
SVM and ANN for cyber-attack detection in cyber-physical
systems.

C. FEATURE IMPORTANCE
The important features consisted of a bar graph visualiza-
tion of the top ten important features sorted according to
the highest score among all features to improve the model
accuracy score. This achievement was achieved by calculat-
ing the frequency of the time division of the features in the
boosting trees integrated within the model. A feature with a
high-value score only contributes when predicting an attack.
In addition, a technique for determining the importance of the
characteristics was applied to assess the significance of each
characteristic in the datasets. The feature importance tech-
nique was employed after every training session to modify
the attributes of the datasets. The top ten features of the study
are presented in Figure 10.

D. COMPARISON PERFORMANCE ANALYSIS
This section provides a comparative performance analysis of
our proposed approach. ROC curves are used to evaluate our
models’ discriminatory capability and efficacy in differen-
tiating between instances of attack and non-attack. We also
further investigate the efficiency of our models using other
available real-world benchmark datasets that contain different
types of cyberattacks.

As shown in Figure 11, the XGBoost and LSTM model’s
exhibit a robust performance in identifying between attack
and non-attack instances, as evidenced by the AUC-ROC
value of 0.86. The findings indicate that the XGBoost
model is effective in detecting cyber security attacks. After

TABLE 7. Model performance results.

comparing the AUC-ROC values of the LSTM and XGBoost
models, it becomes evident that the LSTM model exhibits
superior performance in terms of its overall discriminative
capability when compared with XGBoost. The LSTM model
exhibits a higher AUC-ROC, which indicates its superior
capability in accurately classifying attacks while minimizing
the occurrence of false positives.

In addition, the receiver operating characteristic (ROC)
curves provide a visual representation of the trade-offs in per-
formance. The LSTM model consistently exhibits a superior
true positive rate compared with XGBoost across different
thresholds of false positive rates.

Figure 12 presents our model’s comparative performance
across various datasets containing different types of intru-
sions and cyberattacks. In addition, Table 8 provides details
about the comparative performance and includes additional
evaluation metrics. We also investigated the capabilities of
AI techniques for cyberattack detection across real-world
benchmark datasets. However, our proposed method has been
evaluated using benchmark datasets adopted from [38], [39],
[40], and [41]. Moreover, these targeted datasets enable a
focused evaluation of our method’s efficacy against diverse
cyberattacks in these critical systems.

Table 9 provides a comparison of our study with other
state-of-the-art studies. We also analyzed the compared stud-
ies based on the ML classifiers used, ACC score, predictive
features, strengths, and limitations. The analysis findings
indicate that ACC is competitive with other techniques for
attack detection. However, they can be enhanced. Finally,
these studies provide better performance toward various
types of cyberattack detection using LSTM and XGBoost
classifiers.

V. AI-BASED DETECTION ROADMAP AND THREAT
MODEL ANALYSIS
In this section, we investigate the AI capabilities for detect-
ing cybersecurity attacks in CPSs and understand their
threat to analysis. The attacks were adapted from the sev-
eral cyber-attacks included in our datasets, which are naïve
malicious response injection (NMRI), complex malicious
response injection (CMRI), malicious function code injec-
tion (MFCI), denial of service (DoS), and reconnaissance
(Recon). Figure 13 shows the AI approaches for detecting
attacks using a roadmap.
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FIGURE 8. Model accuracy (left) and loss performance metric (right) for 100 epochs based on training and validation of an
initial network (RNN-LSTM).

FIGURE 9. Confusion matrix of XGBoost and LSTM.

FIGURE 10. Selection of the top 10 features of importance (XGBoost).

Naïve malicious response injection (NMRI) attacks are
measured by a lack of knowledge regarding the physical
system and its control logic. The effects of NMRI attacks are
effective because of the attacker’s ability to inject or modify
response packets in the network. AI-based methods can be
used to identify this attack. For example, Wang et al. [42]
presented an approach for using a DNN with explanatory
attributes for the purpose of intrusion detection in indus-
trial control networks. In addition, support vector machines

FIGURE 11. ROC curves for the XGBoost and LSTM models.

(SVM) and random forest (RF) have been employed as effec-
tive methods for ensuring the reliable detection of network
attacks in SCADA systems [43].

Furthermore, NMRI attacks are a type of network-based
threat that targets CPSs. These attacks exploit communication
protocol vulnerabilities by injecting crafted responses into the
network andmanipulating the system’s perception of physical
process control. NMRI attacks can pose significant threats to
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FIGURE 12. Comparison of AI models across various datasets.

ICS and SCADA systems. These attacks can disrupt control
loops by injecting false or misleading information, result-
ing in equipment malfunctions, production outages, or even
safety hazards. A comprehensive cybersecurity strategy is
required to effectively mitigate NMRI attacks. This strategy
should include network segmentation, intrusion detection and
prevention systems (IDS/IPS), and vulnerability assessments.

Complex malicious response injection (CMRI) attacks
encompass a category of response injection attacks that
exploit vulnerabilities in industrial control systems. The
effect of CMRI attacks hides the actual state of the phys-
ical process. The attack can be detected using AI-based
techniques. Shitharth et al. [44] developed sophisticated
machine-learning models to enhance the security of SCADA
systems. These models are based on the Block Correlated
Neural Network (BCNN) used to detect and classify attacks
in SCADA systems. In addition, an architectural framework
has been proposed to enhance malware detection using two
ensembles: one employing a deep belief network (DBN) and
the other using a standard classifier, specifically SVM [45].

Furthermore, CMRI attacks target CPSs by injecting mali-
cious responses that mimic normal process functionality.
CMRIs are especially difficult to detect using this advanced
technique because they effectively mask the true state of the
system and negatively impact feedback control loops. CMRI
attackers typically have extensive knowledge of the targeted
system, allowing them to craft responses that blend in with
legitimate data. These attacks can cause catastrophic conse-
quences in critical infrastructure environments by manipulat-
ing sensor readings, controlling signals, or even deactivating
safety mechanisms. A multi-layered approach to CMRI
defense is required that combines intrusion detection systems,
anomaly detection algorithms, and continuous monitoring of
system behavior. ML techniques are capable of detecting
patterns and anomalies that may indicate CMRI activity,
enabling timely intervention and mitigation strategies.

Malicious function code injection (MFCI) attacks involve
use inherent protocol functions that deviate from their
intended purpose. For instance, a force listen-only mode
attack is a type of cyber-attack that interrupts network

transmission by a MODBUS server. Attacks on the MFCI
can cause abnormalities in the system’s time and control
parameters, which affect its normal operation. Using AI capa-
bilities, these attacks can be detected. For example, Wu [46]
employed the C4.5 decision tree (DT), naive Bayes (NB),
and CNN model to conduct an analysis and compare their
respective impacts on intrusion detection. Amore appropriate
machine learning model for intrusion detection in industrial
IoT is used through experimental analysis.

MFCI attacks pose a significant threat to the CPS cyber-
security. These attacks use communication protocol vulner-
abilities to inject malicious commands into programmable
logic controllers (PLCs). The attacker manipulates built-in
protocol functions to achieve unintended consequences that
could result in production process disruptions, safety hazards,
and even financial losses. MFCI attacks can be classified
into several types based on the specific functions targeted.
For example, the ‘‘Force Listen Only Mode’’ attack disables
a Modbus secondary device from transmitting data, effec-
tively silencing it on the network. Combating MFCI attacks
requires a multi-pronged approach involving multiple layers
of defense. Network segmentation can be used to prevent
unauthorized access to ICS devices, while firewalls and intru-
sion detection systems can be used to filter malicious traffic.

A denial-of-service (DoS) attack disrupts the services
of a host on a network, rendering the connected resource
unavailable to the intended users. DoS attacks have signifi-
cant effects, including substantial response delays, excessive
losses, and service interruptions. These effects directly
impact the availability of a system or service. An AI detec-
tion model based on logistic regression (LR) and NB has
been proposed as a method for detecting attacks as well as
normal scenarios [47], [48]. The authors in [49] presented
an intelligent agent system that incorporates the K-nearest
neighbors (KNN) algorithm to detect distributed denial-of-
service (DDoS) attacks. The system uses automatic feature
extraction and selection techniques.

In addition, DoS attacks exploit vulnerabilities present
in network protocols or system configurations to deplete
substantial resources, including bandwidth, memory, or pro-
cessing capacity. Consequently, the targeted system expe-
riences a state of unresponsiveness or is overwhelmed,
thereby impeding legitimate users from accessing crucial
services or resources. DoS attacks can manifest in sev-
eral forms, including volume-based attacks, protocol-based
attacks, application-based attacks, and reflected DoS attacks.
These attacks employ third-party servers to enhance the
impact of the attack by redirecting the traffic back to the tar-
get. The detection of DoS attacks is necessitated by the
implementation of a comprehensive strategy that encom-
passes various aspects such as network security, application
security, traffic analysis, and incident response planning.

Reconnaissance (Recon) attacks are security attacks
employed by an attacker to acquire comprehensive infor-
mation about the target before initiating an actual attack.
The effect of Recon attacks includes using the gathered
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TABLE 8. Comparison analysis of AI models across datasets.

information to determine the precise location of the intended
target. Furthermore, based on these data, a hacker can deter-
mine the type of infrastructure the target uses. AI-based
techniques can detect this attack. Kwon et al. [50] presented a
proposed intrusion detection system that incorporates recon-
naissance to detect anomalous attacks in a CPS using RNN.
In addition, an AI technique based on XGBoost and KNN has
been proposed for detecting reconnaissance attacks [51].
Furthermore, recon-attack activities encompass the sys-

tematic exploration of the target’s network infrastructure,
where vulnerabilities are identified, network topology is
mapped, and sensitive data are uncovered. Threat of enables
proactive cybersecurity practices that aid organizations in
anticipating and mitigating potential Recon threats. This is
achieved by identifying potential attack scenarios, analyzing
of vulnerabilities, and implementing of suitable counter-
measures. The procedure entails the careful examination of
multiple factors, including the capabilities of the attacker,
the assets possessed by the target, and the potential conse-
quences that would arise from a successful attack. Common
reconnaissance techniques in the field of cybersecurity
encompass a range of methods such as open-source intel-
ligence (OSINT), footprinting, vulnerability scanning, and
social engineering. The mitigation of Recon threats can be
achieved through the implementation of robust cybersecurity
measures, such as network segmentation, access control, vul-
nerability management, and security awareness training.

VI. POTENTIAL COUNTERMEASURES
This section presents several potential countermeasures for
addressing cyber security attacks in the CPS. It is imperative
to acknowledge that safeguarding a CPS against all forms of
cyber security attacks cannot be achieved through the imple-
mentation of a single countermeasure. Nevertheless, it is
imperative to adopt a multi-layered security strategy to effec-
tively minimize the potential vulnerabilities and threats posed

by malicious attacks. CPSs frequently exhibit intricate and
decentralized characteristics that pose challenges in ensuring
their security. Furthermore, CPSs are frequently employed in
critical infrastructure contexts, making them attractive targets
for malicious actors.

A. COUNTERMEASURES FOR NMRI AND CMRI ATTACKS
Remove potentially harmful characters and code from all
user inputs through input validation. The use of prepared
statements is recommended to execute database queries, as it
aids in mitigating the risk of SQL injection attacks. A web
application firewall (WAF) can be employed as a protective
measure against prevalent web application attacks, including
cross-site scripting (XSS) and NMRI attacks.

B. COUNTERMEASURES FOR THE MFCI ATTACK
Input validation entails checking the user input for malicious
code and characters. The implementation of a allowlist can be
employed to impose limitations on the range of functions that
can be defined within the application. The use of a sandbox
facilitates the segregation of functions, thereby preventing
the potential impact of a compromised function on other
functions.

C. COUNTERMEASURES FOR A DOS ATTACK
Using a firewall prevents DoS attacks from overwhelming
the system and filters out malicious traffic. The use of a load
balancer is recommended to evenly distribute network traffic
among multiple servers, thereby mitigating the impact of a
Denial of Service (DoS) attack on any individual server and
ensuring the continued functionality of the remaining servers.
A content delivery network (CDN) can be employed to cache
static content and distribute it to users from servers near their
locations. This approach can effectively mitigate the adverse
effects of denial-of-service (DoS) attacks.
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TABLE 9. Comparison with other related studies based on the LSTM and XGBoost models.

FIGURE 13. Illustration of artificial intelligence methods based on attack categories.

D. COUNTERMEASURES FOR THE RECON ATTACK
A firewall should be employed to impose access restrictions
on the system and network, permitting only essential traf-
fic to traverse. Intrusion detection and prevention systems
(IDS/IPS) are security mechanisms designed to detect and
prevent unauthorized access or malicious activities within
a computer network. Using an intrusion detection system
(IDS) or intrusion prevention system (IPS) to actively mon-
itor both the system and network for potentially malicious
activities, including but not limited to port scanning and
reconnaissance attacks. It is imperative to ensure the reg-
ular updating of system and network software with the
most recent security patches to maintain optimal security
measures.

VII. CONCLUSION AND FUTURE DIRECTIONS
In conclusion, we have presented a comparison and inves-
tigation of AI approaches for cyberattack detection in a
CPS environment. The LSTM and XGBoost classifiers were
used to analyze the performance toward advanced cyber-
attack detection in the CPS network communication layer.

The model was trained and tested using real-world bench-
mark datasets from gas pipelines. Due to the large number
of datasets, we had to monitor ACC and validation trends
for 100 training epochs. The prediction classification rate
was ACC of 97.80% from LSTM and XGBoost 98.69%.
The experiment confirmed that XGboost performed better by
achieving higher accuracy scores and cyberattack classifica-
tion rates in CPSs.

We hope that further research can focus on real-time ICS
system datasets to detect threats, such as DoS and DDoS
attacks, using unsupervised learning. However, our analysis
indicates that classification outcomes may be enhanced by
including or excluding attributes from gas pipeline datasets
or larger sample datasets. Finally, the findings from the ROC
curve analysis highlight the effectiveness of both the LSTM
and XGBoost models in cyber security attack detection. The
implications of these findings are of great importance in the
context of improving the security of cyber-physical systems.
Additional potential future research could entail investigating
ensemble methods or improving hyperparameters to enhance
the model’s performance. Finally, the nomenclature, which
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includes symbols, notations, and their descriptions, has been
provided (see Table 4).

ABBREVIATIONS
This manuscript uses the following abbreviations:

ACC Accuracy.
ANN Artificial Neural Network.
APT Advanced Persistent Threats.
AHSA Adaptive Harmony Search Algorithm.
CSV Comma Separated Value.
CPS Cyber-Physical System.
CPSs Cyber-Physical Systems.
CMS Cyber Manufacturing system.
CNN Convolutional Neural Network.
DL Deep Learning.
DT Decision Tree.
DoS Denial of Service.
DRL Deep Reinforcement Learning.
DBN Deep Belief Network.
DRNN Deep Recurrent Neural Network.
FP False Positive.
FN False Negative.
FFDNN Feed-Forward Deep Neural Network.
FDIA False Data Injection Attacks.
EASH Energy Aware Smart Home.
GC-LSTM Graph Convolutional Long-Short-Term

Memory.
IR 4.0 Fourth Industrial Revolution.
HMI Human Machine Interface.
IoT Internet of Things.
ICS Industrial Control System.
IDS Intrusion Detection System.
KNN K-Nearest Neighbors.
LSTM Long Short-Term Memory.
ML Machine Learning.
MTU Master Terminal Unit.
MLP Multilayer Perceptrons.
NSF National Science Foundation NSF.
OT Operational Technology OT.
OSINT Open-Source Intelligence.
PSO Particle Swarm Optimization.
PLCs Programmable Logic Controllers.
PMU Phasor Measurement Unit.
US United State.
RTU Modbus Remote Terminal Unit.
RNN Recurrent Neural Network.
RF Random Forest
SQL Structured Query Language
SDN Software-Defined Network
SG Smart Grid.
SVM Support Vector Machine.
TP True Positive.
TN True Negative.
WFEU Wrapper-Based Feature Extraction Unit.
XGBoost eXtreme Gradient Boosting.
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