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ABSTRACT Recently, deep neural networks have shown remarkable success in fault diagnosis in power
systems using partial discharges (PDs), thereby enhancing grid asset safety and reliability. However, the
prevailing approaches often adopt centralized large-scale datasets for training, without taking into account
the impact of noise environments for Intelligent Electronic Devices (IEDs). Noise environments for PD
measurements in gas-insulated switchgear (GIS) introduce variations in feature distributions and class
representations, challenging the generalization ability of the trained models in new and diverse conditions.
In this study, we propose a Shared Knowledge-based Contrastive Federated Learning (SK-CFL) for PD
diagnosis in different noise environments for IEDs. The proposed SK-CFL combines federated learning
principles with contrastive learning, empowering IEDs to collaboratively learn and share knowledge as
regards PD and noise patterns. The proposed framework can learn representations between the same patterns
across different IEDs while ensuring data privacy. Experimental results for PD diagnosis in GIS show that
the proposed SK-CFL achieves a performance improvement in fault diagnosis, particularly in new and
unseen environments. Specifically, the recall for unknown noise in untrained IED 6 demonstrates 92.86%
of the proposed SK-CFL, in comparison with 64.29% and 35.71% of the conventional FL and baseline
method, respectively. These results suggest that the proposed SK-CFL approach promises more adaptable,
and resilient data-driven approaches since it protects data privacy that can operate effectively in challenging
real-world environments.

INDEX TERMS Contrastive learning, deep neural networks, federated learning, gas-insulated switchgear,
partial discharge.

I. INTRODUCTION
In recent decades, the global energy industry has experienced
rapid growth owing to the development of the economy and
society, resulting in a considerable increase in demand for
electric energy. Gas Insulated Switchgear (GIS) is one of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongli Dong.

most important components in terms of maintaining stable
operational conditions of a power system, and its safety
directly affects the reliability of the power grid [1], [2], [3],
[4], [5], [6], [7], [8]. As time goes by, however, working
under factual conditions affected by extreme operational,
environmental, and weather conditions, insulation systems of
electrical machines and power cables withstand increasingly
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high levels of stress and contamination that will seriously
threaten the stability of the power grid [1], [2], [3]. Partial
discharge (PD) occurs when there is a partial breakdown
of electrical discharge in GIS, which can happen near the
high-voltage conductor or other locations [4], [5]. In GIS,
partial discharge signals generally appear in the early stages
of insulation deterioration, and multiple defects result in
different forms of partial discharge signals during prolonged
operations. Their causes in GIS vary, and different types can
cause varying degrees of damage to GIS equipment [1], [6].

Partial discharge (PD) activity has been investigated using
phase-resolved PD (PRPD) characteristics in GIS, where the
amplitude of PD pulses is synchronized with the grid voltage
applied. These characteristics facilitate the identification of
the type of source present by analyzing the number of the
PD pulses, and the maximum or average amplitude in each
phase, as each type of PD (corona, superficial or internal)
has a characteristic PRPD pattern [2], [7]. However, a major
problem in PD identification is interferences of electrical
noise, particularly in industrial environments where large
noise sources or different sources of PD can act simultane-
ously, which may render the diagnosis and location of PD
signals difficult, or even impossible. In several environments,
trigger levels of noises were captured individually for each
pattern based on the signal-to-noise ratio (SNR) of each
sensor [8], [9], [10]. Additionally, if the noise trigger levels
are extremely high, it may be challenging to detect other
incipient PD sources that are associatedwith severe insulation
failure [8].
Deep neural networks have emerged as one of the most

active and powerful technologies widely used for diagnosing
partial discharges (PD). By leveraging the advanced and
mathematical evolution of machine learning, deep learn-
ing methods have harnessed the potential of stochastic
optimization and multiple-layer structures of neural net-
works to improve the pattern recognition ability of PDs
[11], [12].
Several deep neural network architectures have been

explored to tackle the PD diagnosis challenge [13], [14],
[15]. Convolutional Neural Networks (CNNs) are applied to
recognize PD patterns using a dataset of 3500 samples and
successful outcomes [13]. CNN architecture is utilized to
identify six types of discharge defects, obtaining excellent
classification results by leveraging the phase-amplitude
response from a PD signal to diminish the input size [14].
A CNN-based Siamese structure is studied for PD diagno-
sis in Gas-Insulated Switchgear (GIS), even with limited
data [15]. However, the conventional CNN-based PD clas-
sification methods used to develop the model via learning
on the central server did not consider a data privacy issue.
In the practical industrial scenario, there are different noise
environments for IEDs. Further, the generalization of the
trained models from one certain platform in real-world
settings is difficult to assess due to the scarcity of available
PD samples [16].

To overcome the shortcomings of central learning, feder-
ated learning methods have been globally adopted. They have
been embraced bymajor companies as they play a crucial role
in ensuring privacy-sensitive applications in scenarios where
training data is collected from multiple clients [17], [18],
[19], [20]. The success of federated learning is not limited
to a particular domain but has extended its impact across
several fields, achieving outstanding performances in diverse
applications. In communication [21], federated learning
has facilitated the development of robust and efficient
communication systems. In mobile Internet technology [22],
it has been leveraged to optimize user experience and enhance
network performance. In natural disaster analysis [23], feder-
ated learning has demonstrated its capability to process and
analyze large amounts of sensor data from different locations,
enabling more accurate and timely disaster predictions and
responses. In autonomous driving [24], federated learning
has been utilized to train sophisticated models that enhance
the safety and intelligence of self-driving vehicles. In heavy
haul railway control [25], this approach has been successfully
deployed to optimize train operations, improve scheduling
efficiency, and ensure smoother rail transportation. Despite
these achievements, federated learning algorithms rely solely
on optimizing models using cross-entropy loss by aligning
themarginal distributionwithout considering the fine-grained
class distribution within each conditional environment,
challenging fully capturing the diversity of real-world noise
environments. The presence of diverse noise types can
introduce variations in the feature distributions and class
representations, challenging the generalization capability of
the trained models when dealing with new and previously
unseen environments.

To address limited federated learning algorithms, we pro-
pose a novel Shared Knowledge-based Contrastive Federated
Learning (SK-CFL) for PD diagnosis in various noise
environments. The proposed method leverages the power
of federated learning, allowing individual IEDs to train
locally using their own data. Further, the proposed SK-CFL
integrates contrastive learning techniques, enabling IEDs to
collaboratively learn and share knowledge, and promoting
the discovery of shared patterns across different noise
environments. Contrastive learning has the advantage of
aggregating mutual knowledge between similar classes, even
from new distributions in a way that brings similar samples
(positive pairs) closer together while pushing dissimilar
samples (negative pairs) apart. This has been successfully
applied to various domains, including natural language
processing, computer vision, and speech recognition [26],
[27], [28], [29], [30], [31], [32].

The proposed SK-CFL addresses the challenge of enhanc-
ing model performance across all IEDs by leveraging
knowledge learned locally. The proposed SK-CFL introduces
a joint optimization approach by combining two loss func-
tions: the Cross-Entropy loss (CE) and the class-supervised
contrastive loss (CS). This combination aims to achieve
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task-specific performance improvement within each IED and
better generalization across different IEDs in the federated
learning setting. The key contributions of SK-CFL are
summarized as follows:

• The proposed SK-CFL allows IEDs to perform local
training independently using their own datasets without
data sharing. By utilizing local knowledge, each IED
learns discriminative representations for the specific
fault classification task within its environment. This
approach ensures privacy protection and security risk
while enhancing the model’s capability to capture
domain-specific patterns.

• The proposed SK-CFL incorporates contrastive learn-
ing (a powerful technique from visual representation
learning), which enhances the model to learn mutual
information on PD faults across different IEDs in GIS.
Here, the model brings similar patterns closer and
pushes dissimilar patterns apart.

• By jointly optimizing the CE and CS losses, the pro-
posed SK-CFL aims to achieve improved fine-grained
performance within each IED and generalization across
different IEDs. This facilitates the development of robust
and effective fault classification models that can be
applied to new, unseen environments while benefiting
from the diverse knowledge learned locally by each IED.

• Experimental results show that the proposed SK-CFL
not only ensures outstanding PD diagnosis performances
within specific IEDs but also enhances adaptability in
new and unforeseen environments.

The remainder of this paper is organized as follows:
Section II presents the description of experimental data for
PRPDs and noise measurements in GIS. Section III discusses
the problem formulation for the PD diagnosis and proposes
SK-CFL by combining the federated learning framework
with the contrastive learning techniques. Section IV presents
the performance evaluations. Additionally, it compares the
performance of the proposed method to other conventional
methods in this section. Finally, Section V concludes the
study.

II. EXPERIMENTAL DATA ANALYSIS
In this section, we present an experimental setup and
the experimental results for PRPDs and on-site noise to
investigate the assessment of PD characteristics using an
ultra-high frequency (UHF) sensor in GIS.

A. EXPERIMENTAL SETUP
Fig. 1 illustrates an experimental system to detect PD signals
in a GIS. The partial discharge experiment was conducted by
applying AC voltages to artificial cells, which are installed
in a GIS chamber. A cavity-backed patch antenna is used
as an external UHF sensor and the signal from the UHF
sensor is amplified with a gain of 45 dB which occurs
within an operating bandwidth that ranges from 500 MHz to
1.5 GHz [33], [34], where the amplifier gain is set considering

FIGURE 1. An experimental system for the GIS: (a) Block diagram and
(b) high-voltage test site.

the maximum amplitude of the partial discharge pulse. The
amplified signal is then fed into a peak detector to capture the
maximum value of each UHF PD pulse. The data acquisition
system (DAS) further uses an analog-to-digital converter
(ADC) with a sampling frequency of 1024× fm samples per
second, where fm = 60 Hz is the power frequency, to digitize
the signal. The maximum value of the digitized signal is
captured at every 8 sample in the DAS, and 128 samples
in each power cycle are applied for PRPD measurements.
The PRPD measurements are obtained using an eight-bit
ADC with a sampling rate of P × fm samples per second,
where P = 128 defines the number of data points in each
power cycle and fm = 60 Hz is the power frequency. The
measured signal comprises the pth data point and the mth
power cycle is expressed as x(m, p) ∈ {0, 1, . . . , 255}. This
signal for M = 3600 power cycles is then formed in a
matrix, X, where each element of the matrix represents the
measured signal at a specific data point in a specific power
cycle.

The measured signal for M = 3600 power cycles is
denoted in form of matrix as

X =


x(1, 1) x(1, 2) . . . x(1,P)

x(2, 1) x(2, 2) . . . x(2,P)

...
...

. . .
...

x(M , 1) x(M , 2) . . . x(M ,P)

 , (1)

where x(m, p) ∈ {0, 1, · · · , 255} represents the measured
signal with the value at the p-th data point for the m-th power
cycle.
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FIGURE 2. Artificial cells: (a) corona, (b) floating, (c) particle, and (d) void
PDs.

B. PRPD MEASUREMENTS AND CHARACTERIZATIONS
For GIS, We investigated four types of faults (corona elec-
trodes, floating electrodes, void defects, and free particles)
using artificial cells [33], [34]. Each fault was simulated in
a separate artificial cell (Fig. 2), as actual failures in GIS are
rare in on-site environments. To simulate corona discharge,
a sharp protrusion fixed on an electrode was used to create
a local electric field enhancement through a needle with a
10 µm tip radius and a 1 mm in diameter (Ogura [35]),
with a distance of 10 mm between the needle and the
ground electrode, and a test voltage of 11 kV. To simulate
an unconnected cell, a fabricated floating electrode cell was
used with a test voltage of 10 kV. Here, small voids with a
test voltage of 8 kV were formed between the epoxy disc
and the upper electrode to simulate artificial void discharge.
Free particle discharge was simulated using a small sphere
with a 1 mm diameter placed on a concave ground electrode,
with the HV electrode connected to a larger sphere with a
diameter of 45 mm, fixed at a distance of 10 mm from the
ground electrode and a test voltage of 10 kV. The artificial
cells are made of aluminum on the top and bottom and acrylic
on the sides. For stable experiments considering the material
and thickness of the cells, the four artificial cells were filled
with SF6 gas at 0.2 MPa. Experiments were conducted for
each fault separately.

FIGURE 3. Sequential phase-resolved PDs (PRPDs) for four fault types in
GIS: (a) corona, (b) floating, (c) particle, and (d) void.

Fig. 3 illustrates the time-domain data for PRPDs captured
from UHF sensors in three-dimensional (3D) and two-
dimensional (2D) representations. In Fig. 3, PRPDs are
obtained from artificial cells for four types of insulation
defects and include noises from the measurement system.
Moreover, the 2D is performed by the 3D array: each PD
event is represented by a pixel whose position corresponds
with the phase angle and apparent charge at which it occurred.
If multiple PD pulses occur at the same phase and magnitude,
the color of the pixel changes to indicate the pulse count.
In Fig. 3a, the discharge pulses of the corona fault [36] can be
observed separately at both positive and negative half-cycles
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FIGURE 4. Noise measurements for (a) IED 1, (b) IED 2, (c) IED 3,
(d) IED 4, (e) IED 5, and (f) IED 6.

with high frequencies ranging from 255 to 315 degrees,
slightly from 45 to 90 degrees, and in the vicinity of zero,
which have a similar distribution to that of void discharge.
However, void discharge pulses exhibit a more sparse and
high pattern. Also, discharge pulses for particle defects occur
in the entire phase ranges, showing a difference in corona
defects, as shown in Figs. 3a and 3c. For the floating and
particle defects, there exists a very dense distribution of
discharge pulses spanning various bands and intensity ranges,
as shown in Figs. 3b and 3d, wherein the amplitude of the
floating PDs reaches 250, close to the maximum measured
value of 255 for the DAS.

C. NOISE MEASUREMENTS AND CHARACTERIZATIONS
The noise was measured using on-line UHF PD monitoring
systems for on-site GISs in substations in South Korea. For
noise measurements, diagnostic systems are installed on-site
and noise is measured for GISs under normal conditions. The
diagnostic systems use an 8-bit ADC to store raw data, and the
amplitude of noise is quantified as an integer from 0 to 255.
Fig. 4 shows on-site noise measurements collected by six
different IEDs. Here, on-site noise signals from different

TABLE 1. Statistical analysis of noise levels.

IEDs represent their own characteristic distribution depend-
ing on the location. Table 1 presents the statistical analysis
for on-site noise measurements, where noise was classified
into six types according to the measurement location.
The statistical measures of interest were the minimum of
maximum values, the maximum of maximum values, the
mean, and the standard deviations, which were calculated
separately for each noise level. The minimum and maximum
values among the maximum values indicate the range of
amplitude for each noise level. The mean values provide an
estimate of the central tendency of the data for each noise
level, while the standard deviations indicate the dispersion or
variability of the data. These findings suggest that different
noise levels may have distinct patterns or trends in their
variability and central tendency.

A comparative statistical analysis of the amplitude levels of
the different noises is illustrated in Fig. 5, where noise 1, noise
2, . . . , and noise 6 represent the noise measured at IED 1,
IED 2, . . . , and IED 6, respectively. The almost maximum
amplitude values of Noises 1, 2, and 3 are in the range of
28 to 61. However, there exists a notable difference in the
distribution of amplitudes among them. The amplitudes of
Noise 2 are concentrated around amean value of 0.828, which
is significantly higher than that of Noise 1, and Noise 3, with
mean values of around 0.104, and 0.206, respectively. This
indicates that Noise 2 has higher amplitude values compared
to Noise 1 and Noise 3, despite having similar maximum
amplitude values. Similar to Noise 1, Noise 6 also exhibits
a mean amplitude value of approximately 0.933. However,
the peak amplitude values for Noise 6 are located in [30,111]
and have a wider range than Noise 1. Moreover, Noise 5 has a
distribution with maximum values range of [50,85]. Despite
having the lowest mean amplitude value among the analyzed
noises, Noise 5 exhibits an equal standard deviation compared
to Noise 1. In addition, Noise 4 displays a sparse distribution
pattern with a range of mean values from [0.1,0.8] and a range
of maximum values from [48,89].

III. PROPOSED SCHEME
In this section, we define the federated learning problem
in PD diagnosis, before providing an overview of the
proposedmethod’s architecture for detecting PRPDs in aGIS.
We propose a novel approach that combines the principles
of federated learning and contrastive learning for PRPD
fault diagnosis. The proposed Shared Knowledge-based Con-
trastive Federated Learning (SK-CFL) considers one server
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FIGURE 5. Visualizing statistical amplitude analysis of different noises.

and multiple intelligent electronic devices (IEDs). Federated
Learning facilitates cooperative learning among individual
environments, while Contrastive Learning refines feature
representations, capturing both inter-class relationships and
intra-class variations.

A. PROBLEM FORMULATION
Consider K IEDs D1,D2, · · · ,DK with fault data under
different noise conditions. Each IED Dk has its own
local dataset comprising N k samples represented as pairs
(Xk

i , y
k
i )
N k

i=1, where Xk
i denotes the i-th sample and yki is its

corresponding label. In a conventional centralized learning
scenario, all the data from different IEDs can be aggregated
and trained by a global model. However, there are existing
drawbacks to this centralized approach including concerns
related to data privacy and security risks. Moreover, this
approach can potentially hinder generalization owing to a
lack of local knowledge, as IEDs often have domain-specific
or location-specific knowledge that trains the model.

The proposed SK-CFL algorithm aims to improve the
performance of the model across all the IEDs by combining
the knowledge learned locally. Instead of transmitting the raw
data, the proposed SK-CFL allows each IED to perform local
model training independently using its data. Here, the central
server aggregates the locally learned model parameters from
each IED using federated learning, thereby updating the
global model without direct access to the raw data. However,
the simple optimization of the cross-entropy loss in the
federated learning framework [37] without considering the
cross-sample relationship can negatively impact the gener-
alization performance in the presence of untrained target
patterns, including new environment-collected or unseen
patterns. To address this issue, we propose jointly opti-
mizing our class-supervised contrastive loss. This approach

considers the relationship between locals by maximizing the
mutual information between similar classes across different
locals while filtering task-irrelevant information caused by
environmental changes. By so doing, our class-supervised
contrastive loss captures shared class information and gener-
ates environment-independent class representations, thereby
enhancing the generalization performance on untrained faults
(faults from new environments, unseen faults).

The SK-CFL algorithm aims to further enrich the training
process. By incorporating the class-supervised contrastive
loss (LCS ) alongside the conventional Cross-Entropy loss
(LCE ), SK-CFL endeavors to extract robust and discrimina-
tive feature representations. This joint optimization paradigm
seeks to propel the generalization capabilities of the learned
model across various IEDs and potentially unseen scenarios.

B. SHARED KNOWLEDGE-BASED CONTRASTIVE
FEDERATED LEARNING (SK-CFL)
Fig. 6. shows the proposed SK-CFL architecture for fault
classification. The proposed architecture involves multiple
communication rounds between a central server and local
IEDs. The key steps in the proposed SK-CFL process are as
follows:

• Step 1: Initialization: The global model on the server is
initialized with a pre-defined architecture with random
weights and mutual representations.

• Step 2: IED Training: Each Intelligent Electronic
Device (IED) independently performs local training
using its own dataset. For each IED k , the local model
parameters wkt are initialized with the global model’s
parameters wGt−1. Within each epoch, for each mini-
batch b in the local dataset Xk and corresponding
labels yk :
The local model is used to compute the cross-entropy
loss lCE .
The b mini-batch samples concatenate with the mutual
representations S, except its previous representations to
calculate lCS .
The combined loss Loss is calculated using a weighted
combination of the cross-entropy loss (lCE ) and
class-supervised contrastive loss (LCS ).
The local model parameters are updated based on The
Loss.
Finally, randomly selected I = 5 samples for each
class to aggregate feature representations zk,Ct and
corresponding labels yk,Ct .

• Step 3: Update Model Parameters and Represen-
tations: After completing the local training, each
IED updates the model parameters wkt , local feature
representations zk,Ct , and corresponding labels yk,Ct to
the central server. This allows the central server to
incorporate the locally learned insights into the global
parameters of the model.

• Step 4: Server-side Aggregation: On the server side,
the aggregated global model parameters wGt are updated
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FIGURE 6. Proposed SK-CFL architecture.

through federated averaging. The server iterates through
all the IEDs, retrieving their contributions to the global
model. Additionally, the feature representations and
labels (zSt and y

S
t ) are aggregated from all the IEDs.

The process from steps 2 to 4 is repeated for the number
of rounds or until the global model converges and
achieves the desired performance.

• Step 5: Prediction for Untrained Targets: After
convergence, the updated global model WGlobal is used
to make predictions for new, unseen data (untrained IED
targets).

The proposed architecture offers a collaborative approach
to fault diagnosis. It leverages the power of federated
learning to train the model on decentralized data sources
while incorporating contrastive learning to improve the
feature representations of themodel. This combinationmakes
it suitable for large-scale and distributed fault diagnosis
systems, promoting efficient knowledge sharing among
the IEDs. The overall proposed algorithm is described in
Algorithm 1.

C. LOCAL TRAINING
The proposed SK-CFL method shares knowledge among
the server and all the local IEDs to facilitate model

aggregation of the network. The local model in the IEDs
is the Convolutional Neural Network (CNN) due to its
ability to automatically learn hierarchical representations
from the raw input data in (1). The basic model architecture,
as illustrated in Fig. 7, includes a feature extractor comprising
a 6-layer CNN. Each of these convolutional layers employs
3×3-sized kernels and is equipped with 8 filters, coupled
with a flattened layer before feeding to a Feedforward Neural
Network (FNN) with 64 neurons. Further, a classifier is
integrated into the architecture, comprising a 2-layer FNN
with 64 neurons in each layer and an output layer for the
probability of each class. Activation functions differ for these
components. LeakyReLU activation functions are applied
to the feature extractor, while the classifier utilizes ReLU
activation functions.

During the training process, the parameters of the basis
model are learned using mini-batches (denoted as B) to
minimize the following loss function, denoted as J (w):

J (w) =
1
|B|

∑
b ∈B

Loss(b), (2)

where w represents the learnable parameters in the model.
The loss function for each training sample in the mini-
batch (b-th training sample in B) is calculated using the
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Algorithm 1 Shared Knowledge-Based Contrastive Feder-
ated Learning (SK-CFL) Algorithm

Input: Xk , yk , Number of rounds T , Number of epochs
I , IED-list, Batch size B, Learning rate η, Temperature
parameter τ , weighting factor α

IED Side Procedure:
1: def IEDTraining(k , wGt−1, z

S\{k}
t−1 , yS\{k}t−1 ):

2: Initialize wkt ← wGt−1
3: for n = 1 to I epochs do
4: for each mini-batch b ∈ B do
5: lCE ← hwkt

(Xk,b, yk,b)

6: (zk,bt , yk,bt )← fwkt
(Xk,b, yk,b)

7: (zFt , yFt )← (Concat(zk,bt , zS\{k}t−1 ),Concat(yk,bt , yS\{k}t−1 )
8: Loss← (1− α) lCE + αLCS (zFt , yFt )
9: wkt ← wkt − η∇Loss(wk∈bt−1)
10: end for
11: zk,Ct ← fwkt

(Xk ) ∗ 1k,1:I∈C
12: yk,Ct ← yk ∗ 1k,1:I∈C
13: end for
14: return wkt , z

k,C
t , yk,Ct

Server Side Procedure:
1: Initialize wG0 , z

S
0 , y

S
0

2: for t = 1 to T rounds do
3: for each IED k ∈ IED-list do
4: wkt , z

k,C
t , yk,Ct ← IEDTraining(k,wGt−1, z

S\{k}
t−1 , yS\{k}t−1 )

5: wGt ←
K∑
k=1

nk
n w

k
t

6: (zSt , y
S
t ) ∪k∈K (zk,Ct , yk,Ct )

7: end for
8: end for
9: Global model: WGlobal ← wGt

Output: Global modelWGlobal .

FIGURE 7. Basic architecture hw (·) in the proposed SK-CFL framework.

cross-entropy loss as follows:

LCE = −
C∑
i=1

ei log
(
z(b)i

)
, (3)

where C is the number of classes or categories in the dataset.
The superscript b denotes the index for the b-th training
sample within the mini-batch B. The term ei is the value of 1
when the index i corresponds with the ground truth class for
the sample and 0 otherwise. The Adam optimizer is adopted
to update the learnable parameters of the network during the
training process.

D. CONTRASTIVE LEARNING BASED MUTUAL
INFORMATION CONNECTIONS
Contrastive learning constitutes a robust technique utilized
to amplify the efficacy of vision-related tasks. This method
hinges on the fundamental notion of discerning differences
between pairs of samples to stimulate feature learning.
It employs a neural network model denoted as hw(·) to
learn both common attributes shared among different data
classes and attributes that distinguish one data class from
another. The model hw(·) operates by applying an encoder
fw(·) with parameters w to extract key feature representations
zl from input sample Xl , computed as zl = fw(Xl),
and a classifier for class probability estimation. In the
training phase, each input batch of a dataset concatenates
with the representations in set S, except its previous
representations which is received from the server, (zFt , yFt )←
(Concat(zk,bt , zS\{k}t−1 ),Concat(yk,bt , yS\{k}t−1 ) before consider-
ing an arbitrary pattern indexed as i ∈ F . This pattern
corresponds with a sample pair denoted as Xi, yi. The
principal objective is to maximize the mutual information
between Xi and samples from similar labels yi = yp, also
referred to as positives, while minimizing samples from
different labels yi ̸= ya, called negatives. In the sub-
contrastive learning algorithm, the loss of the sampled sample
{Xi, yi} is mathematically expressed as [38]

LCS,i =
−1
|P(i)|

∑
p∈P(i)

log
hw({Xi,Xp})∑

a∈A(i)
hw({Xi,Xa})

(4)

=
−1
|P(i)|

∑
p∈P(i)

log
exp(zi • zp

/
τ )∑

a∈A(i)
exp(zi • za

/
τ )

, (5)

where |P(i)| is the cardinality of all the positives, whileP(i) ≡
{p ∈ A(i) : yi = yp} is the set of indices of positive samples,
known to belong to a similar label with Xi.
To maximize the mutual information between Xi and all

the positive samples, a lower bound of mutual information
is inferred by the supervised contrastive loss function
throughout the process to optimize the model hw and
the encoder z. The optimal model hoptw is directly related
to the density ratio between the joint distribution p(zi, zp) and
the product of marginals p(zi)p(zp) [39], defined as

hoptw ({Xi,Xp}) ∝
p(zi, zp)
p(zi)p(zp)

∝
p(zi|zp)
p(zi)

, (6)
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where ∝ stands for ‘‘proportional to’’. By inserting this
relationship into Equation (4), we can deduce that

LoptCS,i =
−1
|P(i)|

∑
p∈P(i)

log


p(zi,zp)
p(zi)p(zp)∑

a∈A(i)

p(zi,za)
p(zi)p(za)



=
1
|P(i)|

∑
p∈P(i)

log


∑

a∈A(i)

p(zi,za)
p(zi)p(za)

p(zi,zp)
p(zi)p(zp)


=

1
|P(i)|

∑
p∈P(i)

log


p(zi,za)
p(zi)p(za)

∣∣∣
a=p
+

∑
a∈A(i)\{p}

p(zi,za)
p(zi)p(za)

p(zi,zp)
p(zi)p(zp)


=

1
|P(i)|

∑
p∈P(i)

log

1+
p(zi)p(zp)
p(zi, zp)

∑
a∈A(i)\{p}

p(zi, za)
p(zi)p(za)

 (7)

≈
1
|P(i)|

∑
p∈P(i)

log
[
1+

p(zi)p(zp)
p(zi, zp)

(|F | − 1)
]

≥
1
|P(i)|

∑
p∈P(i)

log
[
p(zi)p(zp)
p(zi, zp)

|F |
]

= log(|F |)+
1
|P(i)|

∑
p∈P(i)

log
[
p(zi)p(zp)
p(zi, zp)

]

= log(|F |)−
∑
p∈P(i)

1
|P(i)|

log
[
p(zi, zp)
p(zi)p(zp)

]
= log(|F |)−

∑
p∈P(i)

I (zi; zp). (8)

Since a ∈ A(i)\{p} represents the number of negative
samples or pairs |F | − 1 in the training set of Xi. Eq.
(8) becomes more precise as the number of samples |F |
increases. This prompts an inequality,

∑
p∈P(i)

I (zi; zp) ≥

log(|F |) − Loptcons,i. This holds for every encoder z [39].
Therefore, this inequality underscores that by minimizing
the LoptCS,i objective function, the lower bound on the mutual
information

∑
p∈P(i)

I (zi; zp) can be effectively maximized [39].

E. OVERALL LOSS
In the proposed method, we introduce a joint optimization
approach that combines two objectives: the class-supervised
contrastive loss (LCS ) and the cross-entropy loss (LCE ). This
combined optimization aims to enhance the generalization
performance of the model on new, unseen IEDs.

The class-supervised contrastive loss (LCS ) addresses
the relationships between different noise environments by

generalizing similar class representations. It encourages
the model to learn compact and discriminative feature
representations across different IEDs. The class-supervised
contrastive loss is defined as follows:

LCS =
1
nF

F∑
i=1

LCS,i, (9)

where F ∈ {b ∪ S\{k}}merges the bmini-batch samples and
S samples in which it takes I = 5 samples for each class in
K IEDs, except its k previous representations.

The overall loss for the classifier task is a linear com-
bination of the cross-entropy loss and the class-supervised
contrastive loss, which is controlled by the weighting
coefficient α. The overall loss is formulated as follows:

Loss = (1− α)LCE + αLCS , (10)

where α represents the weighting coefficient that determines
the relative importance of each loss term. By jointly optimiz-
ing the cross-entropy loss and class-supervised contrastive
loss, the proposed method aims to achieve both task-specific
performance improvement and better generalization across
different IEDs in the federated learning setting.

IV. PERFORMANCE EVALUATION
This section presents the experimental results and per-
formance evaluation using PRPD data in different noise
environments.

A. EXPERIMENT RESULTS
Table 2 shows the number of experimental dataset for PRPDs
and on-site noises in GIS, where four types of PRPDs such
as corona, floating, particle, and void PDs, are considered.
Noises were measured using the UHF sensor in on-site
fields. Here, the same PRPD data from all IEDs and noise
measured from each IED are used. Each PRPD fault and
noise signal has 3600 power cycles (M=3600), where each
power cycle has 128 data points (P=128). We partitioned
the dataset into separate training and testing sets, following
an 80:20 ratio for each fault category to monitor the model
convergence on local IEDs during the training phase. For
hyperparameter optimization, we conducted an exhaustive
series of experiments to fine-tune the hyperparameters of our
model (layer count, kernel size, and the number of kernels)
and training algorithm configurations (learning rate, batch
size, and epochs).

Our experimentation process resulted in an optimized
configuration, as shown in Fig. 7. The feature extractor
comprises a 6-layer CNN, utilizing 3×3-sized kernels and
8 filters in each layer. This is followed by a flattened
layer before input to a Feedforward Neural Network (FNN)
comprising 64 neurons. After that, a classifier consists of
a 2-layer FNN with 64 neurons per layer and an output
layer for class probability estimation. LeakyReLU activation
functions were employed for the feature extractor, while
ReLU activation functions were used for the classifier.
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TABLE 2. Number of experimental datasets for the PRPDs and noises.

TABLE 3. Maximum and minimum bound of hyperparameter
optimization.

Additionally, batch normalization was incorporated into the
feature extractor to enhance training stability. Detailed ranges
for our approach can be found in Table 3. The reason
for our choice of hyperparameters included the batch size,
learning rate, temperature τ , contrastive weight α, number of
epochs, and number of rounds of 32, 0.001, 0.7, 0.1, 2, 100,
respectively. This configured setup resulted in the highest
overall classification accuracy when applied to the trained
PD data. To mitigate the impact of random initial values on
the network, we conducted 5 trials in our experiments. After
that, we averaged the results to affirm the robustness of the
proposed model.

B. COMPARED MODELS
For comparison purposes, simulations are conducted based
on three key aspects: Comparison of the model training
efficiency between SK-CFL-Based versus Traditional Cen-
tralized Model Training. Comparison between the accuracy
of the baseline method and FL model. Comparison of the
model training efficiency between FedAvg vs. Proposed SK-
CSL Method.
• Centralized Training (No Data Privacy): This method
trains a centralized model using all IED’s data without
any data privacy restrictions. The results are compared
two methods, including a Centralized Baseline method
(Baseline-CT) [40] where the models are updated solely
by the cross-entropy loss function and Centralized
Contrastive learning method (CL-CT) [41] using both
the cross-entropy loss and contrastive loss to optimize
the model.

• Baseline method (Single dataset): In this case, the
diagnosis model is trained on a dataset from only
one IED and tested on the other untrained IEDs. For
example, to assess the performance of an untrained
IED 1, four separate diagnosis models are trained using
their respective datasets (IED 2, IED 3, IED 4, and
IED 5). These models are then individually tested with
the data from IED 1, resulting in four distinct diagnosis
accuracies. The final evaluation for the performance of
untrained IED 1 is based on the average accuracy across
these four tests.

• Federated Learning (FL) [37]: This represents the
traditional Federated Averaging algorithm, where the
models are trained on local IED datasets, and their
parameters are averaged to create a global model. Here,
all clients have equal weight during the training process.

To ensure a fair and unbiased evaluation, we maintained
consistency by adopting the same loss function and network
architecture for all baseline methods included in the compar-
ison. In addition, all the experiments were conducted on the
same PC executed on an Intel(R) UHD Graphics 770 GPU
using PyTorch 1.7.

C. EXPERIMENTAL RESULTS
Table 4 presents the performance of fault diagnosis of training
processes using different training methods. It includes
central training methods (Baseline-CT and CL-CT) and local
training methods (Baseline, Conventional FL, and Proposed
SK-CFL) along with their training and testing accuracy
scores. This is used to test the generalization performance of
the local training IEDs by calculating the average accuracy
on both the training and testing datasets. Notably, the testing
dataset is not used for training or other local IED models.
As can be seen from the table, the proposed SK-CFL
method consistently demonstrates competitive accuracy in
the training and testing across all untrained IED cases.
Experimental results show that the proposed method achieves
high accuracy not only during training but also in their own
testing dataset even when the updated weights of IEDs by
aggregated in the sever after each round.

Table 5 shows the results of the fault diagnosis from
untrained IED datasets. From the perspective of central
training algorithms, the CL-CT achieves higher accuracy in
fault diagnosis compared to the Baseline-CT. This suggests
that the introduction of contrastive learning techniques has a
positive impact on the fault diagnosis by encouraging similar
representations for similar data points, likely helping the
model to better understand the underlying untrained patterns.
From the perspective of local training methods, it can be
inferred that FL-based schemes outperformed the baseline
model significantly, indicating that FL-based methods are
effective in addressing the challenge of generalization in
untrained IEDs. FL enables individual IEDs to locally and
then collaboratively refine a global model, resulting in better
generalization. Moreover, the proposed SK-CFL method
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TABLE 4. Performance (%) of fault diagnosis in the GIS of the training process on trained IED’s dataset using different methods.

TABLE 5. Accuracy (%) of fault diagnosis on the untrained IED dataset using different methods.

demonstrates the highest accuracy across all the cases. These
results show the effectiveness of the proposed SK-CFL by
combining federated and contrastive learning techniques to
enable IEDs to learn collaboratively and share knowledge.

The comparison of the performance for the methods for
different scenarios by combining randomly the untrained
IEDs as targets for test performance is shown in Table 6.
In this experiment, the accuracy of the approaches using local
training is performed. It can be observed that the proposed
SK-CFL demonstrates performance with an average accuracy
of 98.21%, compared to the conventional FL and Baseline
model with 97.36% and 96.06%, respectively. This indicates
the robustness and superiority of the proposed SK-CFL in the
generalization of untrained IEDs even in more complicated
diagnostic tasks.

To highlight the advantages of the proposed SK-CFL
technique, particularly in scenarios with significant noise
variability owing to data collected from diverse noise
environments, Fig. 8 illustrates a comparison of confusion
matrices for the proposed SK-CFL, conventional FL, and
Baseline method (which only uses IDE 3 for model training).
The accuracy is tested on the untrained IDE 6. As shown in
Fig. 8, the proposed SK-CFL algorithm achieves an accuracy
of 92.86% with relatively high discrimination between the
noise and fault types. In contrast, the conventional FL and
Baseline model achieve accuracies of only 64.29%, and

35.71%, respectively, which is lower than 28.57%, and
57.15% than our proposedmethod, respectively. In particular,
the proposed SK-CFL achieves higher accuracy for noise
patterns on the untrained IED 6 compared to other methods.
This is because the significant differences are observed in the
distribution of noise patterns measured across different IEDs.

Table 7 presents the results of a 5-fold cross-validation
comparing the performance of the conventional FL and
proposed SK-CFLmethod in the scenario 3 and 4. The results
of a paired t-test with a 95 percent confidence level to assess
the significant difference of performances of two methods.
As shown in table 7, the p-values obtained from the paired
t-tests achieve both less than the significance level of 0.05 and
these results are considered as ‘‘significantly different’’
because the p-value is less than 0.05 [42]. Therefore, there
is a significant difference between the proposed SK-CFL and
the traditional FL. On average, the accuracy for the proposed
SK-FLCmodel is 1.18% higher than that of the traditional FL
in the scenario 4.

Furthermore, we analyzed of the internal representations of
the trained network at the output of the encoder. Figs. 9a, 9b,
and 9c depict the t-distributed stochastic neighbor embedding
(t-SNE) illustrations of the input data vectors from the
untrained IDE 6 of the proposed SK-CFL, Conventional FL,
and Baseline (using IDE 3 for training) schemes, respectively.
The t-SNE is used to project high-dimensional vectors
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TABLE 6. Accuracy (%) of the combinations for different untrained IEDs.

TABLE 7. Comparison of accuracy and t-test performance between the conventional FL and proposed SK-CFL method using a 5-fold cross-validation in
scenarios 3 and 4.

TABLE 8. An analysis of precision, recall, and F-1 score for different classes on the untrained IDE 6.

into 2D spaces while preserving pairwise similarity [44].
As shown in Fig. 9a, it is difficult to identify and recognize
discharge faults precisely, especially for types of noise,
particle, and void patterns. In Fig. 9b, the confusion between
noise and particle fault can still happen. Contrarily, Fig. 9c
reveals distinct clustering among all the classes. Hence, the
proposed SK-CFL can learn fault class representations that
are adaptable to new and unforeseen faults in a variety of
noise environments.

Table 8 presents an analysis of performance metrics of
precision, recall, and F-1 score [43] for different classes from
the untrained IDE 6. As can be seen from table 8, the proposed
SK-CFL demonstrates the performance across precision,
recall, and F-1 score metrics for all classes superior to the
baseline and conventional FL. In particular, the precision
for particle fault class of the proposed SK-CFL achieves
98.51%, which is 5.55% and 5.65% higher than that of the
conventional FL and baselinemethod, respectively. The recall
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FIGURE 8. Confusion matrix on the untrained IDE 6 (a) baseline,
(b) conventional FL, and (c) proposed SK-CFL.

for noise patterns shows 92.86% of the proposed SK-CFL,
compared to 64.29% and 35.71% of the conventional FL
and baseline method, respectively. The F-1 score reflects
the trade-off of precision and recall, showing that their
performance for the proposed model outperforms the con-
ventional FL and baseline method. These results indicate the

FIGURE 9. t-SNE representations on the untrained IDE 6 for (a) baseline,
(b) conventional FL, and (c) proposed SK-CFL.

effectiveness of the proposed approach for various categories,
especially in case of imbalanced data.

V. CONCLUSION
In this study, we proposed a SK-CFLmethod to detect PRPDs
in GISs. The proposed SK-CFL utilizes local knowledge
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and integrates contrastive learning with federated learning
in several IED environments. The proposed SK-CFL was
verified when testing a new IED based on PRPDs and on-site
noises using multiple local IEDs. The PRPD data from
artificial cells included four types of faults: corona, floating,
particle, and void. Experimental results have revealed that
the proposed SK-CFL not only maintains high classification
accuracy within the testing set of the trained local IED but
also enhances the fault diagnosis performance in new IEDs.
The proposed SK-CFL aggregates locally learned knowledge,
thereby resulting in comprehensive generalizations through
contrastive learning, which is advantageous when operating
in various environments. By training models on local IEDs,
the proposed SK-CFL makes it more suitable for real-world
industrial scenarios in comparison with the traditional
centralized training techniques. In future studies, we intend
to conduct PRPD experiments with various gas pressures
and obtain more measurements for fault data to verify the
proposed method.
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