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ABSTRACT State-of-the-art methods for cross-modal recipe retrieval failed to consider an underlying
but challenging issue, i.e., matching imperfectly problem hidden in positive image-recipe pairs,
which is a culprit causing over-fitting. To make up this defect, two critical questions—how to
effectively recognize and filter out mismatching parts during the model training and how to pick
out and preserve as much matching information as possible need to be answered. To do so, this
article proposes a novel method—Cross-modal Recipe rEtrieval by Avoiding Matching imperfectlY,
abbreviated as CREAMY, which involving a new-designed learning strategy called Non-Matching
and Partial-Matching (NMPM) to undertake two tasks: 1) no longer forcibly aligning each positive
image-recipe pair but rather capturing the complementary information from negative pairs; 2)
delicately picking up and aligning the matchable part in each pair. To the best of our knowledge,
this attempt is a pioneer to defeat the matching imperfectly issue for cross-modal recipe retrieval
task. Empirical analysis conducted on Recipe1M dataset validates the advantages of CREAMY
over several state-of-the-arts. The code is available at: https://github.com/pouqual/CREAMY.

INDEX TERMS Cross-modal recipe retrieval, matching imperfectly, non-matching, partial-matching.

I. INTRODUCTION
Thanks for the prosperity of social networks, e-commerce
platforms and online recommendation system [1], people
enjoy the delights of cooking by easily following plentiful
cooking tutorials shared on Internet. Food computing [2], [3],
[4], as a results, has been proposed and studied so as to make
recipes/food searching, recommending, sharing online more
effectively, efficiently, and robustly.

This work concentrates on a hot spot in food computing
area, namely cross-modal recipe retrieval that aims to retrieve
the corresponding food images by queries of recipes or
vice versa. Unlike the simple image-text pair in traditional
cross-modal retrieval [5], [6], [7], [8], [9], the samples
in cross-modal recipe retrieval are much more complex.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rongbo Zhu .

Specifically, the images are photos of cooked food according
to the recipes consisting of three textual components: (1) title,
a single sentence naming the food; (2) ingredients, a list of
sentences to presents the needed ingredients for the food; (3)
instructions, a list of sentences to describe the cooking steps
in detail.

The main challenge of cross-modal recipe retrieval is
mitigating the heterogeneity between food images and
recipes, which is more difficult than conventional image-text
retrieval task [10], [11], [12], [13], [14], [15], [16], to some
extent, due to more intricate data. The usual treatment is
employing independent neural networks to encode images
and their corresponding recipes so as to align them in a
common feature subspace. To do so, several well-known
CV models (e.g. CNN [17], [18], [19] and ViT [20], [21],
[22]) and NLP models (e.g. LSTM [23], [24], [25] and
Transformer [20], [21], [22]) are coupled with triplet loss
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FIGURE 1. Differences between (a) perfectly matching image-text pair
and (b) image-recipe pair with matching imperfectly problem. The texts in
red dotted boxes are the mismatching parts. Best view in color.

to excavate essential features for images-recipes alignment.
Object detection [26] and image reconstruction [27], [28],
[29] techniques are adopted by previous works to implement
a strong-sighted model so that the key visual details can
be focused. To better understand the complex semantics
from recipes, some works [26], [30] devote to find the key
terms in texts, while others [22], [31] attempt to explore the
hidden consistent information between different components
in recipes, or even capture the interaction of two modalities
via cross-modal attention [32], [33], [34] to enhance cross-
modal alignment [35], [36], [37], [38].

A. MOTIVATION
In spite of their extraordinary accomplishments, a critical
issue hidden in cross-modal recipes data, namely matching
imperfectly problem, seriously hinder image-recipes align-
ment. In short, this problem refers to a text sample (a sentence
or a paragraph) in an image-text pair cannot perfectly match
the content of its corresponding image. Compared to general
cross-modal retrieval involving simple image-text pairs (e.g.,
an image and a simple sentence), cross-modal recipe retrieval
with complex image-text pair (e.g., an image containing
various visual contents coupled with a text with rich
semantics) is more susceptible to suffering from matching
imperfectly. Taking Figure 1 as an intuitive example,1 Nouns

1The picture in Figure 1(a) is downloaded from:
https://www.sohu.com/a/450519741_120051368. All the food pictures
in this article are the samples from Recipe1M dataset, which can be
downloaded from http://im2recipe.csail.mit.edu

‘‘cat’’ and ‘‘mask’’, shown in Figure 1 (a), are matching
well to the visual objects in the image; two quantifiers ‘‘a’’
are matching to the quantity of the corresponding objects;
the static verb ‘‘wearing’’ is corresponds to the relationship
between the cat and themask in the image. Unfortunately, as a
complex pair, the image-recipe pair shown in Figure 1 (b) is
unable to avoid matching imperfectly problem. No doubt, the
title ‘‘Oh My Goodness! Shrimp & Crab Ceviche’’ carries
the emotion of the food maker, which is not indeed presented
in the food image. Furthermore, some ingredients (e.g., salt)
are hardly recognized from the image due to being mixed
up after cooking, let alone their quantities. Worse still, the
cooking steps in instructions never appear in the image, and
some other information, such as the last sentence ‘‘May
serve immediately or refridgerate serve with tostada shells or
chips.’’ describes the eating method of the food, which has
almost no relation to the visual content.

Cross-modal alignment between a food image and its
recipe, beyond all doubt, seriously suffers from the matching
imperfectly problem, especially under the current learning
setting. In specific, the prevailing solutions that use triplet
loss are based upon the following assumption: given a
positive image-recipe pair, the food image and its recipe are
treated as perfectly matching. Undoubtedly, this assumption
is far from correct when handling cross-modal recipe pairs,
if which is naively adopted duringmodel training, over-fitting
will be inevitable. To address this serious but not widely
concerned issue, we attempt to design an effective matching
strategy to enhance images-recipes alignment: (1) To prevent
incorrect matching, we no longer forcibly align the positive
image-recipe pairs but rather capture the complementary
information from negative pairs. In this way, the optimization
direction could be led by the negative pairs; (2) To prevent
the loss of partially matching information among positive
image-recipe pairs, we try to delicately pick up and align
the matching part in each pair. As mentioned above, a food
image is the cooking result of the ingredients. In other
words, ingredients are the components directly associated
with the food image even though they may be hard to
recognize after cooking. Following such fact, we therefore
solely align the features of ingredients and food images in
positive image-recipe pairs to precisely retain the matching
information.

B. OUR METHOD
To this end, we propose a novel cross-modal recipe
retrieval method, termed as Cross-modal Recipe rEtrieval by
Avoiding Matching imperfectlY, abbreviated as CREAMY,
shown in Figure 2. Apart from a set of transformer-based
encoders to capture the semantic features from food images
and recipes seperately, at the heart of CREAMY is a
skillful-designed learning strategy, termed as Non-Matching
and Partial-Matching strategy (NMPM for short), served
as a protector for the model from matching imperfectly
problem. Specifically, NMPM treats the negative and positive
image-recipe pairs in different manners: (1) for the negative
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FIGURE 2. The framework of CREAMY. The left is recipe inputs and the recipe encoder f r , the right is image inputs and the image encoder, and the
middle is our NMPM strategy, which include non-matching loss and partial-matching loss.

pairs, the distances between them are enlarged so as to
learn the complementary information by a non-matching
loss, which is called Non-Matching strategy; (2) for the
positive pairs, the mismatching parts are filtered out from
the recipes and then reserve the matchable parts, i.e., the
ingredients which then are aligned to image features by
a partial-matching loss such that the consistent semantics
can be learned, which is the Partial-Matching strategy. In a
nutshell, this best-of-both-worlds learning strategy skillfully
avoids matching imperfectly problem among cross-modal
recipe data while sufficiently captures semantic correlation
in each positive pair, the boost of cross-modal recipe retrieval
performance brought by which has been empirically verified
via extensive experiments.

C. CONTRIBUTIONS
In summary, the main contributions of this article are three
folds, listed as follows:

• We propose a novel method named CREAMY aiming
to avoid the matching imperfectly problem effectively
in cross-modal recipe retrieval. Different from exist-
ing methods, this work is the pioneer to improve
image-recipes feature alignment by addressing the
challenge of matching imperfectly.

• We introduce a novel learning strategy, NMPM, consist-
ing of two loss functions: non-matching loss and partial-
matching loss, which effectively avoids interference

frommatching imperfectlywhilemaintainingmatchable
information in positive image-recipe pairs.

• We conduct extensive experiments on the challenging
dataset Recipe1M. The results demonstrate that the
proposed technique outperforms the state-of-the-arts by
a significant margin.

D. ROADMAP
The remainder of this article is organized as follows. The
related works are summarized in Section II. We introduce our
method in Section III. Section IV discusses the experiments
and we conclude this article in Section V.

II. RELATED WORK
This section reviews the prevailing studies concerning
cross-modal recipe retrieval task and food image/recipe
generation, which are related to our work.

A. CROSS-MODAL RECIPE RETRIEVAL
As a particular case of cross-modal retrieval, cross-modal
recipe retrieval aims to search the corresponding recipes
by food image queries or vice versa. The main challenge
of cross-modal recipe retrieval, similar to most cross-modal
tasks, is to eliminate heterogeneity between different modal-
ities (image and recipe). To this end, several well-known
CV models and NLP models are employed to generate
high-quality embeddings from food images and recipe texts
so as to achieve cross-modal alignment. For example, deep
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convolutional neural networks, such as VGG [17], [39],
[40] and ResNet [18], [19], [41], [42], are used in several
works for visual information embedding. To further focus
on essential visual features, Faster-R-CNN is involved [43]
to detect food object. More recently, ViT [20], [21], [22] is
applied to enhance the food image recognition. For recipes,
along with the proposed of various attention mechanism,
Bert [44], [45], [46] and Transformer [47], [48], [49], [50] are
utilized to implement stronger textual encoder than sequential
models such as skip-thought [26], [51] and LSTM [23],
[24], [25] involved in early works. Furthermore, cross-
modal attention [34], [52], [53] mechanism and large vision-
language pre-training models [54], [55], [56], [57], [58] are
employed in cross-modal recipe understanding, which further
narrow heterogeneous gap via cross-modal interaction.

The difficulty of recipe retrieval mainly stems from
complex recipe sample including title, ingredients and
instructions, other than a simple phrase or a sentence. These
three components play different roles to present a recipe.
Therefore, a more reasonable way for recipe feature embed-
ding is to explore latent semantic information from different
parts discriminately. For example, Cao et al. [43] extracted
contextual information from title and ingredients, and utilized
them to highlight the key elements in images and instructions.
Fontanellaz et al. [31] used an attention mechanism to focus
on the words or single instruction in instructions which
have the strongest connection to ingredients. Fu et al. [32]
employed an attention-based RNNdecoder to capture the cor-
relations between instructions and ingredients. Xie et al. [30]
leveraged TF-RDF to rerank the ingredients to improve the
quality of recipe embedding. Li et al. [33] used enhanced
ingredients and instructions information to do the local and
global alignment separately. Salvador et al. [22] proposed
a self-supervised loss function to leverage semantic rela-
tionships within recipes. Xu et al. [59] regarded cross-modal
recipe retrieval as a ternary image-text retrieval problem,
and utilized high-level associations between these three
components via bi-directional triplet loss. Other studies
such as [27], [29] and [28] attempted to generate synthetic
images by GAN to facilitate the understanding of recipe
characteristics.

Despite significant progress made so far, a critical issue,
namely matching imperfectly within each positive image-
recipe pair, is ignored in all the previous works which
naively treat positive image-recipe pairs in training set
as perfectly matching. Unfortunately, matching imperfectly
always occurs in positive pairs owing to the fact that the
semantic information contained in recipe texts (including
title, ingredient and instruction) generally exceeds the range
of information contained in the food image. If forcibly we
align the features matching imperfectly, over-fitting would be
caused inevitably. Bearing such stand-out limitation, we are
inspired by complementary contrastive learning [60] and
attempt to design a novel loss function to reduce adverse
effect caused by this issue.Meanwhile, we did not completely
abandon using positive image-recipe pairs due to consistent

semantic information existing in each positive pair, but
attempted to enhance cross-modal alignment by exploiting
partially matching information in positive pairs, which has
barely been explored in prior works.

B. FOOD IMAGE/RECIPE GENERATION
Food image/recipe generation are another two vision-
language tasks related to cross-modal recipe retrieval. The
main challenge of them lie in capturing the details of
food images and understanding the variation of ingredi-
ents caused by cooking. For food image generation task,
Han et al. [61] built an attention-based ingredients-images
association model to generate images from ingredients.
Wang et al. [62] introduced a cycle-consistency training
method, which improved image generation by optimizing
the inverted latent codes. ChefGAN [63] involved a joint
image-recipe embedding model to GANs before and during
the stage of generate images. CookGAN [64] mimicked
visual effect of instructions and preserved the fine-grained
details of images. For recipe generation task, [65] and [66]
predicted ingredients firstly and then generated whole recipes
using ingredients and images. Other solutions [67], [68], [69]
generated instructions by exploiting the structure information
of text.

As what mentioned above, ingredients after cooking
are mixed together, which bring significant obstacles to
determine whether a certain ingredient should appear in the
image. On the other hand, without the perfect alignment
between ingredients and visual information, the bridge
across instruction and its corresponding image is lost. That
means the matching imperfectly problem discussed above is
also seriously interfere with food image/recipe generation.
Unfortunately, this issue has not been addressed well right
now.

III. METHOD
This section introduces our method CREAMY. We first
present notations and problem formulation in subsec-
tion III-A, followed by the technique details, including
framework overview in subsection III-B, a novel learning
strategy NMPM in subsection III-C. We end this section with
model optimization in III-D.

A. NOTATIONS AND PROBLEM FORMULATION
For the sake of discussion, firstly we introduce the notations
involved in this paper, then giving the problem formulation
of cross-modal recipe retrieval.

1) NOTATIONS
Without losing generality, sets and matrices are denoted as
uppercase handwritten letters (e.g. D) and bold uppercase
letters (e.g. A), respectively. The i-th row of A is denoted as
Ai, and the element located in the j-th column of i-th row ofA
is denoted as Aij. ∥·∥2 denotes the L2 norm of a matrix. The
transpose of matrix A is denoted as A⊤. Suppose that P is a
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TABLE 1. The summary of notations.

probability of event Z, P = 1−P represents the probability
of the complementary event of Z. Table 1 summarizes the
frequently used notations through this article.

2) PROBLEM FORMULATION
Let D = {Xv

i ,X
r
i }
n
i=1 be a cross-modal recipe dataset with

n image-recipe pairs, where Xv
i and Xr

i = {Xtit
i ,Xing

i ,Xins
i }

represent the i-th sample of image and recipe. Xtit
i , Xing

i
and Xins

i represent a title, a list of ingredients and a
list of instructions of the recipe, respectively (Note that,
each title is a single sentence, while both ingredients and
instructions consist of several sentences). Given a recipe
Xr
i as query, cross-modal recipe retrieval is aiming to

search the most similar food images {Xv
i } or vise versa.

To address the matching imperfectly problem, we attempt
to introduce a novel learning strategy consisting of two
loss functions: a non-matching loss function Lnon to avoid
matching imperfectly and a partial-matching loss function
Lpart to preserve matchable information such that two
modality-specific embedding functions, V = f v(Xv

; θv) for
image modality and R = f r (Xr

; θr ) for recipe modality can
be learned correctly:

(θ̂
v
, θ̂

r
) = arg min

θv,θr
(Lnon + λLpart ), (1)

where V and R are the image and recipe embeddings, θv and
θr are the learnable parameters, λ is a parameter to balance
two parts. The similarity between the i-th image Xv

i and the
j-th recipe Xr

j can be denoted by Sim(Vi,Rj).

B. FRAMEWORK OVERVIEW
Figure 2 is an overview of our method CREAMY. Similar
to the prevailing solutions, the backbone consists of two
branches: an image encoder and a recipe encoder, which are
the implementations of embedding functions f v(·; θv) and
f r (·; θr ), respectively. The technique details of them are listed
as follows.

1) IMAGE ENCODER
The base size model of Vision Transformer(ViT-B) [70]
initialized with the weights pre-trained on ImageNet [71] is

served as image encoder. Given an image set {Xv
i }
n
i=1, each

of the image embedding is denoted as Vi = f v(Xv
i ). To better

evaluate the performance of this setting, we also conduct
experiment with ResNet-50 [72] pre-trained on ImageNet as
the image encoder. The implementation details are introduced
in IV-A.

2) RECIPE ENCODER
Inspired by [22], we employ a hierarchical transformer
encoder consisting of two level transformers (the one is
token-level and the other is sentence-level) with the same
architecture as recipe encoder. Given a recipe set {Xr

i }
n
i=1 =

{Xtit
i ,Xing

i ,Xins
i }

n
i=1, the first level transformer T1 receives

the tokens of every words of every sentences, following
an average pooling layer to output the average embedding
of every sentences, denoted as ((Xtit

i )′, (Xing
i )′, (Xins

i )′) =

T1(Xtit
i ,Xing

i ,Xins
i ). The second level transformer T2 receives

the output of T1, following an average pooling layer to
output the average embedding of these two components,
denoted as (Etiti ,Eingi ,Einsi ) = ((Xtit

i )′,T2(X
ing
i )′,T2(Xins

i )′).
Note that, as a single sentence, the embedding of title is
just obtained from T1 directly. Lastly, we concatenate the
outputs of the three components and feed them to a linear
layer to get the final output Ri = FC([Etiti ;Eingi ;Einsi ]; θl),
where FC(·; θl) is a learnable linear layer, [·; ·; ·] denotes
embedding concatenation, θl is the parameter vector. The
entire process is denoted as Ri = f r (Xr

i ; θr ), where
θr = [θtit ; θing; θing; θl]. The implementation details are
introduced in IV-A.

C. NMPM STRATEGY
As a common-used strategy in existing methods, triplet
loss aims to learn a common subspace where the posi-
tive image-recipe pairs exhibit greater similarity (smaller
distance) than negatives. Taking Fig. 3 as an example,
given an anchor image vector, the triplet loss (Fig. 3 (a))
attempts to maximize the distance between the positive
pair while minimizing the distance between a hard negative
pair, and forcing the gap between them to be larger than a
specified margin. However, due to the presence of matching
imperfectly in the positive recipe (Fig. 3 (b)), blindly
reducing the distance between the anchor and the positive
recipe may lead to a suboptimal optimization direction.
To this end, we propose the NMPM strategy (Fig. 3 (c))
comprising a non-matching loss Lnon to avoid matching
imperfectly problem and a partial-matching loss Lpart to
preserve matchable information. For the non-matching loss
Lnon, we refrain from reducing the distance between positive
pairs, and focus on maximizing the distance between all
negative pairs. In this way, a better optimization direction
will be led by the negative recipes, enabling us to overcome
the issue of matching imperfectly. Meanwhile, we do not
completely abandon the information in the positive recipe,
instead, we select and align the matchable features in the
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FIGURE 3. Comparison between triplet loss and ours. (a) shows the triplet loss ideally, m is a margin constant. (b) is the triplet loss for
cross-modal recipe retrieval in actual, there are mismatching features in positive sample. (c) are the losses of NMPM, which enlarge the
distance between negative pairs, and align the most matching part in positive pair.

positive pairs using a partial-matching loss Lpart . The details
of the NMPM strategy are discussed below.

1) NON-MATCHING LOSS
The core idea of the non-matching loss is to find a common
feature subspace where the negative image-recipe pairs have
large distance as much as possible. Firstly, given a food image
query Vi, we define the cross-modal matching probability of
recipe sampleRj w.r.t.Vi as pv2rij , which can be calculated by:

pv2rij =
exp( Sim(Vi,Rj)

τ
)∑|R|

n=1 exp(
Sim(Vi,Rn)

τ
)
, (2)

where the similarity Sim(Vi,Rj) is implemented by Cosine
similarity, τ is the temperature parameter, |R| is the size
of recipe sets. Since it is too expensive to compute the
denominator of Eq.(2), we employ Monte Carlo [73] to
approximate the value of pv2rij as:

pv2rij =
exp( Sim(Vi,Rj)

τ
)∑|R|

n=1 exp(
Sim(Vi,Rn)

τ
)

≃
exp( Sim(Vi,Rj)

τ
)

|R|

N

∑N
k=1 exp(

Sim(Vi,Rjk )
τ

)
, (3)

where Rjk is a random subset sampled from training set,
{jk}Nk=1 is the index, and N is the batch size.

Then the non-matching loss for image-to-recipe could be
defined as:

Lv2rnon = −
1
N

N∑
k=1

∑
p∈Pv2r

k

log (1 − p), (4)

where Pv2r
k = {pv2rkj |j ̸= k; j = 1, 2, . . . ,N } is a probability

set of negative image-recipe pairs. Similarity, non-matching

loss for recipe-to-image could be defined as:

Lr2vnon = −
1
N

N∑
k=1

∑
p∈Pr2v

k

log (1 − p), (5)

where Pr2v
k = {pr2vik |i ̸= k; i = 1, 2, . . . ,N }. To equally

consider the two above retrieval tasks, we define the overall
non-matching loss as:

Lnon = Lv2rnon + Lr2vnon. (6)

By means of minimizing the non-matching loss, we can learn
the complementary information from the negative pairs and
avoid the matching imperfectly problem.

2) PARTIAL-MATCHING LOSS
It should be noted that applying the non-matching loss alone
cannot be regarded as an optimal scheme because all the
information (including the matchable parts) contained in pos-
itive pairs are lost under this setting. This fact raises another
critical question—how to utilize the effective information in
positive pairs while do not disturb the convergence. Note that,
among the three components in a recipe, only the ingredients
would appear in the corresponding image. It indicates that
ingredients have the strongest association with the visual
content, which is not only intuitive but can be seen from
the data distribution [51]. Building on this, we extract the
correlation information of features of ingredients and align
it to the corresponding image features.

Given image embeddingsV = {Vi}
n
i=1, and the ingredients

embeddings Eing = {Eingi }
n
i=1 of the corresponding recipes,

where n is the number of the image-recipe pairs. We define
the similarity matrix of them respectively as:{

Sv = VV⊤

Sing = Eing(Eing)⊤
, (7)
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where V⊤ and (Eing)⊤ denote the transpose of matrix V
and Eing. Each element Svij in Sv indicates the relationship

between the i-th and the j-th feature of V. Similarity, Singij
indicates the adjacent information ofEing. Thereby, we define
the partial-matching loss by:

Lpart =

∥∥∥Sv − Sing
∥∥∥
2
, (8)

where ∥·∥2 is the L2 norm. Using this loss helps to
encourage the model to attend and align the matching
information among positive pairs. So that we could make
up for the deficiency of non-matching loss and com-
bine these two losses to solve the matching imperfectly
problem.

3) TOTAL LOSS
Considering non-matching and partial-matching together, the
total loss function of NMPM strategy can be formed as:

Ltotal = Lnon + λLpart , (9)

where λ is a hyper-parameter to balance the preference of two
losses.

D. OPTIMIZATION
Our method is optimized in an end-to-end fashion. The
optimization procedure is presented in Algorithm 1.

Algorithm 1 Optimization Procedure for Our Method
Input: image-recipe pairs {Xv

i ,X
r
j }
n
i,j=1, number of epoch T .

Output: parameters θv, θr .
1: Initialize parameters;
2: for t = 1 to T do
3: repeat
4: Compute V and R;
5: for i, j = 1 to n do
6: if i = j then
7: Regularize V and Eing by Eq.(7);
8: else
9: Calculate the matching probability betweenVi

and Rj using Eq.(4) and Eq.(5);
10: end if
11: end for
12: Update the parameters θv, θr by Eq.(9) via gradient

descent algorithm.
13: until convergence
14: end for

IV. EXPERIMENTS
In this section, extensive experiments are carried out to
evaluate the performance of our method. In the following, the
experiment settings are introduced firstly. Then, we discuss
the experimental results in detail.

A. EXPERIMENT SETTINGS
1) DATASET
We conduct experiments on the largest cross-modal recipe
dataset Recipe1M [51], which is collected over 1M cooking
recipes and 800K food images from more than 24 popular
cooking websites. We follow the official data splits: 238,399
image-recipe pairs for training, 51,119 pairs for validation
and 51,303 pairs for testing. Within the dataset, each recipe,
on average, contains 9.3 ingredients and 10.5 instructions. All
recipes are composed in English.

2) BASELINES
We compare our method with the following state-of-the-art
baselines:

• JE [51] learns a joint embedding for different modalities
and incorporates a classifier to predict food categories.

• AdaMin [41] uses a double triplet loss and proposes an
adaptive strategy for informative triplet mining.

• R2GAN [28] adopts a GAN-based model with one
generator and dual discriminators to lean compatible
embeddings for cross-modal similarity measurement.

• MCEN [32] obtains modality-consistent embeddings by
capturing the correlations between two modalities with
latent variables.

• SN [44] applies three attention networks to enhance
sentence-level information and uses an adversarial
learning strategy to enhance modality alignment.

• SCAN [23] regularizes the embeddings of two modali-
ties through aligning output semantic probabilities.

• HF-ICMA [40] considers intra- and inter- modal fusion
and jointly derives the final image-recipe similarity from
both local and global perspectives.

• SEJE [30] extracts additional semantic information
through a two-phase deep feature engineering frame-
work, which preprocesses data and trains model sepa-
rately.

• M-SIA [45] learns multi-subspace information using
multi-head attention networks to bridge the semantic gap
between the two modalities.

• X-MRS [19] utilizes multilingual translations to regular-
ize the model and jointly align the latent representations
of images and recipes.

• H-T [22] applies a self-supervised loss to three compo-
nents of recipes, leveraging the semantic relationships
within them.

• T-Food [34] adopts a transformer decoder to capture
interactions between recipe components.

3) METRICS
Following prior works [22], [34], [51], we evaluate the
retrieval performance (both image-to-recipe task and recipe-
to-image task) using median rank (MedR), which is the
median index of the retrieved samples for each query, and
recall rate at top-k , representing the percentage of queries for
which the correct sample index belongs to the top-k retrieved
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TABLE 2. Main results. The cross-modal recipe retrieval results of methods evaluated with MedR (lower is better) and R@K (higher is better). The best
results are presented in bold font.

FIGURE 4. Scalability analysis.

samples. In our experiments, we use top-1, top-5 and top-10
in our experiments, represented as R@1, R@5 and R@10.
We sample 1,000 pairs (1K set) and 10,000 (10K set) pairs
on test partition, and repeat the process 10 times to report the
mean results.

4) IMPLEMENTATION DETAILS
Similar to previous work [22], we resize image to 256 pixels
in their shorter dimension and crop them to 224×224 pixels.
The image encoder is implementation using pre-trained
ResNet-50 and ViT-base model, with an output size of 1024.
For recipes, we truncate all components to a maximum length
of 15, and the maximum number of sentences is set to 20.
The hierarchical recipe encoder is implemented using two
transformer encoders, each comprising two layers, with four
attention heads in each layer. The dimension of the unit
component is 512 and the size of final outputs is 1024. The
model is trained using Adam optimizer with a batch size of

256, a learning rate of η = 0.0001, and a balance parameter
of λ = 0.001.

5) EXPERIMENTAL ENVIRONMENT
All our experiments are implemented using Python 3.7 on
PyTorch 1.31.1 framework, running on a deep learning
workstation with Intel(R) Core i9-12900K 3.9GHz, 128GB
RAM, 1TB SSD and 2TB HDD storage, 2 NVIDIA GeForce
RTX 3090Ti GPUs with Ubuntu-22.04.1 operating system.

B. COMPARISON WITH STATE-OF-THE-ARTS
The performance comparison of the proposed method
CREAMY with the baselines are reported in Table 2. It can
be noticed that, our method outperforms others with a large
margin both in 1K and 10K size over the listed metrics.
Concretely, when using ResNet-50 as image encoder, our
method achieves 1.7, 1.2, 0.6 R{1, 5, 10} improvement
for recipe-to-image in 1K size, and 2.7, 2.4, 2.2 R{1, 5,
10} improvement for recipe-to-image in 10K size than X-
MRS [19], the SOTA method using a CNN-based image
encoder. When ResNet-50 is replaced by ViT, our method
achieves 9.1, 3.4, 2.2 R{1, 5, 10} improvement for image-
to-recipe in 1K size than SOTA method H-T(ViT) [22], 4.6,
4.6, 4.5 R{1, 5, 10} improvement for image-to-recipe in
10K size than SOTAmethod T-Food(ViT) [34]. These results
confirm that our method is not susceptible to the variation of
image encoding techniques. Whether using CNN or ViT to
encode food images, the best performance can be achieved.
Additionally, compared with the strongest competitor, T-
Food(CLIP-ViT) [74] fine-tuned on a large-scale dataset, our
method still shows obvious superiority: 1.0, 1.8, 2.2 R{1,
5, 10} improvement for image-to-recipe for 1K size, and
1.2, 0.9, 0.7 R{1, 5, 10} improvement for image-to-recipe in
10K size, which indicates that our method can obtain better
performance than the state-of-the-arts with larger models.
In addition, either ResNet-50 or ViT we adopt, our approach
obtain a larger improvement in 10K size than 1K (2.22 point
improvement on average in 1K size and 6.13 in 10K size
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TABLE 3. Ablation study. Evaluation of the impact of different parts in NMPM. The best results are presented in bold font.

FIGURE 5. Examples of recipe-to-image retrieval on 10K test set. The top row are the query images, the second row are the retrieved recipes using our
method, which are correctly matched with the ground truth, the third row are the retrieved recipes using H-T(ViT) [22].

than H-T [22] using ResNet-50, 4.78 point improvement on
average in 1K size and 9.33 point in 10K size than H-T(ViT)
[22] using ViT). That is to say, our approach retrieves the
plausible matches much better than previous methods do
especially in a larger sampling size.

C. SCALABILITY ANALYSIS
To investigate the scalability of CREAMY, we test it on dif-
ferent dataset sizes beyond 10K. As show in Figure 4, the gap
between other solutions and ours increased when the test size
increased. Actually, a larger test size means a larger number
of negative pairs in candidates, it increases the difficulty to
retrieve the positive samples, so the performance of other
approaches decreased dramatically. However, CREAMY
trains models by minimize the similarities between all the
negative pairs, so that the positive samples who have the

maximum similarities could be retrieved, even the test size
increased. As a result, we gained a stable MedR performance
even test size was enlarge.

D. ABLATION STUDIES
We carry out an extensive ablation study to tease apart the
effect by varying learning strategy. With ViT as the image
encoder and hierarchical transformer as recipe encoder, three
different loss functions, i.e., triplet loss Ltri, non-matching
loss Lnon and partial-matching loss Lpart are independently
or collaboratively adopted to guide the cross-modal learning.
In specific, we carry out the basic framework using Ltri,
then replace it with Lnon. Besides, we coupled the Lpart
with Ltri or Lnon, respectively. From Table 3 we can notice
that the performance is significantly improved by replacing
the triplet loss with non-matching loss. We advocate that
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FIGURE 6. Examples of recipe-to-image retrieval on 10K test set. On the left are the query recipes, and the right are the top5 results of retrieved
images. Among them, the matched images are highlight in a red box.

this improvement is obtained from eliminating the matching
imperfectly problem in positive pairs by non-matching loss
so as to lead a more correct optimization direction than
triplet loss. Furthermore, partial-matching loss also brings
additional enhancement upon both triplet loss and non-
matching loss, which validates the partial-matching loss
could further promote the alignment between two modalities.
Note that, in the results of recipe-to-image in 1K size, the
R@1 decreased 0.1 point when assembling partial-matching
loss and non-matching loss together. We conjecture that
the slight performance decrease is caused by the variety of
ingredients (Even ingredients are most probably related to the
food image directly, there may still be bits of mismatching
features involved). This phenomenon, however, not appear
in 10K setting, which indicates the matching information is
more instrumental when the dataset is larger.

E. QUALITATIVE RESULTS
1) QUALITATIVE RESULTS ON IMAGE-TO-RECIPE RETRIEVAL
To further analyze the typical results on image-to-recipe
retrieval of our method comparing to the strongest competitor
H-T (ViT) [22], we choose four food images as queries.
As presented in Figure 5, from left to right they are ‘‘Tomato-
Basil Chicken’’, ‘‘Tapenade Recipe’’, ‘‘Cornmeal Cranberry
Bread’’ and ‘‘Low Cal Butter Sauce (Vegan Option)’’. In the
first two results, some of the ingredients are easy to recognize
(e.g. softened tomatoes and leaves) directly while some are
not (e.g. cubed chicken and blended anchovy fillets). Our
method has found out the correct recipes, while H-T (ViT)
retrieved the ingredients that are obvious in food image
yet stumped by the hardly recognized ones. In the last two
examples, most ingredients are invisible in the images, among
which ‘‘Cornmeal Cranberry Bread’’ is more discernable.
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H-T (ViT) returned the similar ingredients and instructions
but failed to capture the exclusive ingredients: cornmeal
and cranberry. The last query, particularly, is even hard for
human to recognize the food from the image. It brought
huge challenge to H-T (ViT) so that marked difference exists
between the results of H-T (ViT) and the ground truth.
Naturally, the ingredients in the above cases are out of shape
after cooking, mixed together and even invisible, making it
hard to match the features between the images and recipes.
Even so, the proposed method captured the complementary
information from negative pairs rather than matched the
positive pairs forcibly, therefore, the accuracy of matching
can be raised.

2) QUALITATIVE RESULTS ON RECIPE-TO-IMAGE RETRIEVAL
Figure 6 visualizes the results of our method and H-T (ViT)
on recipe-to-image retrieval. We picked up three different
recipes ‘‘Moroccan Skirt Steak Roasted Pepper Couscous’’,
‘‘Fresh Okara Cookies ThatWon’t Crumble’’ and ‘‘Edamame
Dip’’ as the queries and displayed the top-5 results. In the
first case, H-T (ViT) failed to match the ground truth while
our method obtained the correct image at top-3. In the second
test, CREAMY retrieved the correct image at top-1 and H-
T (ViT) retrieved at top-2. However, all the top-5 images of
our results are cookies while the results of H-T (ViT) are not,
the reason behind which we conjectured is our CREAMY
method successfully avoided the mismatching information
in the query and correctly understood the goal. In the last
comparison, both two methods returned the correct image
at top-1. Note that, the ingredients in the second image of
our results are stacked up similar to the ground truth. This
phenomenon indicates that our method tried to align the
relationships of visual details to the semantics in the query
recipe (e.g. ‘‘Spread onto bottom of. . . ’’, and ‘‘Top with
layers of. . . ’’) to the image, which is admittedly a correct
manner to understand the data.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a method for cross-modal
recipe retrieval, named CREAMY, based on a new learning
strategy NMPM. The proposed method focus on negative
image-recipe pairs so that the matching imperfectly problem
could be avoid. Concretely, we introduce the non-matching
loss to maximize the distance between negative image-recipe
pairs in a batch, and introduce partial-matching loss to
do a regularize. We conducted experiments on Recipe1M
dataset, the experimental results for MedR and Recall rate
demonstrate the effectiveness of CREAMY. Additionally,
we performed ablation studies and qualitative analysis on it,
the evaluation results further confirm the utility of our NMPM
strategy.

In the follow-up work, we will investigate the matching
imperfectly problem in cross-modal image/recipe generation
task, which remains to be significant but more challenging
goals to achieve. In addition, another interesting and unsolved
problem in cross-modal recipe retrieval is that the same

ingredients may play different roles in different recipes.
To address this issue, transfer learning will be attended
by us. Specifically, external semantic knowledge about the
ingredients will be token to improve the generalization of
image-recipe matching. We expect that our work could be
expanded to food engineering and nutritional science.
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